TREE-RAMSEY NUMBERS

Yubao Guo and Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 A achen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

We denote by $r\left(G_{1}, G_{2}\right)$ the ramsey number of two graphs G_{1} and G_{2}. If T_{p+1} is a tree of order $p+1$ which is not a star, and if p is not a divisor of the positive integer $q-1$, then we shall show that $r\left(T_{p+1}, K_{1, q}\right) \leq p+q-1$, and we shall describe some trees and stars for which equality holds. Furthermore, we determine the ramsey numbers $r\left(T_{p+1}^{*}, T_{q+1}^{*}\right)$ for $p, q \geq 4$, where T_{n}^{*} denotes a tree of order n with $\Delta\left(T_{n}^{*}\right)=n-2$.

1. Introduction

In this paper we consider finite, undirected, and simple graphs with the vertex set $V(G)$ and the edge set $E(G)$. We write $n(G)=|V(G)|$ for the order, \bar{G} for the complement, and $d(x, G)$ for the degree of the vertex x of G. By $\delta(G)$ and $\Delta(G)$ we denote the minimum and maximum degree of G, respectively. For $A \subseteq V(G)$ let $G[A]$ be the subgraph induced by A. The set $N(x, G)$ consists of all vertices adjacent to the vertex x, and $N[x, G]=N(x, G) \cup\{x\}$. By $G \cup H$ we define the disjoint union of the graphs G and H. If p is a positive integer, then we use $p G$ for the union of p copies of the graph G. We denote by K_{n} the complete graph of order n and by $K_{1, n}$ the star of order $n+1$. For a factorization of the complete graph K_{n} in two graphs F_{1} and F_{2}, we write $K_{n}=F_{1} \oplus F_{2}$. The ramsey number $r\left(G_{1}, G_{2}\right)$ of two graphs G_{1} and G_{2} is the least positive integer q such that for any factorization $K_{q}=F_{1} \oplus F_{2}$, the graph G_{i} is a subgraph of F_{i} for at least one $i=1,2$.

If T_{p+1} is a tree of order $p+1$ which is not a star, and if p is not a divisor of the positve integer $q-1$, then we shall show in this paper that $r\left(T_{p+1}, K_{1, q}\right) \leq p+q-1$,
and we shall give different examples where equality holds. Furthermore, we determine the ramsey numbers $r\left(T_{p+1}^{*}, T_{q+1}^{*}\right)$ for $p, q \geq 4$, where T_{n}^{*} denotes a tree of order n with $\Delta\left(T_{n}^{*}\right)=n-2$.

2. Preliminary Results

The next two theorems are very important for our research.
Theorem 2.1 (Kirkman [4] 1847, Reiß [6] 1859) The complete graph $K_{2 n}$ is 1-factorable.

Theorem 2.2 (Petersen [5] 1891) A graph G is 2-factorable if and only if G is $2 p$-regular.

Lemma 2.1 Let T be any tree of order n, and let G be a graph with $\delta(G) \geq n-1$. Then there exists is a subgraph T^{\prime} of G which is isomorphic to T.

A proof of this well-known result can be found for example in the book of Chartrand and Lesniak [3, p. 72]. In the sequel, we also need an extension of Lemma 2.1. This extension is a consequence of the next lemma.

Lemma 2.2 Let G be a connected, non-complete graph of order $n(G) \geq p+2$ with $\delta(G) \geq p \geq 3$. Furthermore, let T be a tree with $4 \leq n(T) \leq p+1$ and $\Delta(T) \leq n(T)-2$. If a is an arbitrary vertex of T, then there exists a tree $T_{a} \subseteq G$ which is isomorphic to T such that

$$
N\left[a^{\prime}, G\right] \cap V\left(T_{a}\right) \neq V\left(T_{a}\right),
$$

where $a^{\prime} \in V\left(T_{a}\right)$ is the vertex isomorphic to a (if $f: V^{\prime}(T) \longrightarrow V\left(T_{a}\right)$ is an isomorphism with $f(a)=a^{\prime}$, then we say that a^{\prime} is isomorphic to a).

Proof. We proceed by induction on $n=n(T)$.
If $n=4$, then T is a path of length 3 . Since G is non-complete, there exist two vertices x and y in G of distance two. Using this observation, it is easy to see that Lemma 2.2 is valid for $n=4$.
Now assume that $5 \leq n \leq p+1$ and let a be an arbitrary vertex of T. Since T is not a star, we find an end vertex $v \neq a$ of T such that the tree $H=T-v$ is neither a star. Let u be adjacent to v in T. By the the induction hypothesis, there exists a tree $H_{a} \subseteq G$ which is isomorphic to H such that $N\left[a^{\prime}, G\right] \cap V\left(H_{a}\right) \neq V\left(H_{a}\right)$, where a^{\prime} is the vertex isomorphic to a. Let $u^{\prime} \in V\left(H_{a}\right)$ be isomorphic to u. Since $\delta(G) \geq p$,
we can find a vertex v^{\prime} in G which is adjacent to u^{\prime} in G such that $v^{\prime} \notin V\left(H_{a}\right)$. Now the tree H_{a} together with the vertex v^{\prime} and the edge $u^{\prime} v^{\prime}$ is isomorphic to T, and it has the desired properties.

Lemma 2.3 Let G be a connected graph of order $n(C) \geq p+2$ with $\delta(G) \geq p \geq 2$. If T is a tree of order $n(T) \leq p+2$ and $\Delta(T) \leq p$, then there exists a subgraph T^{\prime} of G which is isomorphic to T.

Proof. If G is complete or $n(T) \leq p+1$, then the statement follows from Lemma 2.1. In the remaining case that G is not complete and $n(T)=p+2$, we prove the lemma by induction on p.
First, assume that $p=2$. Then simple observations show that G contains a path of length 3.
Second, assume that $p \geq 3$. Then let v be an end vertex of T such that $H=T-v$ is not a star, and let a be adjacent to v in T. According to Lemma 2.2, there exists a tree $H_{a} \subseteq G$ which is isomorphic to H such that $N\left[a^{\prime}, G\right] \cap V\left(H_{a}\right) \neq V\left(H_{a}\right)$, where a^{\prime} is the vertex isomorphic to a. Since $\delta(G) \geq p$, we can find a neighbour v^{\prime} of a^{\prime} with $v^{\prime} \notin V\left(H_{a}\right)$. If we now join H_{a} and v^{\prime} by the edge $a^{\prime} v^{\prime}$, then we obtain a tree $T^{\prime} \subseteq G$, isomorphic to T.

3. Main Results

Let H and G be two graphs. If there exists a subgraph H^{\prime} of G which is isomorphic to H, then we say short that H is a subgraph of G, and we write $H \subseteq G$. In the following R_{m}^{n} means an m-regular graph of order n.

Our first result is an extension of the next theorem of Burr [1] from 1974.

Theorem (Burr [1] 1974) Let $p, q \geq 2$ be two integers. If T_{p+1} is a tree of order $p+1$, then $r\left(T_{p+1}, K_{1, q}\right) \leq p+q$. If there exists a positive integer t such that $q-1=t p$, then $r\left(T_{p+1}, K_{1, q}\right)=p+q$.

Theorem 3.1 Let $p, q \geq 2$ be two integers and T_{p+1} be a tree of order $p+1$ which is not a star. If p is not a divisor of $q-1$, then

$$
r\left(T_{p+1}, K_{1, q}\right) \leq p+q-1
$$

If furthermore, p and q fulfil one of the following conditions, then equality holds.
i) If $q=2$, then $r\left(T_{p+1}, K_{1, q}\right)=p+q-1=p+1$.
ii) If $p=q \geq 3$, then $r\left(T_{p+1}, K_{1, q}\right)=p+q-1=2 p-1$.
iii) If $q-1=k p+1$ for an integer $k \geq 1$, then $r\left(T_{p+1}, K_{1, q}\right)=p+q-1$.
iv) If $q-1=k p+s$ for an integer $k \geq 1$ with $2 \leq s \leq p-1$, then $r\left(T_{p+1}, K_{1, q}\right)=$ $p+q-1$, if $k+s+1-p \geq 0$ or $\Delta\left(T_{p+1}\right)=p-1$. (In particular, we have $r\left(T_{p+1}, K_{1, q}\right)=p+q-1$, if $q-1=k p+p-1$ or if $q-1=k p+p-2(p \geq 3)$.)
v) If $p>q \geq 3$ and $\Delta\left(T_{p+1}\right)=p-1$, then $r\left(T_{p+1}, K_{1, q}\right)=p+q-1$, if $p+q$ is even or if q is odd and p is even, and $r\left(T_{p+1}, K_{1, q}\right)=p+q-2$, if p is odd and q is even.

Proof. Let G be any graph of order $p+q-1$. If $K_{1 . q}$ is not a subgraph of \bar{G}, then $\Delta(\bar{G}) \leq q-1$ and hence $\delta(G) \geq p-1$. From the hypothesis that p is not a divisor of $q-1$, we conclude that there exists a component H of G with $n(H) \geq p+1$. Since $\Delta\left(T_{p+1}\right) \leq p-1$, it follows from Lemma 2.3 that $T_{p+1} \subseteq H \subseteq G$ and therefore $r\left(T_{p+1}, K_{1, q}\right) \leq p+q-1$.
i) If $q=2$, then the complete graph $G=K_{p}$ shows immediately the inequality $r\left(T_{p+1}, K_{1, q}\right) \geq p+1$.
ii) If $p=q \geq 3$, then we obtain $r\left(T_{p+1}, K_{1, q}\right) \geq 2 p-1$ from $G=2 K_{p-1}$.
iii) If $q-1=k p+1$, then the graph $G=(k+1) K_{p}$ of order $p+q-2$ yields $r\left(T_{p+1}, K_{1, q}\right) \geq p+q-1$.
iv) If $q-1=k p+s$ with $2 \leq s \leq p-1$ and $k+s+1-p \geq 0$, then there exists the graph

$$
G=(p+1-s) K_{p-1} \cup(k+s+1-p) K_{p}
$$

of order $n(G)=p+q-2$. Since T_{p+1} is not a subgraph of G and $\Delta(\bar{G}) \leq q-1$, we see that $r\left(T_{p+1}, K_{1, q}\right) \geq p+q-1$. (In particular, for $s=p-1$ or $s=p-2$, the condition $k+s+1-p \geq 0$ is valid, and thus $r\left(T_{p+1}, K_{1, q}\right)=p+q-1$ for $q-1=k p+p-1$ or $q-1=k p+p-2$.)
Thus, we assume in the following that $q-1=k p+s$ with $2 \leq s \leq p-3$ and $\Delta\left(T_{p+1}\right)=p-1$.
If $p+q$ is even or q is odd and p is even, then according to Theorem 2.1 and Theorem 2.2, there exists the factorization

$$
K_{p+q-2}=R_{p-2}^{p+q-2} \oplus R_{q-1}^{p+q-2},
$$

which implies, together with the condition $\Delta\left(T_{p+1}\right)=p-1$, the inequality $r\left(T_{p+1}, K_{1, q}\right) \geq p+q-1$.
If q is even and p is odd, then we shall investigate the two cases depending on whether k is even or odd.

If k is odd, then it follows from $q=k p+s+1$ that s is even. Hence, by Theorem 2.1, there exists the graph

$$
F=k K_{p} \cup R_{p-2}^{p+s-1}
$$

of order $n(F)=p+q-2$. Then the factorization $K_{p+q-2}=F \oplus \bar{F}$ shows $r\left(T_{p+1}, K_{1, q}\right) \geq p+q-1$.
In the case that k is even, we conclude that $s=2 t+1$ is odd. If $p+t$ is even, then there exists

$$
F_{1}=(k-1) K_{p} \cup 2 R_{p-2}^{p+t}
$$

and if $p+t$ is odd, then there exists

$$
F_{2}=(k-1) K_{p}^{\prime} \cup R_{p-2}^{p+t-1} \cup R_{p-2}^{p+t+1} .
$$

We observe that $n\left(F_{1}\right)=n\left(F_{2}\right)=p+q-2$, and the factorizations $K_{p+q-2}=$ $F_{i} \oplus \bar{F}_{i}$ for $i=1,2$, yield the desired result.
v) Now let $p>q \geq 3$ and $\Delta\left(T_{p+1}\right)=p-1$.

If $p+q$ is even or q is odd and p is even, then the inequality $r\left(T_{p+1}, K_{1, q}\right) \geq$ $p+q-1$ follows from the above factorization $K_{p+q-2}=R_{p-2}^{p+q-2} \oplus R_{q-1}^{p+q-2}$.
In the case p odd and q even, let G be an arbitrary graph of order $p+q-2$. If $K_{1, q}$ is not a subgraph of \bar{G}, then we have $\Delta(\bar{G}) \leq q-1$ and hence $\delta(G) \geq p-2$, and thus G is connected. Since the integers $p+q-2$ and $p-2$ are both odd, we can find a vertex v in G with $|N(v, G)| \geq p-1$. Consequently, $T_{p+1} \subseteq G$, and we have proved $r\left(T_{p+1}, K_{1, q}\right) \leq p+q-2$.
Finally, the factorization

$$
K_{p+q-3}=R_{p-3}^{p+q-3} \oplus R_{q-1}^{p+q-3}
$$

shows the opposite inequality $r\left(T_{p+1}, K_{1, q}\right) \geq p+q-2$.
For the special case that the trees are stars, Burr and Roberts [2] determined the ramsey numbers exactly.

Theorem (Burr, Roberts [2] 1973) Let $p, q \geq 2$ be two integers. Then

$$
r\left(K_{1, p}, K_{1, q}\right)= \begin{cases}p+q-1, & \text { if } p \text { and } q \text { are both even, } \\ p+q, & \text { otherwise. }\end{cases}
$$

It is our aim now to determine the ramsey numbers of two trees T_{1} and T_{2} which fulfil the property $\Delta\left(T_{i}\right)=n\left(T_{i}\right)-2$ for $i=1,2$.

Theorem 3.2 Let $p, q \geq 4$ be two integers. Then

$$
r\left(T_{p+1}^{*}, T_{q+1}^{*}\right)= \begin{cases}p+q-1, & \text { if } q-2=t p \text { or } p-2=t q, \\ p+q-3, & \text { if } p \text { is odd and } q=p, \\ p+q-2, & \text { otherwise. }\end{cases}
$$

Proof. Let G be a graph of order $p+q-1$ and assume that T_{q+1}^{*} is not a subgraph of \bar{G}.
If $\Delta(\bar{G}) \leq q-2$, then $\delta(G) \geq p$, and we deduce from Lemma 2.1 that $T_{p+1}^{*} \subseteq G$.
If $\Delta(\bar{G}) \geq q-1$, then let $v \in V(G)$ such that $d(v, \bar{G})=\Delta(\bar{G})$. We choose a vertex set $A \subseteq N(v, \bar{G})$ with $|A|=q-1$, and we define $B=V(G)-(A \cup\{v\})$. We have $|B|=p-1$ and all edges between A and B are necessarily elements of $E(G)$. This implies $T_{p+1}^{*} \subseteq G$, and so we have proved $r\left(T_{p+1}^{*}, T_{q+1}^{*}\right) \leq p+q-1$.
Let without loss of generality $q-2=t p$. Then the graph $G=(t+1) K_{p}$ shows $r\left(T_{p+1}^{*}, T_{q+1}^{*}\right) \geq p+q-1$.

Now let G be a graph of order $p+q-2$ with $q-2 \neq t p$ and $p-2 \neq t q$, and in addition assume that T_{q+1}^{*} is not a subgraph of \bar{G}.
If $\Delta(\bar{G}) \leq q-2$, then $\delta(G) \geq p-1$, and hence there is a component H of G with $n(H) \geq p+1$. In view of Lemma 2.3, we conclude $T_{p+1}^{*} \subseteq H \subseteq G$.
If $\Delta(\bar{G}) \geq q-1$, then let $v \in V(G)$ with $d(v, \bar{G})=\Delta(\bar{G})$. We choose a vertex set $A \subseteq N(v, \bar{G})$ with $|A|=q-1$, and we define $B=V(G)-(A \cup\{v\})$. We have $|B|=p-2$ and all edges between A and B are elements of $E(G)$. If there are two vertices in A which are adjacent in G, then $T_{p+1}^{*} \subseteq G$ is immediate. So, we assume now that $\bar{G}[A]=K_{q-1}$. Consequently, all vertices of B are adjacent to v in G.
If $q \geq p-1$, then it is a simple matter to obtain $T_{p+1}^{*} \subseteq G$. Therefore, all that remains is the case $p=q+s$ with $s \geq 3$. If we define $H_{1}=\bar{G}[B]$ and $H_{2}=G[B]$, then it is not difficult to see that $T_{p+1}^{*} \subseteq G$ or $\Delta\left(H_{2}\right) \leq s-2$. From $\Delta\left(H_{2}\right) \leq s-2$, we deduce $\delta\left(H_{1}\right) \geq p-3-(s-2)=q-1$. Because $p-2 \neq t q$, we thus obtain, using Lemma 2.3, the contradiction $T_{q+1}^{*} \subseteq \bar{G}$. Since we have checked all the possibilities, we have proved $r\left(T_{p+1}^{*}, T_{q+1}^{*}\right) \leq p+q-2$ for this case.
If p and q are not both odd, then according to Theorem 2.1 and Theorem 2.2, there exists the factorization

$$
K_{p+q-3}=R_{p-2}^{p+q-3} \oplus R_{q-2}^{p+q-3} .
$$

If p and q are odd, and without loss of generality $q \geq p+4$, then we define $G=K_{p} \cup R_{p-2}^{q-3}$ and $K_{p+q-3}=G \oplus \bar{G}$. These two factorizations yield the desired equality $r\left(T_{p+1}^{*}, T_{q+1}^{*}\right)=p+q-2$ for the discussed cases.

Finally, let $p=q$ be odd, and let G be a graph of order $p+q-3$. Furthermore, we assume that T_{q+1}^{*} is not a subgraph of \bar{G}.
If $\Delta(\bar{G}) \leq q-3$, then $\delta(G) \geq p-1$ and G is connected. In view of Lemma 2.3, we conclude $T_{p+1}^{*} \subseteq G$.
If $\Delta(\bar{G})=q-2$, then $\delta(G) \geq p-2, \Delta(G) \geq p-1$, and G is connected. Now let $b \in V(G)$ with $d(b, G)=\Delta(G)$. We choose $A \subseteq N(b, G)$ such that $|A|=p-1$, and we define $B=V(G)-(A \cup\{b\})$. So, it follows $|B|=q-3 \geq 2$ and all edges between A and B are contained in \bar{G}. But now it is easy to see that $T_{p+1}^{*}=T_{q+1}^{*} \subseteq \bar{G}$.

If $\Delta(\bar{G}) \geq q-1$, then let v be a vertex with $d(v, \bar{G})=\Delta(\bar{G})$. We choose $A \subseteq$ $N(v, \bar{G})$ with $|A|=q-1$ and we define $B=V(G)-(A \cup\{v\})$. Hence, we see that $|B|=p-3 \geq 2$ and all edges between A and B are necessarily in G. This implies $T_{q+1}^{*}=T_{p+1}^{*} \subseteq G$, and we obtain $r\left(T_{p+1}^{*}, B_{q+1}^{*}\right) \leq p+q-3$ for this case. If $p=q$ is odd, then the factorization

$$
K_{p+q-4}=R_{p-2}^{p+q-4} \oplus R_{q-3}^{p+q-4}
$$

shows the desired equality, and the theorem is proved.
In connection with Lemma 2.3, we like to formulate the following conjecture.
Conjecture Let G be a connected graph of order $n(G) \geq p+3$ with $\delta(G) \geq p \geq 3$. If T is a tree of order $n(T) \leq p+3$ and $\Delta(T) \leq p-1$, then $T \subseteq G$.

We note that there exist examples which show that this conjecture is not valid for $\Delta(T)=p$ in general.

References

[1] Burr, S.A., Generalized Ramsey theory for graphs - a survey, in Graphs and Combinatorics, Lecture Notes in Mathematics 406 (ed. R. A. Bari and F. Harary), Springer-Verlag, Berlin, Heidelberg, New York (1974), 52-75.
[2] Burr, S.A. and J.A. Roberts, On Ramsey numbers for stars, Utilitas Math. 4 (1973), 217-220.
[3] Chartrand, G. and L. Lesniak, Graphs and Digraphs (Second Edition), Wadsworth and Brooks/Cole, Advanced Books and Software, Monterey, California (1986).
[4] Kirkman, T.P., On a problem in combinations, Cambridge Dublin Math. J. 2 (1847), 191-204.
[5] Petersen, J., Die Theorie der regulären graphs, Acta Math. 15 (1891), 193-220.
[6] Reiß, M., Über eine Steinersche combinatorische Aufgabe, welche im 45sten Bande dieses Journals, Seite 181, gestellt wurde, J. Reine Angew. Math. 56 (1859), 326-344.

