











any arc (o, B ) of Kn*, if a = or B = oo, then by (1) the arc appears in some directed k-cycle of
C. If the first coordinates of a and P are in the same set S; for some i, then by (1) the arc also

appears in some directed k-cycle of C. Otherwise, we may suppose o= (a,p ), B=(b, q)anda
and b belong to different S;. In the following case 1 and case 2, without loss of generality, we

further suppose that the ordered pair ( a, b ) appears in row r and column ¢ of F.

Case 1. When q = p, there is a unique j such that p = ¢, + j. Then there is a directed k-cycle
(b, a,c,e,j)in C containing the given arc (a, B ).

Case 2. When|q -pl € {0,dy., -dyly }, by property (1) in Lemma 2.2 there is a unique i
such that |q - ply = |d; -d; |, . By property (2) in Lemma 2.2 we have |q -pl =lg; -¢; 4 . If i
is even, then there is a unique j such that the directed k-cycle (b, a, ¢, e, j ) in C contains the given
arc ((a,p), (b,q)), wherej=p-¢ jorp-eg accordingtoq-p= e-¢_0re; -¢,
respectively. If i is odd, then there is a unique j such that the directed k-cycle (a, b, 1,d,j)in C
contains the given arc ((a,p ), (b,q)), wherej=p-d, ; orp - d; accordingtoq -p = d;-d; , or
d;, ; -d;, respectively.

Case 3. When |q - pl, = ldy -1 - ol » by property (2) in Lemma 2.2 we have |q - p|, =

[e2¢+1 -€alx - Since a and b belong to different S;, a must appear in row b and b must appear in row

a of F. By definition of strong skew Room frame F, we have the following two subcases to
consider.

Subcase 3.1 Suppose q - p = dy, ,; - dy = €y - €. If 2 appears in row b as the second
element, we may let ( X, a ) appears in row b and column ¢ of F. Then, there is a directed k-cycle
(x%,a,b,d,]j) in C containing the givenarc ((a,p), (b, q) ), where j =q - d,, ,,. If a appears in
row b as the first element, since F is strong , b must appear in column a of F as the second element.
Let ( x, b ) appears in row r and column a of F. Then, there is a directed k-cycle (b, x, a, ¢,j) in
C containing the given arc ((a,p ), (b, q) ), where j =q - ¢,

Subcase 3.2 Suppose q - p = €5 4y - €y = dy ~dy,;- If b appears in row a as the second
element, since F is strong , a must appear in column b of F as the first element. Let ( a, y ) appears
in row r and column b of F. Then, there is a directed k-cycle (y, a, b, e, j ) in C containing the
given arc ((a,p), (b, q) ), where j =q - ey,,;. If b appears in row a as the first element, we may
let (b, y ) appears in row a and column ¢ of F. Then, there is a directed k-cycle (b, y,a,d,j) in

C containing the given arc ((a, p), (b, q) ), where j =q - d,.

We have proved that ( X, C ) is a directed k-cycle system and we shall now show that it is
almost resolvable. For each set He { Sy, S, ..., S }, denote by n( oo, H ) the almost parallel class

that has deficiency oo and by n( ( x, j ), H) the almost parallel class with deficiency ( x, j ) in the
resolution of ARDKCS(hk + 1) onthe set { oo } W (HXK).
For each w €{ © } U ( S x K ) define the almost parallel class n(w) with deficiency w as

follows:
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(D m(0) = Upgicy (0, §;) ; and
(2) foreach(x,j) e SxKwithx € §;,
n((x,j))=n((x]), ;)
w{(a,b,r,dj)lall(a,b)incolumnx of F}
U{(b,acej)lall(a b)inrowxof F}. O

Coroliary 2.4 Suppose there is an SSRF(1¥). Then there exists and ARDkCS(uk + 1) for odd k.

Proof: From [3, Theorem 3], there exists a directed k-cycle system of order k + 1 for any odd k,
which is also an ARDkCS(k + 1).Then the conclusion follows from Construction 2.3. O

Corollary 2.5 Suppose there is an SSRF(2¥). Then there exists and ARDKCS(2uk + 1) for odd
k=3,

Proof: We construct an ARDKCS(2k + 1) on Z,, ;. Let k=2t + 1 (sot > 1). Let

c=(-1,2,-3, ., (-1, (DUt + 1), (DU +2), ., D CD2RE+ 1)),
where each component of ¢ is reduced modulo 2k + 1. Let - ¢ and ¢ + i be formed by replacing
each component ¢; (for 1 < j <k ) of ¢ by - ¢; (mod 2k + 1 ) and ¢ +ti(mod 2k + 1),
respectively. Then ¢ and - ¢ form an almost parallel class with deficiency Oand C = { c+1i, - ¢ +
1|0 <i<2k}is an ARDkCS(2k + 1). Then the conclusion follows from Construction 2.3. O

3. Constructions of strong skew Room frames

In this section, we shall discuss constructions of strong skew Room frames. We mainly use the
direct constructions for Room frames.

Let G be an additive abelian group of order g, and let H be a subgroup of order h of G, where
g -hiseven. A frame starter in G\H is a set of unordered pairs § = {{ s, tiril<i<(g-h)y2}
such that the following two properties are satisfied:

L{s:1<i<(@-2}u{:1<i<{g-h)/2}=GH.

2.{H(s;-t):1<i<(g-h)2}=GH
The type of the frame is defined to be he®, When H = {0}, a frame starter is simply called a
starter. A frame starter S = {{ s, t; } : 1 <i<(g-h)/2 } in G\H is called skew if {#(s+¢):
1<i<(g-h)/2}=GH.

From a skew frame starter, one can construct a skew Room frame easily. For each element b in
G and each pair { s, t } in a skew starter S, place in cell (b,b+s+t)thepair {b+s,b+t}to
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form a skew Room frame F indexed by G. We can further prove that the skew Room frame is also

strong.
Lemma 3.1 If there is a skew frame starter of type hY, then there exists an SSRF(hv).

Proof: To prove the above-defined skew Room frame F is strong, we need to show that b must
appear in column b + s as the second element and in column b + t as the first element in F, where
the pair { b+s,b + 1t} in F is considered as the ordered pair (b + s, b +t). In fact, F contains
(b+s-t,b)incell(b-t,b+s)and(b,b+t-s)incell (b-s, b+t) This completes the
proof. O

For example, the SSRF(17) in Fig. 2.1 is constructed from a skew frame starter S = {{ 2, 6 },
{4,5}, {1,3} } in Z\{0}. The following known skew frame starters will be usefil.

Lemma 3.2 ([10] ) Let n be a prime power such that n = 2kt + 1, where t > 1 is odd. Then there is
a skew frame starter of type (17).

Lemma 3.3 ( [9] ) There is a skew frame starter of type (1) for n = 16k? + 1, where k is any

positive integer.

Lemma 3.4 ([6], [12] ) Ifq =1 (mod 4 ) is a prime power and n = 1, then there is a skew frame
starter in (GF(q) X (Z,)™) \ ({0} x (Z,)™.

Lemma 3.5 There are skew frame starters of type (4%) and type (13%).

Proof: The first skew frame starter S can be found in {11, Lemma 5.1]. In (Z,x Z,)\ { (0, 0),

(0,2),(2,0),(2,2)},S={{G,2),(1, D}, {(3,0), G, D}, {2, 1), 3, 3)}, {(0, 3), (1, 3)},
{(1, 0), (2, 3)}, {(1, 2), (0, 1)} }. The second is shown below, where the starter is in Z,\{0}. 8 =

{ {1, 2}, {3, 5}, {4, 7}, {6, 10}, {8, 15}, {9, 21}, {11, 25}, {12, 29}, {13, 24}, {14, 30},
{16, 26}, {17, 22}, {18, 31}, {19, 34}, {20, 28}, {23, 32}, {27, 33} }. a

For some group G there is no skew starter in G as pointed out in the following.

Lemma 3.6 ( [13] ) Suppose that G is an abelian group of order n = 3 ( mod 6 ) in which the 3-
Sylow subgroup is cyclic. Then there is no skew starter in G.
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For example, n = 15 is such an order. But, we can use starter-adder construction to find an
SSRF(1V%). If S = {{s;, t; } : 1 Si<(g-h)2 }is a frame starter in G\H, then a set A = {{ a; } :

1 <i<(g-h)/2} is defined to be an adder for S if the elements in A are distinct in G\H, and the
set S+A={{s;+a,t;+a}:1<i<(g-h)2} is again a frame starter. An adder is said to be
skew if for any a € A, - aisnot in A. It is well known that the existence of a frame starter and a
skew adder implies the existence of a skew Room frame with the same type. The frame F, indexed
by G, will contain in cell (b, b -a; )the pair {b+s5;,b+t;} forany b € G.

A frame starter and a skew adder (S, A ) is called strong if {-s;-a, :1<i<(g-h)/2}=
{t :1<j<(g-h)/2}. Since S and S + A are both frame starters, it is equivalentto { - t; - a; :
I<is(g-h2}={s :1<j<(g-h2}.

Lemma 3.7 If there is a frame starter and a skew adder ( S, A ) which is strong , then there is a

strong skew Room frame with the same type.

Proof. Since the skew frame F contains the ordered pair (b +s;, b+t;) incell (b, b -a;) for any b
€ G, we know that (b, b +1t;-s;) appears in cell (b - 5;, b - a;~'5;). Since (S, A ) is strong, there
is an integer j such that b - a;-s; =b +t;. That is, b appears in column b + t; as the first element in
F. Similarly, b appears in column b - 3;- t;=b +5; , for some j, as the second element in F. When i
and j run through 1 to (g - h)/2, we know that b appears in column b + s; as the second element and

in column b + t; as the first element in F. Therefore, the skew frame F is strong. The proof is

complete. 0

Lemma 3.8 There exists an SSRF(11%).

Proof. Let G=Z;sand H= {0}. Take S= { (1,4 ),(10,6),(12,13),(11,3),(2,8),(5,7),

(9,14)}and A={1,13,12,11,10,6,7 }. Itis readily»checked that the frame starter and skew
adder ( S, A) is strong. The conclusion then follows from Lemma 3.7. o

Lemma 3.9 There exists an SSRF(28).

Proof: Let G=Z,;and H={ 0,8 }. Take S = { (2,5),(7,3), (9, 11), (15, 14), (10, 4),
(12,1),(6,13)}andA={1,14,3,12,5,6,7 }. It is readily checked that the frame starter and
skew adder ( S, A ) is strong. The conclusion then follows from Lemma 3.7. O
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4. Existence of almost reselvable directed 5-cycle systems

In this section, we shall solve the existence of almost resolvable directed 5-cycle systems. We
start with group divisible directed k-cycle systems.

A group divisible directed k-cycle system ( GDDKCS ) is a triple (8, G, T ), where G is a
partition of the set S and T is a collection of arc disjoint directed k-cycles that partition the
complete directed multipartite graph on S with partition G. The group type of the GDDKCS is the
multiset { |G| : G € G }. An almost parallel class with deficiency G for G € G is a sct of
directed k-cycles which form a partition of S\G. An almost resolvable group divisible directed
k-cycle system ( ARGDDKCS ) is a GDDKCS in which the cycles can be partitioned into almost
parallel classes such that for each group G € G there are exactly |G| almost parallel classes with
deficiency G.

We wish to remark that an ARGDDKCS of type 17 is just an ARDKCS(n). By Construction
2.3 we can get an ARGDDKCS from an SSRF.

Lemma 4.1 If there exists an SSRF(hY), then for any odd integer k = 3, there exists an
ARGDDKCS of type (hk)¥.

To get an ARDKCS from an ARGDDKCS and some ARDKCS we have the following obvious
filling-in-holes construction.

Lemma 4.2 If there exists an ARGDDKCS (S, G, T ) and if for any G in G there exists an
ARDKCS( |G| + 1), then there exists an ARDKCS(|S|+1).

We shall further use group divisible designs to construct ARGDDLCS and ARDKCS. A

group divisible design (or GDD), is a triple (X, G, B) which satisfies the following properties:

(1) G is a partition of X into subsets called groups,

(2) B is a set of subsets of X (called blocks) such that a group and a block contain at

most one common point,

(3) every pair of points from distinct groups occurs in a unique block.
The group type of the GDD is the multiset { |G| : G € G }. A TD(k, n) is a GDD of group type nk
and block size k. It is well known that the existence of a TD(k, n) is equivalent to the existence of k
- 2 mutually orthogonal Latin squares ( MOLS ) of order n and also to the existence of resolvable
TD(k-1, n). For more about TD and MOLS the reader is referred to Beth, Jungnickel and Lenz [4].
We have the following two weighting construction.
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Construction 4.3 Suppose (S, G,B)isaGDDandletw: X — ZT L {0 }. Suppose there

exists an ARGDDKCS of type { w(x) : x € B } for every B € B. Then there exists an
ARGDDKCS of type { £ g W(x) : G e G }.

Proof: The resultant system will be based on 8* =  _ ¢ 5S¢, where for x € §, S, are pairwise
disjoint and |Sy| = w(x). The new partition of S* will be G* = { U . ¢ Sx : G € G }. Suppose
Ay is the set of cycles for an ARGDDKCS of type { w(x) : x € B }, B € B. Then, B* =
U o g Ap is the set of cycles for the ARGDDKCS. For any x in certain G, let B, consists of all
blocks in B containing x. Let P(x, B, j ) denote the j-th almost parallel class with deficiency Sy ,
1 <j < w(x), in the ARGDDKCS of type { w(x) : x € B} for Be By . ThenP(x,j)=uU
P(x, B, j ), where B runs over B, , is an almost parallel class with deficiency w 4 ¢ g Sy . For

each G € G, there are all together ¥ .  w(x) almost parallel classes with deficiency U . g Sx.

This completes the proof. O

Construction 4.4 Suppose ( S, G, T ) is an ARGDDKCS of type T. If there exists a resolvable
TD(3, m), then there exists an ARGDDKCS of type mT = {mt:te T }.

Proof. Let M= { 1, 2, .., m } and let the TD(3, m) be based on M x {1, 2, 3 } having three groups
Mx {j},1<j<3. Foreachcyclec=(cyc,, ..., ¢ )in T and each block B = { (x, 1), (y, 2),
(z, 3) } in the TD(3, m), define a directed k-cycle ¢ X B = ((c}, x), (c5, ¥), ..., (¢ 2, %), (.15 ¥)s
(¢ 2) ). All these cycles will form the set of cycles for the resultant ARGDDKCS, which will be
based on the set S X M having the partition { GXM : G € G }. Let P( G, j ) be the j-th almost
parallel class of the given ARGDDKCS with deficiency G, 1 < j < |G]. Let Q(i ) be the i-th parallel
class of the resolvable TD(3, m). Denote P(G, j,i)={cxB:ce P(G,j),B e Q(i)}. Then
P(G, j, i) is an almost parallel class with deficiency G X M and there are m|G| such almost parallel
classes. This completes the proof. 0

We are now in a position to show the existence of an ARD5CS(n). First, from the proof of
Corollary 2.4 and Corollary 2.5 we have ARDSCS(n) forn =6 and 11.

Lemma 4.5 For any odd integer k > 3, there are ARDKCS( k +1 ) and ARDKCS( 2k +1).
Lemma 4.6 For any prime power q = 1 (mod k ), there exists an ARDkCS(q ).

Proof: Let x be a primitive element of GF( q ). Let y = x4, d = (q - 1)/k. Denote B( i, g)=
(xiyl +g, xiy2 +g, ., xiyk+g ) and B= { B(i,g): 1 <i<dand g € GF(q) }. Then, (GF(q),
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B) is the desired ARDkCS( q ) where for each g € GF(q ), { B(i,g):1<i<d} is the almost
parallel class with deficiency g. 0

Lemma 4.7 There exist ARGDDSCS of type 5¢ foru=5, 6, 7 and 9.

Proof: There is an ARDKCS( 6 ) from Lemma 4.5, which is also an ARGDDSCS of type 16,
Applying Construction 4.4 with k = 5 we obtain an ARGDDS5CS of type 56. An SSRF(17) exists

from Lemma 3.2, which leads to an ARGDD5CS of type 57 by Lemma 4.1. An ARGDD5CS of
type55(S,G,T)isshownbelow,wheres:225 and G={{0,5 10,1520} +i:0<i<4}.

T is generated modulo 25 by the following initial directed cycles: ( 1, 3, 17,21, 13 ), ( 2, 14, 11, 7,

16), (4, 12, 19, 22,23), (6, 24, 18, 9, 8 ), which form an almost parallel class with deficiency 0.
For type 59, take S = Zysand G={{0,9,18,27,36} +i:0<i<8 }. The initial directed cycles

are:
(1,3,13,5,8), (2,32,10,11,26), (4,23,37,41,21), (6,38, 15,39,44),
(7,19,25,33,17),(12,29,40, 35,24 ), (14,34,31,30,43), (16,42,28,22,20).

These cycles form an almost parallel class with deficiency 0. O

Lemma 4.8 There exists an ARD5CS of order 21.

Proof: Let S = Z, w { « }. Four directed cycles ( 0, 4, 8, 12, 16 ) + i for 0 <1< 3 form an almost
parallel class with deficiency co. For any g € Zy, the following four cycles form an almost

parallel class with deficiency g: (2,7,10,17,8)+g, (3,13,19,18, 11 ) +g, (4,6,14,12,9)
+g, (15,16,5,1,0)+g . Let T denote the set of all these cycles. Then, (S, T ) is the desired
ARDSCS(21).

Lemma 4.9 For any integer v, 1<v <09, there exists an ARDSCS(5v +1).

Proof: For v =1, 2 and 4, an ARD5CS( Sv + 1) exists by Lemmas 4.5 and 4.8. Forv=35, 6, 7
and 9, an ARD5CS( 5v + 1 ) exists by Lemmas 4.7 and 4.2. Finally, Lemma 4.6 takes care of the
cases v=3 and 8. ]

Lemma 4.10 For any integer v, 10 <v <24, there exists an ARDSCS( 5v +1).

Proof: We shall deal with these cases in Table 4.1. O
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Sv+1 Authority Ingredients

10 51 Corollary 2.5 SSRF(25), Lemma 3.4
11 56 Corollary 2.4 SSRF(111), Lemma 3.2
12 61 Lemma 4.6

13 66 Corollary 2.4 SSRF(113), Lemma 3.2
14 n Lemma 4.6

15 76 Corollary 2.4 SSRF(115), Lemma 3.8
16 81 Lemma 4.6

17 86 Corollary 2.4 SSRF(117), Lemma 3.3
18 91 Corollary 2.5 SSRF(29), Lemma 3.4
19 96 Corollary 2.4 SSRF(119), Lemma 3.2
20 101 Lemma 4.6

21 106 Lemma 4.2 Apply Construction 4.4 with

T=57andm=3togetan
ARGDDSCS of type 157

22 111 Lemma 4.2 Apply Construction 4.4 with
T=111andm =10 to get an
ARGDDS5CS of type 1011

23 116 Corollary 2.4 SSRF(123), Lemma 3.2
24 121 Lemma 4.6
Table 4.1

Lemma 4.11 For any integer v, 25 <v < 30, there exists an ARD5CS(5v+1).

Proof: Start with a TD(6, 5), which exists from [4], and give weight 5 to each point of the TD
except 5 - a points in some group, for which we give weight 0 each. Applying Construction 4.3
with ARGDDSCS of type 55 and 56, we obtain an ARGDDS5CS of type 255(5a)lfor 0 < a < 5.
The conclusion then follows from Lemma 4.2 and Lemma 4.9. O

Lemma 4.12 For any integer v, 31 <v < 34, there exists an ARD5CS(5v+1).

Proof: We shall deal with these cases in Table 4.2. O
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31
32

33

34

Lemma 4.13 Suppose there exist a TD(7, t) and an ARDSCS(5v + 1) for v=1t, a and b, where

Sv+1 Authority

156 Corollary 2.4
161 Lemma 4.2
166 Lemma 4.2
171 Corollary 2.5
Table 4.2

Ingredients
SSRF(131), Lemma 3.2
Apply Construction 4.4 with
T=116 and m=10to get an
ARGDDS5CS of type 1016
Apply Construction 4.4 with
T=5"1 andm=3togetan
ARGDDSCS of type 1511
SSRF(217), Lemma 3 4

0 < a, b <t. Then, there exists an ARDSCS(5(5t+a-+b)+1).

Proof: Delete t - a points from one group and t - b points from another group of the TD. Give
weight 5 to each point of the resultant GDD. Applying Construction 4.3 gives an ARGDD5CS of
type (5t)3(5a)1(5b)!. The input ARGDD5CS of types 55, 56 and 57 are all from Lemma 4.7.

Further apply Lemma 4.2, we get the desired ARD5CS(5(5t+a+b)y+1).

Lemma 4.14 For any integer v 2 35, there exists an ARD3CS(5v+1).

Proof: We shall prove this Lemma by induction using Lemma 4.13. For any v 2 35, we may write
v=>5t+a+bsuchthat 0<a,b<tand a TD(7, t) exists. For example, if v > 265, we may write
v=5t+a+bsuchthat tisodd>53 and 0 <a, b<5. ATD(7,t) exists from [4]. Other values of

v=5t+a+b are given in Table 4.3, where a TD(7, t) exists from [4].
35<v<44, t=7, 0<ab<s,
45<v<s54, t=9, 0<a,b<s,
55<v<64, t=11, 0<a,b<s,
65<v<84, t=13, 0<a,b<10,
85<v<1i4, t=17, 0<a,b<15,
115<v<144, t=23, 0<a,b< 15,
145<v< 184, t=29, 0<a,b<20,
185<v<204, t=37, 0<a,b<10,
205 <v<264, t=41, 0<a,b<30.

Table 4.3
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By induction hypothesis, an ARDSCS( 5t + 1 ) exists. Since an ARDS5CS( 5v + 1 ) exists for
v <34, by Lemma 4.13 there exists an ARD5CS(5v+ 1) forv>35. {1

Combining Lemmas 4.9 - 4.12 and 4.14 we obtain the main theorem of this paper.

Theorem 4.15 There exists an ARD5CS(n ) if and only if n=1 (mod 5 Jand n = 6.

5. Concluding remarks

The existence problem for ARDKCS( n ) has been solved for k =3, 4 in [1], [2] and for k=5
in this paper. But, for general k the problem is still open. The new concept of strong skew Room
frames and their constructions, introduced and discussed in Sections 2 and 3, are useful in dealing
with such a general problem. Especially, the existence problems for SSRF(11) and SSRF(21) are

very much desirable. However, both of them are again open problems.
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