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Abstract 

We denote by r'( G I , G2 ) the ramsey number of two graphs and G2 • If Tp+l is a 
tree of order p + 1 which is not a star, and if jJ is not a divisor of the positive integer 

q 1, then we shall show that r(Tp+b ](l,q) ::; p + q 1, and we shall describe some 

trees and stars for which equality holds. Furthermore. we detf'rmine the ramsey num

bers r(T;+l' Tq*+l) for p, q ~ 4, where T~ denotes a tree of order n with f}.(T~) = n - 2. 

1. Introduction 

In this paper we consider finite, undirected, and simple graphs with the vertex 

set VeG) and the edge set E(G). We write n(G) = IF(G)I for the order, (J for the 

complement, and d( x, G) for the degree of the vertex :r of C. By 8( G) and 6.( G) 
we denote the minimum and maximum degree of G, respectively. For A ~ V(G) let 

G[A] be the sub graph induced by A. The set N(x, G) consists of all vertices adjacent 

to the vertex x, and N[x, G] N(x, G) U {:r}. By Gu II we define the disjoint union 
of the graphs G and H. If p is a positive integer, then we use pG for the union of p 
copies of the graph G. We denote by ](n the complete graph of order n and by K1,n 

the star of order n + 1. For a factorization of the compkte graph Kn in two graphs 

FI and F2 , we write ](n = Fl EEl F2• The ramsey number r( G}, G2 ) of two graphs G I 

and G2 is the least positive integer q such that, for any factorization Kq FI EEl F2 , 

the graph Gi is a subgraph of Fi for at least one i = 1,2. 

If Tp+l is a tree of order p + 1 which is not a star, and if p is not a divisor of the 

positve integer q -1, then we shall show in this paper t.hat r(Tp+b I<l,q) ::; p + q - 1, 
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and we shall different examples where eqnality holds. Furthermore, we determine 

the ramsey numbers r(T;+1,7~*+1) for p,q :2: 4, where T; denotes a tree of order n 

with I::l(T;) = n - 2. 

2. Preliminary Results 

The next two theorems are very important for our research. 

Theorem 2.1 (Kirkman [4] 1847, ReiB [6] 1859) The complete graph I{2n is 

I-factorable. 

Theorem 2.2 (Petersen [5] 1891) A graph G IS 2-fadorable if and only if G 
is 2p-regular. 

Lemma 2.1 Let T be any tree of order n, and let G be a graph with 8(G) :2: n 1. 

Then there exists is a subgraph T' of G which is isomorphic to T. 

A proof of this well-known result can be fonnd for example in the book of Char

trand and Lesniak [3, p. 72]. In the sequeL ,\ve also need an extension of Lemma 2.1. 

This extension is a consequence of the next lemma. 

Lemma 2.2 Let G be a connected, non-complete graph of order n(G) :2: p + 2 
with 8( G) :2: p :2: 3. Furthermore, let T he a tree wit It 4 :::; n(T) :::; p + 1 and 

I::l(T) :::; n(T) - 2. If a is an aTbitrary vertex of T. then there exists a tree Ta ~ G 

which is isomorphic to T such tha.t 

where a' E V(l~) is the vertex isomorphic to a (if.r : F(T) ----+ V(Ta) is an isomor

phism with f(a) = a', then we say that af is isomorphic to a). 

Proof. We proceed by induction on n = n(T). 
If n 4, then T is a path of length :3. Since G is non-complete, there exist two 

vertices x and y in G of distance two. Using this observation, it is easy to see that 

Lemma 2.2 is valid for n = 4. 

Now assume that 5 :::; n :::; p + 1 and let a he an arbitrary vertex of T. Since T is 

not a star, we find an end vertex v i= a of T SHch that the tree H = T - v is neither 

a star. Let u be adjacent to v in T. By the the induction hypothesis, there exists a 

tree Ha ~ G which is isomorphic to II such that N[a', G) n V(Ha) i= V(Ha), where 

a' is the vertex isomorphic to a. Let u' E V( Ha) be isomorphic to u. Since 8( G) 2: p, 
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we can find a vertex v' in G which is adjacent to u' in G such that v' tf. V(Ha). Now 

the tree together with the vertex v' and the edge u'v' is isomorphic to and it 

has the desired properties. 0 

Lemma 2.3 Let G be a connected graph of order n( 0) p + 2 with 8( G) ~ p 2. 
If T is a tree of order n{1') :::; p + 2 and tl.(T) :::; p, then there exists a subgraph 1" 
of G which is isomorphic to 1'. 

Proof. If G complete or n(T) :::; p + 1, then the statement follows from Lemma 2.l. 

In the remaining case that G is not complete and n(1') p + 2, we prove the lemma 

by induction on p. 

First, assume that p 2. Then simple ohsC'rvations show that G contains a path of 

length 3. 
Second, assume that p ~ 3. Then let v be an end vertex of l' such that H l' - v is 

not a star, and let a be adjacent to v in T. According to Lemma 2.2, there exists a 

tree Ha ~ G which is isomorphic to H such that N[a', n Vella) =I- V(Ha), where a' 
is the vertex isomorphic to a. Since 8( 0) p, we can find a neighbour v' of a' with 

v' rf. V(Ha). If we now join lIa and v' hy the f'dge a'v', then we obtain a tree 1" ~ G, 
isomorphic to 1'. 0 

3. Main Results 

Let Hand G be two graphs. If there exists a subgraph H' of G which is isomor

phic to H, then we say short that H is a subgraph of G, and we write H ~ G. In 

the following R":/n means an m-regular graph of order n. 

Our first result is an extension of the next theorem of Burr [1] from 1974. 

Theorem (Burr [1] 1974) Let p,q ~ 2 be two integers. If 1'p+1 is a tree of or

der p + 1, then r(1'p+b /{l,q) :::; p + q. If there exists a positive integer t such that 

q - 1 = tp, then r(1'p+I, /{l,q) = p + q. 

Theorem 3.1 Let p, q ~ 2 be two integers and Tp+l be a tree of order p + 1 which 

is not a star. If p is not a divisor of q - 1, then 

If furthermore, p and q fulfil one of the following conditions, then equality holds. 

i) If q = 2, then r(1'p+ll /(l,q) = p + q - 1 = p + 1. 
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ii) If p q :1, then r(Tp+l, I<l,q) p + q 1 2p - 1. 

iii) If q kp + 1 for an integer I.~ 2: 1, then r(Tp+h I<l,q) = p + q 1. 

iv) If q 1 kp + for an integer k 2: 1 with 2 ::; ,<; p 1, then r(Tp+1J<1,q) 
p + q - 1, if k + s + 1 - p 2: 0 or ~(Tp+l) = P 1. (In particular, we have 

r(I~+lJ{l,q) p+q-1,ifq-1 kp+p-lorifq-l kp+p-2 (p 3).) 

v) If p q 3 and ~(Tp+l) p 1, then r(Tp+l' /{l,q) p + q - 1, if p + q is 
even or if q odd and p is even, and r(Tp+h /{1.q) = p + q 2, if p is odd and 

q is even. 

Proof. Let G be any graph of order p + q - 1. If I<l.q is not subgraph of then 

~(G) q 1 and hence 8( G) 2: p 1. From the hypothesis that p is not divisor 

of q 1, we conclude that there exists a componC'nt H of G with n{ H) p + 1. 

Since ~(Tp+d ::; p 1, it follows from Lemma 2.3 that Tp+l ~ H <;;; G and therefore 

r(Tp+b /{l,q) p + q - 1. 

i) If q 2, then the complete graph G [(p shows immediately the inequality 

r(Tp+b 2: p + 1. 

ii) If p q :1, then we obtain r(Tp+l' /{l,q) 2: 2p - 1 from G = 2/{P-l' 

iii) If q 1 kp + 1, then the graph G (k + 1 )/{p of order p + q - 2 yields 

r(Tp+l' /{l,q) 2: p + q - 1. 

iv) If q - 1 kp + s with 2 ::; s ::; p - 1 and I.~ + '" + 1 - p 2: 0, then there exists 

the graph 

G = (p + 1 - S)I<p_l U (k + $ + 1 - p)I<p 

of order n(G) = p+ q - 2. Since Tp+l is not a suhgraph of G and ~((~) ::; q -1, 

we see that r(Tp+l' I<l,q) 2: p + q - 1. (In particular, for s = p 1 or = p - 2, 

the condition k + s + 1 - p 2: 0 is valid, and thus r(Tp+ lJ I<l,q) = p + q - 1 for 

q - 1 kp + p 1 or q - 1 = kp + p - 2.) 

Thus, we assume in the following that q - 1 l.:p + S with 2 ::; s ::; p - 3 and 

~(1~+1) = p 1. 
If p + q is even or q is odd and p is even, then according to Theorem 2.1 and 

Theorem 2.2, there exists the factorization 

}
T _ RP+q-2 ffi RP+q-2 \'p+q-2 - p-2 <::II 'q-l , 

which implies, together with the condition ~(Tp+l) = P - 1, the inequality 

r(Tp+l' /{l,q) 2: p + q - 1. 
If q is even and p is odd, then we shall investigate the two cases depending on 

whether k is even or odd. 
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If k is odd, then it follows from q kp+ + 1 that is even. Hence, by Theorem 
there exists the graph 

F = kI<p U R~~~-1 

of order n(F) p + q - 2. Then the factorization I<p+q-2 F ED P shows 

r(7~+1' I<l,q) 2: p + q - 1. 
In the case that k is even, we conclude that s 2t + 1 is odd. If p + t is even, 

then there exists 

(1.: - 1)I< U 2Rp+t P p-2 

and if p + t is odd, then there exists 

F2 (k -l)I<p U R~~~-l U R~~~+l. 

We observe that n(Fd n(Fi) p + q - 2, and the factorizations I<p+q-2 = 
Fi Ef) Pi for i = 1,2, yi('ld the desired result. 

v) Now let p q 2: 3 and ~(7~+d = p - l. 
If p + q is even or q is odd and p is even, then the inequality r(Tp+11 I<1,q) 2: 
p + q - 1 follows from the above factorization [(1'+q-2 = R~~~-2 ED R~~i-2 . 
In the case p odd and q even, kt G be an arbitrary graph of order p + q 2. If 
I<l,q is not a subgraph of then we have ~(Cn :S q -1 and hence 8( G) 2: p - 2, 
and thus G is connected. Since the integers p + q - 2 and p are both odd, 

we can find a vertex v in G with IN(v, G)I p 1. Consequently, ~ G, 
and we have proved r(Tp+ll I<l,q) :S p + q - 2. 
Finally, the factorization 

}
T _ RP+q-3 ffi Rl'+q-3 
"p+q-3 - p-3 ',II· '1-1 

shows the opposite inequality r(Tp+11 /(1,q) 2: p + q - 2. 0 

For the special case that the trees are st.ars, Burr and Roberts [2] determined the 

ramsey numbers exactly. 

Theorem (Burr, Roberts [2] 1973) Let p, q 2: 2 be two integers. Then 

(}{ }

T ) _ { p + q - 1, if p and q are both even, 
rIp, i1 q - . 

" p + q, otherwIse. 

It is our aim now to determine the ramsey numbers of two trees Tl and T2 which 

fulfil the property ~(Ti) = n(Ti) - 2 for i = 1,2. 

Theorem 3.2 Let p, q 2: 4 be two integers. Tl1f'n 

{ 

p + q - 1, if q - 2 = tp or p - 2 = tq, 

r(T;+l' Tq*+l) = P + q - 3, if p is odd and q = p, 
p + q - 2, othenvise. 
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Proof. Let G be a graph of order p + q - 1 and assume that is not a subgraph 

of 

If q 2, then p, and we deduce from Lemma 2.1 that ~ G. 

If Ll(O) q - 1, then let v E V(G) such that d(v,O) We choose vertex 

setA N(v, with q l,andwedefineB V(G)-(AU{v}).Wehave 
lEI p 1 and all between A and B are elements of E(G). This 

implies T;+1 and so we have r'(T;+ll p + q l. 

Let without loss of q - 2 tp. Then the graph 0 (t + 1 shows 

r(1;+1' p + q 

Now let 0 be a of order p + q '2 with q 2 =f. tp and p 2 =f. tq, and 
in addition assume that is not a subgraph of 

If Ll( en q - 2. then 8( G) p - 1, and hence thf're is component H of G with 

n(H) p + 1. In view of Lemma we conclude 7;+1 ~ II G. 

If Ll( G) q - 1, then let v E V( G) wit h d( v, We choose vertex set 

A ~ N(v,G) with IAI q - 1, and we define B V(G) - (A U {v}). We have 
IBI = p - and all between A and B are elements of E(G). If there are two 

vertices in A which are adjacent in tlwn ~ G is immediate. So, we assume 

now that G[A] = J(q-l Consequently, all vNtices of B are adjacent to v in G. 

If q ~ pI, then it is a simple matter to obtain ~ G. Therefore, all that 

remains is the caRe p q + with 3. If we define III C/[B] and Hz OrB], 
then it not difficult to see that T;+l G or Ll(H2) :s From ~(H2) 8 2, 

we deduce 8(Ht) ~ p -:3 - (8 - 2) = q - 1. Because p 2 tq, we thus obtain, using 

Lemma 2.3, the contradiction T;+l Since we have checked all the possibilities, 

we have proved r(T;+l' Tq*+l) :s p + q - 2 for this casco 

If p and q are not both odd, then a.ccording to Theorem 2.1 and Theorem there 

exists the factorization 
[r RP+q-3 
1\ p+q-3 = p-2 RP+q-3 

'q-2 . 

If p and q are odd, and without loss of genera.lity q p + 4, then we define 

G = J(p U R~=~ and J(p+q-3 = G ffi G. These two factorizations yield the desired 

equality r(T;+ll T;+l) p + q - 2 for the disCllssed cases. 

Finally, let p q be odd, and let G he a graph of order p + q - 3. Furthermore, 

we assume that Tq*+I is not a subgraph of 

If Ll(G) :s q - 3, then 8(G) ~ p - 1 and G is connected. In view of Lemma 2.3, we 

conclude T;+l ~ G. 
If Ll( G) q 2, then 8( G) ~ p - 2, 6.( G) ~ p - 1, and G is connected. Now let 

bE V(G) with d(b,G) = 6.(G). \\le choose A ~ N(lJ, G) snch that IAI = p - 1, and 

we define B = V(G) -(AU{b}). So, it follows IBI = q-3 ~ 2 and all edges between 

A and B are contained in G. But now it is easy to see that T;+1 = T;+1 ~ G. 
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If .6.( G) ~ q - I, then let v be a vertex with d( v, G) 6.( G). We choose A ~ 
N(v, with IAI q 1 and we define B = 1I( G) - (A U {v}). Hence, we see that 
IBI p 3 ~ and all edges between A and B are necessarily in G. This implies 

Tq*+l T;+l ~ G, and we obtain r(T;+l' B;+1) p + q 3 for this case. 
If p = q is odd, then the factorization 

shows the desired equality, and the theorem is proved. 0 

In connection with Lemma 2.3, we like to formulate the following conjecture. 

Conjecture Let G be a connected graph of order n( G) ~ p + 3 with 8( G) ~ p ~ 3. 
If T is a tree of order n(T) ~ p + 3 and 6..(T) ~ p - 1, then T ~ G. 

We note that there exist examples which show that this conjecture is not valid 
for .6.(T) = p in general. 
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