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Abstract 

A directed k-cycle system of order n is a pair ( S, T ), where S is an n-set and T is a 

collection of arc disjoint directed k-cycles that partition the complete directed graph Kn *. 

An almost parallel class with deficiency x is a set of directed k-cycles which form a 
partition of S \ {x}. An almost resolvable directed k-cyclc system is a directed k-cyclc 
system in which the cycles can be partitioned into almost parallel classes. It is clear that n 
== 1 (mod k) is a necessary condition for the existence of such a system. It is well known 
that for k 3 and 4 the necessary condition is also sufficient. In this paper, we shall 
introduce a special kind of skew Room frames and discuss their constructions. As an 
application, we show that an almost resolvable directed 5-cycle system of order n exists if 

and only ifn 1 (mod 5 ). 

1. Introduction 

A directed k-cycle system of order n is a pair ( S, T ), where S is an n-set and T is a 

collection of arc disjoint directed k-cycles that partition the complete directed graph Kn *. An 

almost parallel class with deficiency x is a set of directed k-cycles which form a partition of 

S \ {x}. An almost resolvable directed k-cycle system of order n, denoted by ARDkCS(n), is a 

directed k -cycle system of order n in which the cycles can be partitioned into almost parallel 

classes. Simple counting shows that 

n= 1 (modk) (1) 

is a necessary condition for the existence of such a system. It has been shown that the necessary 

condition (1) is also sufficient in the case when k = 3 by Bennett and Sotteau [1] and in the case 

when k = 4 by Bennett and Zhang [2]. In this paper, we shall introduce a special kind of skew 

Room frames and discuss their constructions. As an application, we shall show that an almost 

resolvable directed 5-cycle system of order n exists if and only if n = 1 ( mod 5 ). This 

complements the result of Heinrich, Lindner and Rodger [7] which completely settles the existence 

of almost resolvable (undirected) m-cycle systems for all odd m. 
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For general background on Room frames and cycle systems, the reader is referred to the recent 

surveys by Dinitz and Stinson [5] and by Lindner and Rodger [8]. 

2. Strong skew Room frames and their application to ARDkCS 

In this section we shall define a special class of skew Room frames called strong skew Room 

frames.These Room frames will be used to construct almost resolvable directed k-cycle systems 

for odd k. 
Let S be a fmite set, and let { Sl, S2, ... , Sn } be a partition of S. An { S1, S2, ... , Sn }-Room 

frame is an lSI x lSI array, F, indexed by S, which satisfies the following properties: 

1. Every cell of F either is empty or contains an unordered pair of symbols of S. 

2. The sub arrays Si x Si are empty, for I ~ i ~ n (these sub arrays are referred to as holes ). 

3. Each symbol x ~ Si occurs once in row (or column) s, for any s E Si' 

4. The pairs in F are those { s, t }, where ( s, t ) E ( S X S ) \ U l:s; i s n ( Si x Si ). 

As is usually done in the literature, we shall refer to a Room frame simply as a/rame. The type 

of the frame is defined to be the multiset { I Si I: 1 ~ i ~ n }. We usually use an "exponential" 

notation to describe types: a type tiUI t2U2 ... tkUk denotes ui occurrences ofti, 1 ~ i ~ k. We briefly 

denote a frame of type t1 ul t2~ ... tkUk by RF(t1 ul t2~ ... tkUk ). 

An { Sl, S2, ... , Sn }-Room frame F is called skew if, given any cell ( s, t ) E ( S X S ) \ 

uls is n ( Si x Si ) , precisely one of ( s, t ) and ( t, s ) is empty. A skew RF(tl ul t2~ ... tkUk ) is 

denoted by SRF(t1 UI t2U2 ... tkUk ). 

A skew Room frame F, based on S, is called strong if each unordered pair { x, y } in F can be 

replaced either by ( x, y ) or by ( y, x ) such that if an ordered pair ( a, b ) appears in row r, then r 

must appear in F as the second element in column a and as the first element in column b. 

A strong skew Room frame of type T will be denoted by SSRF(T). 

Example 2.1 Let S = { 0, 1, ... ,6 }, and let Si = { i }. An SSRF(I7) is shown in Fig. 2.1, where all 

the pairs are considered as ordered pairs. But the SRF(I7) in Fig. 2.2 is not strong. For, if we take 

an ordered pair ( 1, 5 ) in row 0 and column 3, then the pair { 0, 2 } is forced to become an 

ordered pair (2,0) in row 3. From the latter we further get an ordered pair (3,4) in row 1, which 

contradicts the first pair. Ifwe take the ordered pair ( 5, I ), the situation is similar. 
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26 45 1 3 

30 56 24 

41 60 35 

46 52 o 1 

50 63 1 2 

23 61 04 

1 5 34 02 

Fig. 2.1 An SSRF( 17) 

1 5 46 23 

34 26, 50 

61 45 30 

02 56 41 

52 1 3 60 

63 24 01 

04 35 1 2 

Fig. 2.2 An SRF( 17) which is not strong 
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In order to use strong skew Room frames to construct almost resolvable directed k-cycle 

systems for odd k we need two sequences as follows (see also [7]), For 0 sis [kJ2], define 

e j ( l)i +l[(i + 1)/2] (mod k), 

d j [kI2] + 1 + ( - 1 )i [(i + 1)/2]( mod k), 

Lemma 2.2 The sequences ( do, d I , .. " d[k/zJ ) and ( eo, e l , ,." e[k/2J ) satisfy the following 

properties: 

(1) {ldj - d j -11k 11 sis [kI2] } == { ill sis [kI2l }, 

(2) d j -di _l == ei_l -ej for 1 sis [kI2] , 

(3) d[k/zJ e[k/zJ ' 

(4) {do, d I , ,." d[k/zJ' eo, e l , e[klzJ} {i lOs i s k -1 }, 

where Ii - jlk is defined to be a positive integer x such that x s [kI2l and x i - j ( mod k ) or x == 

j - i (mod k), 

The following construction is a slightly revised version of The Skew Room Frame 

Construction in [7], adapted here for the directed case, 

Construction 2.3 Suppose there exist an SSRF(hU) and an ARDkCS(hk + 1) for odd k. Then there 

exists an ARDkCS(huk +1), 

Proof: Let the given SSRF(hU) F be based on S with partition { Sl> S2, .. " Su }, Let K = { 0, 1, .. " 

k - 1 }, We shall construct an ARDkCS(huk + 1) on X = { 00 } u ( S X K ), In this construction, all 

additions are defined modulo k. Defmea collection of directed k-cycles C as follows: 

(1) for each Si' 1 sis u, define an ARDkCS(hk +1) on the set {oo} U ( Sj x K) and place 

these directed k-cycles in C; 

(2) for each pair (x, y) of row r and column c in F and for eachj, 0 s k - 1, place in C two 

directed k-cycles: 

( x, y, r, d, j ) = ( (x, do + j), .. " (y, dzt + j), (r, dZt+l + j), (x, dZt + j), .. " (y, do + j) ) and 

( y, x, c, e, j ) = ( (y, eo + j), .. " (x, eZt + j), (c, eZt+! + j), (y, eZt + j), .. " (x, eo + j) ) ifk = 4t + 3, 

or ( x, y, r, d, j ) = ( (x, do + j), .. " (x, dzt-l + j), (r, dZt + j), (y, d2t-l + j), . '" (y, do + j) ) and 

( y, x, c, e, j ) = ( (y, eo + j), .. " (y, eZt-l + j), (c, eZt + j), (x, eZt-l + j), "" (x, eo + j) ) ifk = 4t + I, 

We need to show that ( X, C ) is a directed k-cycle system and also it is almost resolvable, We 

shall focus on the case when k = 4t + 3, the case when k = 4t + 1 can be proved similarly, 

To see that ( X, C ) is a directed k-cycle system, we need only to show, by simple counting 

argument, that any arc of ~ '" , n = huk+ 1, is contained in at least one directed k-cycle of C. For 
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any arc ( a, ~ ) of ~ "', if a 00 or ~ == 00, then by (1) the arc appears in some directed k -cycle of 

C. If the first coordinates of a and ~ are in the same set Sj for some i, then by (1) the arc also 

appears in some directed k-cycle of C. Otherwise, we may suppose a ( a, p ), ~ (b, q) and a 

and b belong to different Sj. In the following case 1 and case 2, without loss of generality, we 

further suppose that the ordered pair ( a, b ) appears in row r and column c of F. 

Case 1. When q = p, there is a unique j such that p = eo + j. Then there is a directed k -cycle 

( b, a, c, e, j ) in C containing the given arc ( a, ~ ). 

Case 2. When Iq - Plk I;t {O, I~t+l -d2tld, by property (1) in Lemma 2.2 there is a unique i 

such that Iq - Plk = Idj - dj -11k' By property (2) in Lemma 2.2 we have Iq - Plk lei - ej -11k' If i 

is even, then there is a unique j such that the directed k-cycle ( b, a, c, e, j ) in C contains the given 

arc ( ( a, p ), ( b, q ) ), where j = p - ej _lor p - ej according to q - p = ej - ej _lor ej _\ - ej , 

respectively. If i is odd, then there is a unique j such that the directed k-cycle ( a, b, r, d, j ) in C 

contains the given arc ( ( a, p ), (b, q) ), where j = p - dj _lor p - dj according to q - p dj - dj _lor 

dj -1 - d j , respectively. 

Case 3. When Iq - Plk == I~t +l - d2tlk , by property (2) in Lemma 2.2 we have Iq - Plk = 

le2t + 1 - e2tlk . Since a and b belong to different Sj. a must appear in row b and b must appear in row 

a of F. By definition of strong skew Room frame F, we have the following two subcases to 

consider. 

Subcase 3.1 Suppose q - p = ~t +1 - ~t = e2t - e2t+l' If a appears in row b as the second 

element, we may let ( x, a) appears in row b and column c of F. Then, there is a directed k-cycle 

( x, a, b, d, j) in C containing the given arc ( ( a, p ), ( b, q ) ), where j = q - d2t + l' If a appears in 

row b as the first element, since F is strong, b must appear in column a of F as the second element. 

Let (x, b ) appears in row r and column a ofF. Then, there is a directed k-cycle ( b, x, a, e, j) in 

C containing the given arc ( ( a, p ), ( b, q ) ), where j = q - e2t. 

Subcase 3.2 Suppose q - p = e2t +1 - e2t = d2t - d2t+l' If b appears in row a as the second 

element, since F is strong, a must appear in column b of F as the first element. Let ( a, y ) appears 

in row r and column b ofF. Then, there is a directed k-cycle ( y, a, b, e, j) in C containing the 

given arc ( ( a, p ), ( b, q ) ), where j = q - e2t+ l' If b appears in row a as the first element, we may 

let (b, y) appears in row a and column c ofF. Then, there is a directed k-cycle (b, y, a, d, j) in 

C containing the given arc ( ( a, p ), ( b, q ) ), where j = q - d2t. 

We have proved that ( X, C ) is a directed k-cycle system and we shall now show that it is 

almost resolvable. For each set He { S1> S2, ... , Su }, denote by 1t( 00, H) the almost parallel class 

that has deficiency 00 and by 1t( ( X, j ), H ) the almost parallel class with deficiency ( x, j ) in the 

resolution of ARDkCS(hk + 1) on the set { oo} U (H x K). 

For each w e { 00 } u ( S x K ) define the almost parallel class 1t(w) with deficiency w as 

follows: 
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(1) 1t(00) = UlSiSu 1t( 00, Sj); and 

(2) for each ( x, j ) E S X K with x E Sj , 

1t( ( x, j ) ) = 1t( ( x, j ), Sj ) 

U { (a, b, r, d,j ) I all (a, b) in column x ofF} 

U { ( b, a, c, e, j ) I all ( a, b ) in row x of F }. o 

Corollary 2.4 Suppose there is an SSRF(l U). Then there exists and ARDkCS(uk + 1) for odd k 

Proof: From [3, Theorem 3], there exists a directed k-cycle system of order k + 1 for any odd k, 

which is also an ARDkCS(k + I).Then the conclusion follows from Construction 2.3. 0 

Corollary 2.5 Suppose there is an SSRF(2U). Then there exists and ARDkCS(2uk + 1) for odd 

k~ 3. 

Proof: We construct an ARDkCS(2k + 1) on Z2k+ l' Let k = 2t + 1 ( so t ~ 1 ). Let 

c = ( -1, 2, -3, ... , (-I)tt, (-I)t(t + 1), (_l)Hl(t + 2), ... , (-I)tt, (-1)2t(2t + 1», 

where each component of c is reduced modulo 2k + 1. Let - c and c + i be formed by replacing 

each component Cj ( for 1 :::; j :::; k ) of c by - cj ( mod 2k + 1 ) and Cj + i ( mod 2k + 1 ), 

respectively. Then c and - c form an almost parallel class with deficiency 0 and C {c + i, - c + 

i I 0 :::; i s 2k } is an ARDkCS(2k + 1). Then the conclusion follows from Construction 2.3. 0 

3. Constructions of strong skew Room frames 

In this section, we shall discuss constructions of strong skew Room frames. We mainly use the 

direct constructions for Room frames. 

Let G be an additive abelian group of order g, and let H be a subgroup of order h of G, where 

g - h is even. A/rame starter in G\H is a set of unordered pairs S {{ Sj, tj } : 1 sis (g - h)12 } 

such that the following two properties are satisfied: 

1. { Sj : 1 sis (g - h)12 } U { tj . 1 sis (g - h)/2 } = G\H. 

2. { ±( Sj - tj ) : 1 s i :::; (g - h)/2 } = G\H. 

The type of the frame is defined to be hg/h. When H = {O}, a frame starter is simply called a 

starter. A frame starter S = {{ Sj, tj } . 1 sis (g - h)/2 } in G\H is called skew if { ±( Sj + tj ) : 

1 sis (g - h)12 } == G\H. 

From a skew frame starter, one can construct a skew Room frame easily. For each element bin 

G and each pair { s, t } in a skew starter S, place in cell ( b, b + S + t ) the pair { b + S, b + t } to 
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form a skew Room frame F indexed by G. We can further prove that the skew Room frame is also 

strong. 

Lemma 3.1 If there is a skew frame starter of type hU, then there exists an SSRF(hU). 

Proof: To prove the above-defmed skew Room frame F is strong, we need to show that b must 

appear in column b + s as the second element and in column b + t as the first element in F, where 

the pair { b + s, b + t } in F is considered as the ordered pair ( b + s, b + t ). In fact, F contains 

( b + S - t, b ) in cell (b t, b + s ) and ( b, b + t - s ) in cell ( b - s, b + t ). This completes the 

proof. 0 

For example, the SSRF(I7) in Fig. 2.1 is constructed from a skew frame starter S = {{ 2, 6 }, 

{ 4, 5 }, { 1, 3 } } in Z7 \ {O}. The following known skew frame starters will be useful. 

Lemma 3.2 ( [10] ) Let n be a prime power such that n 2kt + 1, where t 1 is odd. Then there is 

a skew frame starter of type (In). 

Lemma 3.3 ( [9] ) There is a skew frame starter of type (In) for n = 16k2 + 1, where k is any 

positive integer. 

Lemma 3.4 ( [6], [12] ) If q == 1 ( mod 4 ) is a prime power and n ~ 1, then there is a skew frame 

starter in (GF(q) X (Z2)n) \ ({O} X (Z2)n). 

Lemma 3.5 There are skew frame starters of type (44) and type (P5). 

Proof: The first skew frame starter S can be found in [11, Lemma 5.1]. In ( Z4 X Z4 ) \ { ( 0, ° ), 
( 0, 2 ), ( 2, ° ), ( 2, 2 ) }, S = { {(3, 2), (1, I)}, {(3, 0), (3, I)}, {(2, 1), (3, 3)}, {(a, 3), (1, 3)}, 

{(1, 0), (2, 3)}, {(l, 2), (a, I)} }. The second is sho\\<TI below, where the starter is in Z35\{0}. S = 

{ {l, 2}, {3, 5}, {4, 7}, {6, 1O}, {8, I5}, {9, 21}, {ll, 25}, {12, 29}, {l3, 24}, {14, 30}, 

{16, 26}, {l7, 22}, {18, 31}, {19, 34}, {20, 28}, {23, 32}, {27, 33} }. o 

For some group G there is no skew starter in G as pointed out in the following. 

Lemma 3.6 ( [13] ) Suppose that G is an abelian group of order n == 3 ( mod 6 ) in which the 3-

Sylow subgroup is cyclic. Then there is no skew starter in G. 
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For example, n = 15 is such an order. But, we can use starter-adder construction to find an 

SSRF(115). If S {{ Sj, tj } : 1 ~ i ~ (g - h)12 } is a frame starter in G\H, then a set A {{ aj } : 

1 ~ i ~ (g - h)12 } is defined to be an adder for S if the elements in A are distinct in G\H, and the 

set S + A = { { Sj + aj , tj + aj } . 1 i ~ (g - h)12 } is again a frame starter. An adder is said to be 

skew if for any a E A, - a is not in A. It is well known that the existence of a frame starter and a 

skew adder implies the existence of a skew Room frame with the same type. The frame F, indexed 

by G, will contain in cell ( b, b - aj ) the pair { b + Sj, b + t j } for any bEG. 

A frame starter and a skew adder ( S, A ) is called strong if { - Sj - aj : 1 sis (g h)l2} = 

{tj : 1 s j ~ (g - h)/2 }. Since S and S + A are both frame starters, it is equivalent to { - tj - aj 

1 ~ i~(g-h)l2} = {Sj : 1 sj (g-h)I2}. 

Lemma 3.7 If there is a frame starter and a skew adder ( S, A ) which is strong , then there is a 

strong skew Room frame with the same type. 

Proof: Since the skew frame F contains the ordered pair ( b + Sj, b + tj) in cell ( b, b - aj ) for any b 

E G, we know that (b , b + tj - Sj) appears in cell ( b - Sj, b aj - Sj). Since ( S, A) is strong, there 

is an integer j such that b aj - Sj = b + tj . That is, b appears in column b + tj as the first element in 

F. Similarly, b appears in column b - aj - tj = b + Sj , for some j, as the second element in F. When i 

and j run through 1 to (g - h)l2, we know that b appears in column b + Sj as the second element and 

in column b + tj as the first element in F. Therefore, the skew frame F is strong. The proof is 

complete. o 

Lemma 3.8 There exists an SSRF(l15). 

Proof: Let G = Z15 and H = {o}. Take S = { ( 1,4), ( 10,6), ( 12, 13 ), ( 11,3 ), (2,8), (5, 7), 

(9, 14) } and A = { 1, 13, 12, 11, 10,6, 7 }. It is readily checked that the frame starter and skew 

adder ( S, A ) is strong. The conclusion then follows from Lemma 3.7. 0 

Lemma 3.9 There exists an SSRF(28). 

Proof: Let G = Z16 and H = { 0, 8 }. Take S = { ( 2, 5 ), ( 7, 3 ), ( 9, 11 ), ( 15, 14 ), ( 10, 4 ), 

( 12, 1 ), ( 6, 13 ) } and A = { 1, 14,3, 12,5,6, 7 }. It is readily checked that the frame starter and 

skew adder (S, A) is strong. The conclusion then follows from Lemma 3.7. 0 
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4. Existence of almost resolvable directed 5-cyde systems 

In this section, we shall solve the existence of almost resolvable directed 5-cycle systems. We 

start with group divisible directed k-cycle systems. 

A group divisible directed k-cycle system ( GDDkCS ) is a triple ( S, G, T ), where G is a 

partition of the set S and T is a collection of arc disjoint directed k-cycles that partition the 

complete directed multipartite graph on S with partition G. The group type of the GDDkCS is the 

multi set { IGI : G E G }. An almost parallel class with deficiency G for G EGis a set of 

directed k-cycles which form a partition of S\G. An almost resolvable group divisible directed 

k-cycle system ( ARGDDkCS ) is a GDDkCS in which the cycles can be partitioned into almost 

parallel classes such that for each group G E G there are exactly IGI almost parallel classes with 

deficiency G. 

We wish to remark that an ARGDDkCS of type In is just an ARDkCS(n). By Construction 

2.3 we can get an ARGDDkCS from an SSRF. 

Lemma 4.1 If there exists an SSRF(hU), then for any odd integer k ~ 3, there exists an 

ARGDDkCS of type (hk)u. 

To get an ARDkCS from an ARGDDkCS and some ARDkCS we have the following obvious 

filling-in-holes construction. 

Lemma 4.2 If there exists an ARGDDkCS ( S, G, T ) and if for any G in G there exists an 

ARDkCS( IGI + 1 ), then there exists an ARDkCS( lSI + I ). 

We shall further use group divisible designs to construct ARGDDkCS and ARDkCS. A 

group diVisible design (or GDD), is a triple ( X, G, B ) which satisfies the following properties: 

(1) G is a partition of X into subsets called groups, 

(2) B is a set of subsets of X (called blocks) such that a group and a block contain at 

most one common point, 

(3) every pair of points from distinct groups occurs in a unique block. 

The group type of the GDD is the multiset { IGI : G E G }. A TD(k, n) is a GDD of group type nk 

and block size k. It is well known that the existence of a TD(k, n) is equivalent to the existence of k 

- 2 mutually orthogonal Latin squares ( MOLS ) of order n and also to the existence of resolvable 

TD(k-l, n). For more about TD and MOLS the reader is referred to Beth, Jungnickel and Lenz [4]. 

We have the following two weighting construction. 
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Construction 4.3 Suppose ( S, G, B ) is a GDD and let w X --?> z+ U { 0 }. Suppose there 

exists an ARGDDkCS of type { w(x) : x E B } for every B 

ARGDDkCS of type { Lx e G w(x) . G E G }. 

B. Then there exists an 

Proof: The resultant system will be based on S* = u XeS ' where for XES, Sx are pairwise 

disjoint and ISxl = w(x). The new partition of S* will be G* {u x e G Sx : G E G }. Suppose 

AB is the set of cycles for an ARGDDkCS of type { w(x) : x E B }, B E B. Then, B* = 

u B e B AB is the set of cycles for the ARGDDkCS. For any in certain G, let Bx consists of all 

blocks in E containing x. Let P( x, B, j ) denote the j-th almost parallel class with deficiency Sx , 

1 s j S w(x), in the ARGDDkCS of type { w(x) : x E B } for B Ex' Then P( x, j ) = U B 

P( x, B, j ), where B runs over Ex, is an almost parallel class with deficiency u x e G . For 

each G E G, there are all together L x e G w(x) almost parallel classes with deficiency u x e G Sx' 

This completes the proof. o 

Construction 4.4 Suppose ( S, G, T ) is an ARGDDkCS of type T. If there exists a resolvable 

TD(3, m), then there exists an ARGDDkCS of type mT = { mt : t E T }. 

Proof: Let M = { 1, 2, ... , m } and let the TD(3, m) be based on M x {I, 2, 3 } having three groups 

M x {j }, 1 S 3. For each cycle c = ( c l , c2, ... , '1< ) in T and each block B = { (x, 1), (y, 2), 

(z, 3) } in the TD(3, m), defme a directed k-cycle c x B = ( (c l , x), (c2 , y), ... , ('1< -2' x), ('1< -1' y), 

(Ck, z) ). All these cycles will form the set of cycles for the resultant ARGDDkCS, which will be 

based on the set S x M having the partition { G x M : G E G }. Let P( G, j ) be the j-th almost 

parallel class of the given ARGDDkCS with deficiency G, 1 S j s IGI. Let Q( i) be the i-th parallel 

class of the resolvable TD(3, m). Denote P( G, j, i ) {c x B : c E P( G, j ), B E Q( i ) }. Then 

P( G, j, i ) is an almost parallel class with deficiency G x M and there are mlGI such almost parallel 

classes. This completes the proof. 0 

We are now in a position to show the existence of an ARDSCS(n). First, from the proof of 

Corollary 2.4 and Corollary 2.S we have ARDSCS(n) for n 6 and 11. 

Lemma 4.5 For any odd integer k ~ 3, there are ARDkCS( k + 1 ) and ARDkCS( 2k + 1 ). 

Lemma 4.6 For any prime power q == 1 (mod k ), there exists an ARDkCS( q ). 

Proof: Let x be a primitive element of GF( q ). Let y = xd, d = (q - l)/k. Denote B( i, g ) = 

(xiyl +g, xiy2 +g, ... , xiyk +g) and B ={ B( i, g ) : 1 sis d and g E GF( q) }. Then, (GF( q), 
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B ) is the desired ARDkCS( q ) where for each g E GF( q ), { B( i, g ) : 1 sis d } is the almost 

parallel class with deficiency g. 0 

Lemma 4.7 There exist ARGDD5CS of type 5u for u = 5, 6, 7 and 9. 

Proof: There is an ARDkCS( 6 ) from Lemma 4.5, which is also an ARGDD5CS of type 16. 

Applying Construction 4.4 with k = 5 we obtain an ARGDD5CS of type 56. An SSRF(17) exists 

from Lemma 3.2, which leads to an ARGDD5CS of type 57 by Lemma 4.1. An ARGDD5CS of 

type 55 (S, G, T) is shown below, where S Z25 and G {{ 0, 5, 10, 15,20 } + i : 0 sis 4 }. 

T is generated modulo 25 by the following initial directed cycles: ( 1,3, 17,21, 13 ), (2, 14, 11, 7, 

16 ), ( 4, 12, 19,22,23 ), ( 6, 24, 18,9, 8 ), which form an almost parallel class with deficiency o. 
For type 59, take S = Z45 and G = { { 0,9, 18,27,36 } + i : 0 sis 8 }. The initial directed cycles 

are: 

( 1,3, 13,5, 8), (2,32, 10, 11,26), (4,23,37,41,21), (6,38, 15,39,44 ), 

( 7, 19,25,33, 17), ( 12,29,40, 35,24), (14, 34,31,30,43), (16,42,28,22,20). 

These cycles form an almost parallel class with deficiency o. o 

Lemma 4.8 There exists an ARD5CS of order 21. 

Proof: Let S = Z20 U {oo }. Four directed cycles (0,4,8, 12, 16) i for 0 sis 3 form an almost 

parallel class with deficiency 00. For any g E Z20' the following four cycles form an almost 

parallel class with deficiency g: (2, 7, 10, 17,8) + g, (3, 13, 19, 18, 11 ) + g, (4,6, 14, 12,9) 

+ g, ( 15, 16, 5, 1,(0) + g . Let T denote the set of all these cycles. Then, ( S, T) is the desired 

ARD5CS(21). 

Lemma 4.9 For any integer v, 1 S v s 9, there exists an ARD5CS( 5v + 1 ). 

Proof: For v = 1, 2 and 4, an ARD5CS( 5v + 1 ) exists by Lemmas 4.5 and 4.8. For v = 5, 6, 7 

and 9, an ARD5CS( 5v + 1 ) exists by Lemmas 4.7 and 4.2. Finally, Lemma 4.6 takes care of the 

cases v = 3 and 8. 0 

Lemma 4.10 For any integer v, 10 s v s 24, there exists an ARD5CS( 5v + 1 ). 

Proof: We shall deal with these cases in Table 4.1. o 
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y 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

5v+ 1 

51 

56 

61 

66 

71 

76 

81 

86 

91 

96 

101 

106 

III 

116 

121 

Authority 

Corollary 2.5 

Corollary 2.4 

Lemma 4.6 

Corollary 2.4 

Lemma 4.6 

Corollary 2.4 

Lemma 4.6 

Corollary 2.4 

Corollary 2.S 

Corollary 2.4 

Lemma 4.6 

Lemma 4.2 

Lemma 4.2 

Corollary 2.4 

Lemma 4.6 

Table 4.1 

Ingredients 

SSRF(25). Lemma 3.4 

SSRF( III ), Lemma 3.2 

SSRF(l13), Lemma 3.2 

SSRF(l15), Lemma 3.8 

SSRF(117), Lemma 3.3 

SSRF(29). Lemma 3.4 

SSRF(119), Lemma 3.2 

Apply Construction 4.4 with 

T = 57 and m = 3 to get an 

ARGDD5CS of type IS7 

Apply Construction 4.4 with 

T = III and m 10 to get an 

ARGDD5CS of type 1011 

SSRF(l23), Lemma 3.2 

Lemma 4.11 For any integer v, 25:S:; v :s:; 30, there exists an ARD5CS( 5v + 1 ). 

Proof: Start with a TD(6, S), which exists from [4], and give weight 5 to each point of the TD 

except 5 - a points in some group, for which we give weight 0 each. Applying Construction 4.3 

with ARGDDSCS of type 55 and 56, we obtain an ARGDD5CS of type 255(5a)lfor 0 :s:; a s 5. 

The conclusion then follows from Lemma 4.2 and Lemma 4.9. 0 

Lemma 4.12 For any integer v, 31:S:; v:S:; 34, there exists an ARDSCS( 5v + 1 ). 

Proof: We shall deal with these cases in Table 4.2. o 
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y 

31 

32 

33 

34 

5v + 1 

156 

161 

166 

171 

Authority 

Corollary 2.4 

Lemma 4.2 

Lemma 4.2 

Corollary 2.5 

Table 4.2 

Ingredients 

SSRF(131), Lemma 3.2 

Apply Construction 4.4 with 

T 116 and m = 10 to get an 

ARGDD5CS oftype 1016 

Apply Construction 4.4 with 

T 511 and m = 3 to get an 

ARGDD5CS of type 15 11 

SSRF(217), Lemma 3.4 

Lemma 4.13 Suppose there exist a TD(7, t) and an ARD5CS(5v + 1) for v = t, a and b, where 

o ~ a, b ~ t. Then, there exists an ARD5CS( 5(5t + a + b) + 1 ). 

Proof: Delete t - a points from one group and t - b points from another group of the TD. Give 

weight 5 to each point of the resultant GDD. Applying Construction 4.3 gives an ARGDD5CS of 

type (5t)5(5a)1(5b)1. The input ARGDD5CS of types 55, 56 and 57 are all from Lemma 4.7. 

Further apply Lemma 4.2, we get the desired ARD5CS( 5(5t +a + b) + 1 ). 0 

Lemma 4.14 For any integer v ;?: 35, there exists an ARD5CS( 5v + 1 ). 

Proof: We shall prove this Lemma by induction using Lemma 4.13. For any v;?: 35, we may write 

v = 5t + a + b such that 0 ~ a, b ~ t and a TD(7, t) exists. For example, if v ;?: 265, we may write 

v = 5t + a + b such that t is odd;?: 53 and 0 ~ a, b ~ 5. A TD(7, t) exists from [4]. Other values of 

v = 5t + a + b are given in Table 4.3, where a TD(7, t) exists from [4]. 

35 ~ v s 44, t = 7, 0 ~ a, b s 5, 

45 ~ v s 54, t 9, Os a, b s 5, 

55 ~vs64, t 11, o ~ a, b s 5, 

65 ~ v s 84, t= 13, o ~ a, b s 10, 

85~vs1l4, t = 17, o ~ a, b sIS, 

115 s v s 144, t = 23, o ~ a, b sIS, 

145~v~184, t= 29, o ~ a, b s 20, 

185~v~204, t= 37, O~a,b~lO, 

205 ~v ~ 264, t = 41, o ~ a, b s 30. 

Table 4.3 
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By induction hypothesis, an ARD5CS( 5t + 1 ) exists. Since an ARD5CS( 5v + 1 ) exists for 

v S; 34, by Lemma 4.13 there exists an ARD5CS( 5v + 1) for v ~ 35. 

Combining Lemmas 4.9 - 4.12 and 4.14 we obtain the main theorem of this paper. 

Theorem 4.15 There exists an ARD5CS( n) if and only ifn =1 (mod 5 ) and n ~ 6. 

5. Concluding remarks 

The existence problem for ARDkCS( n) has been solved for k = 3,4 in [1], [2] and for k = 5 

in this paper. But, for general k the problem is still open. The new concept of strong skew Room 

frames and their constructions, introduced and discussed in Sections 2 and 3, are useful in dealing 

with such a general problem. Especially, the existence problems for SSRF(ln) and SSRF(2n) are 

very much desirablc. However, both of them are again opcn problems. 
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