TREE-RAMSEY NUMBERS

Yubao Guo and Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

We denote by $r(G_1, G_2)$ the ramsey number of two graphs G_1 and G_2 . If T_{p+1} is a tree of order p+1 which is not a star, and if p is not a divisor of the positive integer q-1, then we shall show that $r(T_{p+1}, K_{1,q}) \leq p+q-1$, and we shall describe some trees and stars for which equality holds. Furthermore, we determine the ramsey numbers $r(T_{p+1}^*, T_{q+1}^*)$ for $p, q \geq 4$, where T_n^* denotes a tree of order n with $\Delta(T_n^*) = n-2$.

1. Introduction

In this paper we consider finite, undirected, and simple graphs with the vertex set V(G) and the edge set E(G). We write n(G) = |V(G)| for the order, \overline{G} for the complement, and d(x, G) for the degree of the vertex x of G. By $\delta(G)$ and $\Delta(G)$ we denote the minimum and maximum degree of G, respectively. For $A \subseteq V(G)$ let G[A] be the subgraph induced by A. The set N(x, G) consists of all vertices adjacent to the vertex x, and $N[x, G] = N(x, G) \cup \{x\}$. By $G \cup H$ we define the disjoint union of the graphs G and H. If p is a positive integer, then we use pG for the union of pcopies of the graph G. We denote by K_n the complete graph of order n and by $K_{1,n}$ the star of order n + 1. For a factorization of the complete graph K_n in two graphs F_1 and F_2 , we write $K_n = F_1 \oplus F_2$. The ramsey number $r(G_1, G_2)$ of two graphs G_1 and G_2 is the least positive integer q such that for any factorization $K_q = F_1 \oplus F_2$, the graph G_i is a subgraph of F_i for at least one i = 1, 2.

If T_{p+1} is a tree of order p+1 which is not a star, and if p is not a divisor of the positive integer q-1, then we shall show in this paper that $r(T_{p+1}, K_{1,q}) \leq p+q-1$,

Australasian Journal of Combinatorics 11(1995), pp.169-175

and we shall give different examples where equality holds. Furthermore, we determine the ramsey numbers $r(T_{p+1}^*, T_{q+1}^*)$ for $p, q \ge 4$, where T_n^* denotes a tree of order n with $\Delta(T_n^*) = n - 2$.

2. Preliminary Results

The next two theorems are very important for our research.

Theorem 2.1 (Kirkman [4] 1847, Reiß [6] 1859) The complete graph K_{2n} is 1-factorable.

Theorem 2.2 (Petersen [5] 1891) A graph G is 2-factorable if and only if G is 2p-regular.

Lemma 2.1 Let T be any tree of order n, and let G be a graph with $\delta(G) \ge n-1$. Then there exists is a subgraph T' of G which is isomorphic to T.

A proof of this well-known result can be found for example in the book of Chartrand and Lesniak [3, p. 72]. In the sequel, we also need an extension of Lemma 2.1. This extension is a consequence of the next lemma.

Lemma 2.2 Let G be a connected, non-complete graph of order $n(G) \ge p + 2$ with $\delta(G) \ge p \ge 3$. Furthermore, let T be a tree with $4 \le n(T) \le p + 1$ and $\Delta(T) \le n(T) - 2$. If a is an arbitrary vertex of T, then there exists a tree $T_a \subseteq G$ which is isomorphic to T such that

$$N[a', G] \cap V(T_a) \neq V(T_a),$$

where $a' \in V(T_a)$ is the vertex isomorphic to a (if $f: V(T) \longrightarrow V(T_a)$ is an isomorphism with f(a) = a', then we say that a' is isomorphic to a).

Proof. We proceed by induction on n = n(T).

If n = 4, then T is a path of length 3. Since G is non-complete, there exist two vertices x and y in G of distance two. Using this observation, it is easy to see that Lemma 2.2 is valid for n = 4.

Now assume that $5 \leq n \leq p+1$ and let *a* be an arbitrary vertex of *T*. Since *T* is not a star, we find an end vertex $v \neq a$ of *T* such that the tree H = T - v is neither a star. Let *u* be adjacent to *v* in *T*. By the the induction hypothesis, there exists a tree $H_a \subseteq G$ which is isomorphic to *H* such that $N[a', G] \cap V(H_a) \neq V(H_a)$, where *a'* is the vertex isomorphic to *a*. Let $u' \in V(H_a)$ be isomorphic to *u*. Since $\delta(G) \geq p$,

we can find a vertex v' in G which is adjacent to u' in G such that $v' \notin V(H_a)$. Now the tree H_a together with the vertex v' and the edge u'v' is isomorphic to T, and it has the desired properties. \Box

Lemma 2.3 Let G be a connected graph of order $n(G) \ge p + 2$ with $\delta(G) \ge p \ge 2$. If T is a tree of order $n(T) \le p + 2$ and $\Delta(T) \le p$, then there exists a subgraph T' of G which is isomorphic to T.

Proof. If G is complete or $n(T) \le p+1$, then the statement follows from Lemma 2.1. In the remaining case that G is not complete and n(T) = p+2, we prove the lemma by induction on p.

First, assume that p = 2. Then simple observations show that G contains a path of length 3.

Second, assume that $p \ge 3$. Then let v be an end vertex of T such that H = T - v is not a star, and let a be adjacent to v in T. According to Lemma 2.2, there exists a tree $H_a \subseteq G$ which is isomorphic to H such that $N[a', G] \cap V(H_a) \neq V(H_a)$, where a' is the vertex isomorphic to a. Since $\delta(G) \ge p$, we can find a neighbour v' of a' with $v' \notin V(H_a)$. If we now join H_a and v' by the edge a'v', then we obtain a tree $T' \subseteq G$, isomorphic to T. \Box

3. Main Results

Let H and G be two graphs. If there exists a subgraph H' of G which is isomorphic to H, then we say short that H is a subgraph of G, and we write $H \subseteq G$. In the following \mathbb{R}_m^n means an *m*-regular graph of order n.

Our first result is an extension of the next theorem of Burr [1] from 1974.

Theorem (Burr [1] 1974) Let $p, q \ge 2$ be two integers. If T_{p+1} is a tree of order p+1, then $r(T_{p+1}, K_{1,q}) \le p+q$. If there exists a positive integer t such that q-1 = tp, then $r(T_{p+1}, K_{1,q}) = p+q$.

Theorem 3.1 Let $p, q \ge 2$ be two integers and T_{p+1} be a tree of order p+1 which is not a star. If p is not a divisor of q-1, then

$$r(T_{p+1}, K_{1,q}) \le p + q - 1$$
.

If furthermore, p and q fulfil one of the following conditions, then equality holds.

i) If q = 2, then $r(T_{p+1}, K_{1,q}) = p + q - 1 = p + 1$.

- ii) If $p = q \ge 3$, then $r(T_{p+1}, K_{1,q}) = p + q 1 = 2p 1$.
- iii) If q 1 = kp + 1 for an integer $k \ge 1$, then $r(T_{p+1}, K_{1,q}) = p + q 1$.
- iv) If q-1 = kp + s for an integer $k \ge 1$ with $2 \le s \le p-1$, then $r(T_{p+1}, K_{1,q}) = p+q-1$, if $k+s+1-p \ge 0$ or $\Delta(T_{p+1}) = p-1$. (In particular, we have $r(T_{p+1}, K_{1,q}) = p+q-1$, if q-1 = kp+p-1 or if q-1 = kp+p-2 $(p \ge 3)$.)
- v) If $p > q \ge 3$ and $\Delta(T_{p+1}) = p 1$, then $r(T_{p+1}, K_{1,q}) = p + q 1$, if p + q is even or if q is odd and p is even, and $r(T_{p+1}, K_{1,q}) = p + q 2$, if p is odd and q is even.

Proof. Let G be any graph of order p + q - 1. If $K_{1,q}$ is not a subgraph of \overline{G} , then $\Delta(\overline{G}) \leq q - 1$ and hence $\delta(G) \geq p - 1$. From the hypothesis that p is not a divisor of q - 1, we conclude that there exists a component H of G with $n(H) \geq p + 1$. Since $\Delta(T_{p+1}) \leq p - 1$, it follows from Lemma 2.3 that $T_{p+1} \subseteq H \subseteq G$ and therefore $r(T_{p+1}, K_{1,q}) \leq p + q - 1$.

- i) If q = 2, then the complete graph $G = K_p$ shows immediately the inequality $r(T_{p+1}, K_{1,q}) \ge p + 1$.
- ii) If $p = q \ge 3$, then we obtain $r(T_{p+1}, K_{1,q}) \ge 2p 1$ from $G = 2K_{p-1}$.
- iii) If q 1 = kp + 1, then the graph $G = (k + 1)K_p$ of order p + q 2 yields $r(T_{p+1}, K_{1,q}) \ge p + q 1$.
- iv) If q-1 = kp + s with $2 \le s \le p-1$ and $k + s + 1 p \ge 0$, then there exists the graph

$$G = (p+1-s)K_{p-1} \cup (k+s+1-p)K_p$$

of order n(G) = p + q - 2. Since T_{p+1} is not a subgraph of G and $\Delta(\bar{G}) \leq q - 1$, we see that $r(T_{p+1}, K_{1,q}) \geq p + q - 1$. (In particular, for s = p - 1 or s = p - 2, the condition $k + s + 1 - p \geq 0$ is valid, and thus $r(T_{p+1}, K_{1,q}) = p + q - 1$ for q - 1 = kp + p - 1 or q - 1 = kp + p - 2.)

Thus, we assume in the following that q-1 = kp + s with $2 \le s \le p-3$ and $\Delta(T_{p+1}) = p-1$.

If p + q is even or q is odd and p is even, then according to Theorem 2.1 and Theorem 2.2, there exists the factorization

$$K_{p+q-2} = R_{p-2}^{p+q-2} \oplus R_{q-1}^{p+q-2},$$

which implies, together with the condition $\Delta(T_{p+1}) = p - 1$, the inequality $r(T_{p+1}, K_{1,q}) \ge p + q - 1$.

If q is even and p is odd, then we shall investigate the two cases depending on whether k is even or odd.

If k is odd, then it follows from q = kp+s+1 that s is even. Hence, by Theorem 2.1, there exists the graph

$$F = kK_p \cup R_{p-2}^{p+s-1}$$

of order n(F) = p + q - 2. Then the factorization $K_{p+q-2} = F \oplus \overline{F}$ shows $r(T_{p+1}, K_{1,q}) \ge p + q - 1$.

In the case that k is even, we conclude that s = 2t + 1 is odd. If p + t is even, then there exists

$$F_1 = (k-1)K_p \cup 2R_{p-2}^{p+t}$$

and if p + t is odd, then there exists

$$F_2 = (k-1)K_p \cup R_{p-2}^{p+t-1} \cup R_{p-2}^{p+t+1}.$$

We observe that $n(F_1) = n(F_2) = p + q - 2$, and the factorizations $K_{p+q-2} = F_i \oplus \overline{F}_i$ for i = 1, 2, yield the desired result.

v) Now let $p > q \ge 3$ and $\Delta(T_{p+1}) = p - 1$.

If p + q is even or q is odd and p is even, then the inequality $r(T_{p+1}, K_{1,q}) \ge p + q - 1$ follows from the above factorization $K_{p+q-2} = R_{p-2}^{p+q-2} \oplus R_{q-1}^{p+q-2}$. In the case p odd and q even, let G be an arbitrary graph of order p + q - 2. If $K_{1,q}$ is not a subgraph of \overline{G} , then we have $\Delta(\overline{G}) \le q-1$ and hence $\delta(G) \ge p-2$, and thus G is connected. Since the integers p + q - 2 and p - 2 are both odd, we can find a vertex v in G with $|N(v, G)| \ge p - 1$. Consequently, $T_{p+1} \subseteq G$, and we have proved $r(T_{p+1}, K_{1,q}) \le p + q - 2$. Finally, the factorization

$$K_{p+q-3} = R_{p-3}^{p+q-3} \oplus R_{q-1}^{p+q-3}$$

shows the opposite inequality $r(T_{p+1}, K_{1,q}) \ge p + q - 2$. \Box

For the special case that the trees are stars, Burr and Roberts [2] determined the ramsey numbers exactly.

Theorem (Burr, Roberts [2] 1973) Let $p, q \ge 2$ be two integers. Then

$$r(K_{1,p}, K_{1,q}) = \begin{cases} p+q-1, & \text{if } p \text{ and } q \text{ are both even,} \\ p+q, & \text{otherwise.} \end{cases}$$

It is our aim now to determine the ramsey numbers of two trees T_1 and T_2 which fulfil the property $\Delta(T_i) = n(T_i) - 2$ for i = 1, 2.

Theorem 3.2 Let $p, q \ge 4$ be two integers. Then

$$r(T_{p+1}^*, T_{q+1}^*) = \begin{cases} p+q-1, & \text{if } q-2 = tp \text{ or } p-2 = tq, \\ p+q-3, & \text{if } p \text{ is odd and } q = p, \\ p+q-2, & \text{otherwise.} \end{cases}$$

Proof. Let G be a graph of order p + q - 1 and assume that T_{q+1}^* is not a subgraph of \overline{G} .

If $\Delta(\bar{G}) \leq q-2$, then $\delta(G) \geq p$, and we deduce from Lemma 2.1 that $T_{p+1}^* \subseteq G$. If $\Delta(\bar{G}) \geq q-1$, then let $v \in V(G)$ such that $d(v,\bar{G}) = \Delta(\bar{G})$. We choose a vertex set $A \subseteq N(v,\bar{G})$ with |A| = q-1, and we define $B = V(G) - (A \cup \{v\})$. We have |B| = p-1 and all edges between A and B are necessarily elements of E(G). This implies $T_{p+1}^* \subseteq G$, and so we have proved $r(T_{p+1}^*, T_{q+1}^*) \leq p+q-1$. Let without loss of generality q-2 = tp. Then the graph $G = (t+1)K_p$ shows

 $r(T_{p+1}^*, T_{q+1}^*) \ge p+q-1.$

Now let G be a graph of order p + q - 2 with $q - 2 \neq tp$ and $p - 2 \neq tq$, and in addition assume that T_{q+1}^* is not a subgraph of \overline{G} .

If $\Delta(\bar{G}) \leq q-2$, then $\delta(G) \geq p-1$, and hence there is a component H of G with $n(H) \geq p+1$. In view of Lemma 2.3, we conclude $T_{p+1}^* \subseteq H \subseteq G$.

If $\Delta(\bar{G}) \geq q-1$, then let $v \in V(G)$ with $d(v,\bar{G}) = \Delta(\bar{G})$. We choose a vertex set $A \subseteq N(v,\bar{G})$ with |A| = q-1, and we define $B = V(G) - (A \cup \{v\})$. We have |B| = p-2 and all edges between A and B are elements of E(G). If there are two vertices in A which are adjacent in G, then $T_{p+1}^* \subseteq G$ is immediate. So, we assume now that $\bar{G}[A] = K_{q-1}$. Consequently, all vertices of B are adjacent to v in G.

If $q \ge p-1$, then it is a simple matter to obtain $T_{p+1}^* \subseteq G$. Therefore, all that remains is the case p = q + s with $s \ge 3$. If we define $H_1 = \overline{G}[B]$ and $H_2 = G[B]$, then it is not difficult to see that $T_{p+1}^* \subseteq G$ or $\Delta(H_2) \le s-2$. From $\Delta(H_2) \le s-2$, we deduce $\delta(H_1) \ge p-3-(s-2) = q-1$. Because $p-2 \ne tq$, we thus obtain, using Lemma 2.3, the contradiction $T_{q+1}^* \subseteq \overline{G}$. Since we have checked all the possibilities, we have proved $r(T_{p+1}^*, T_{q+1}^*) \le p+q-2$ for this case.

If p and q are not both odd, then according to Theorem 2.1 and Theorem 2.2, there exists the factorization

$$K_{p+q-3} = R_{p-2}^{p+q-3} \oplus R_{q-2}^{p+q-3}.$$

If p and q are odd, and without loss of generality $q \ge p + 4$, then we define $G = K_p \cup R_{p-2}^{q-3}$ and $K_{p+q-3} = G \oplus \overline{G}$. These two factorizations yield the desired equality $r(T_{p+1}^*, T_{q+1}^*) = p + q - 2$ for the discussed cases.

Finally, let p = q be odd, and let G be a graph of order p + q - 3. Furthermore, we assume that T_{q+1}^* is not a subgraph of \overline{G} .

If $\Delta(\bar{G}) \leq q-3$, then $\delta(G) \geq p-1$ and G is connected. In view of Lemma 2.3, we conclude $T_{p+1}^* \subseteq G$.

If $\Delta(\bar{G}) = q - 2$, then $\delta(G) \ge p - 2$, $\Delta(G) \ge p - 1$, and G is connected. Now let $b \in V(G)$ with $d(b,G) = \Delta(G)$. We choose $A \subseteq N(b,G)$ such that |A| = p - 1, and we define $B = V(G) - (A \cup \{b\})$. So, it follows $|B| = q - 3 \ge 2$ and all edges between A and B are contained in \bar{G} . But now it is easy to see that $T_{p+1}^* = T_{q+1}^* \subseteq \bar{G}$.

If $\Delta(\bar{G}) \geq q-1$, then let v be a vertex with $d(v,\bar{G}) = \Delta(\bar{G})$. We choose $A \subseteq N(v,\bar{G})$ with |A| = q-1 and we define $B = V(G) - (A \cup \{v\})$. Hence, we see that $|B| = p-3 \geq 2$ and all edges between A and B are necessarily in G. This implies $T_{q+1}^* = T_{p+1}^* \subseteq G$, and we obtain $r(T_{p+1}^*, B_{q+1}^*) \leq p+q-3$ for this case. If p = q is odd, then the factorization

$$K_{p+q-4} = R_{p-2}^{p+q-4} \oplus R_{q-3}^{p+q-4}$$

shows the desired equality, and the theorem is proved. \Box

In connection with Lemma 2.3, we like to formulate the following conjecture.

Conjecture Let G be a connected graph of order $n(G) \ge p + 3$ with $\delta(G) \ge p \ge 3$. If T is a tree of order $n(T) \le p + 3$ and $\Delta(T) \le p - 1$, then $T \subseteq G$.

We note that there exist examples which show that this conjecture is not valid for $\Delta(T) = p$ in general.

References

- Burr, S.A., Generalized Ramsey theory for graphs a survey, in *Graphs and Combinatorics*, Lecture Notes in Mathematics 406 (ed. R. A. Bari and F. Harary), Springer-Verlag, Berlin, Heidelberg, New York (1974), 52-75.
- [2] Burr, S.A. and J.A. Roberts, On Ramsey numbers for stars, Utilitas Math. 4 (1973), 217-220.
- [3] Chartrand, G. and L. Lesniak, Graphs and Digraphs (Second Edition), Wadsworth and Brooks/Cole, Advanced Books and Software, Monterey, California (1986).
- [4] Kirkman, T.P., On a problem in combinations, Cambridge Dublin Math. J. 2 (1847), 191-204.
- [5] Petersen, J., Die Theorie der regulären graphs, Acta Math. 15 (1891), 193–220.
- [6] Reiβ, M., Über eine Steinersche combinatorische Aufgabe, welche im 45sten Bande dieses Journals, Seite 181, gestellt wurde, J. Reine Angew. Math. 56 (1859), 326-344.

175