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Abstract 

A graph is claw-free if it does not contain K I ,3 as an induced subgraph. 
A graph is KI,r-free if it does not contain KI,r as an induced subgraph. 
In this paper, we find bounds on the minimum number of edges needed 
to ensure a KI,.,.-free contains k vertex disjoint cycles. The bound 
on claw-free graphs is sharp. 

1 Introduction 

Throughout all of this paper 1 we will let p denote the number of vertices in a graph 
and let q denote the number of edges. For simplicity, we will call vertex disjoint 
cycles disjoint cycles. The following result, due to P6sa, gives a sufficient condition 
for a graph to have 2 disjoint cycles. 

Theorem 1 ([7]) Let G be a graph. If q ~ 3p-5, then G contains 2 disjoint cycles. 

This result is sharp, since the graph K3 + nKI has p n + 3, q = 3p - 6, and 
does not contain 2 disjoint cycles. 

For claw-free graphs, Matthews proved the following. 

Theorem 2 ([6]) If G is a claw-free graph with q ~ p+6, then G contains 2 disjoint 
cycles. 
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This is since the graph K5 with a path of length n attached to any of its 
vertices has q = p + 5 and does not contain 2 disjoint cycles. For KI,T-free graphs, 
Markus and Snevily proved the following. 

Theorem 3 ([5]) If G is a KI,T-free graph with r ~ 4 and q p + 2r - 1 then G 
contains 2 disjoint cycles. 

This is as shown by the KI,T-free graph K3 + (r l)Kl, which is KIlT-free 
with q p + 2r 2 and does not contain 2 disjoint 

For the case of finding k disjoint cycles in graphs, Erdos and Pasa proved the 
following. 

Theorem 4 ([3]) Let k 1 andp 24k. Then every graph with q (2k-I)(p-k) 
contains either k disjoint cycles or G K 2k- 1 + (p - 2k + 1 )KI . 

In [4], Justensen proved the following result which was conjectured to be true by 
Erdos and pasa. 

Theorem 5 ([4]) Let k ~ 1 and p 3k. Then every graph with 

q > max{(2k - I)(p - k), (3k 1)(3k - 2)/2 + p 3k + I}, 

contains k disjoint cycles. 

Recently, Bodlaender [1] showed that the problem of determining whether a graph 
G of order p has k vertex disjoint cycles and k edge disjoint cycles can be solved in 
O(p) times for each fixed positive integer k. In this paper, we improve the above 
result for claw-free graphs. The following result is obtained. 

Theorem 6 Let G be a claw-free graph and k 2:: 1. If 

q 2:: p + (3k - 1)(3k - 4)/2 + 1, 

then G contains k disjoint cycles. 

In fact, we will completely characterize the claw-free graphs with n vertices and 
n + (3k 1)(3k - 4)/2 edges which do not contain k-disjoint cycles by the following 
theorem. To do so, the following notation is needed. 

Definition 1 For any positive integer k, we say a graph F E Fie if F is obtained 
from the complete graph K 31e- 1 by 

• replacing an edge by a path; 

• attaching disjoint paths to different vertices of K 31e- I such that different paths 
are attached to different vertices. 
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Theorem 7 Let G be a graph with q ~ p + (3k - 1 )(3k 
not contains k cycles, then G has p + (3k - 1 )(3k 
GE 

In fact we will prove the following stron:l!:er resuit. 

Theorem 8 Let G be a claw-free graph with 

q ~ p + (3k - 1)(3k - 4)/2. 

4)/2. If G does 
4)/2 edges and 

If G does not contain k disjoint 
G E :F1c • 

for which k - 1 of them are triangles, then 

For r 4, the following result is obtained. 

Theorem 9 Let G be a KI,T-free. If 

q ~ p + 16rk2
, 

then G contains k disjoint cycles. 

We believe that p + 16rP can be improved in the above theorem. The graphs in 
:Fie and the following graph show that this bound cannot be lowered to something 
less than 

min{p + (3k 1)(3k 4)/2 + 1, p + (2k - l)(k + r - 3) r + I}. 

Let G be a graph obtained from K 21e- 1 + (r - l)KI and a path of length p -

(2k + r 2) by identifying a vertex of (r - l)KI with one of the endvertices of 
the path. Clearly, G is KI,T-free and does not contain k disjoint cycles and has 
p + (2k - l)(k + r - 3) r edges. 

2 Notation and Lemmas 

Let G be a graph. For any subgraph H of G, we let E(H) denote the edge set of H 
and e(H) JE(H)J. If HI, H2 , "', Hm are m vertex disjoint subgraphs of G, we let 
E(Hl, H2 , "', Hm) denote the set of edges with one endvertex in Hi and the other 
one in H j for 1 :S i -::J j m. Let 

In general, we let P(HI1 H2 , "', Hm) be the set of paths P[u,v] from one of Hi to 
another H j (i /: j) and every internal vertex of P[u, v] is not in UI<t<m V(Ht ). We 
let Pt(Hl, H2 ,'" ,Hm) denote a subset of P(HI1 H2 ," • ,Hm) for whi~h every path 
has length :S t. 

For any graph G, we let Si( G) denote the set of vertices of degree i and S>i( G) = 
Uj>iSj(G). For each vertex u in a graph G, we let N(u) denote the set of~ertices 
which are adjacent to v and N[u] = N(u) U {u}. Further, we let Nm(u) = {v : 0 < 
dist(u,v) :S m} and Nm[u] = Nm(u) U {u}. We will generally follow the notation in 
[2]. The following lemmas will be needed in the proofs. 

159 



Lemma 1 Let T be a tree with at least two vertices such that T contains no vertices 
of degree two. Let 

~(T) {{u, v} d(u) = d(v) 1, 0 dist(u,v) 4}. 

Then 

Proof: We use induction on the number of vertices of T. The result is clearly true 
for K 2 • Now we suppose that T has n vertices. If for every end-vertex u there is an 
end-vertex v such that dist(u,v)::::; 4, then 21V1(T)1 ISl(T)I. Let 

U {v: d(v) = 1, N4(v) n Sl(T) 0}. 

Note that for every pair of distinct vertices u and v U we have N 2 [u] n N 2 [v] 0. 
Now we construct a new tree, T* from T contracting N2 [v] to a new vertex 
v* for each v E U. Since T has no vertices of two, dT.(v*) 4. Then 
IS~4(T*)1 lUI. It is not difficult to see that 

Vl(T) Vl(T*) and Sl(T*) Sl(T) U. 

To prove the Lemma we only need to show that 

Since every vertex v E Sl(T*) has a vertex w Sl(T*) which is at distance no more 
than 4 from v, we have 21V1(T*)1 ISl(T*)I. Thus it is sufficient to show that 

I~(T*)I IS>4(T*)I· 

Let T** be the tree obtained from T* by removing all vertices of one. The 
inequality 1V1(T*)1 IS~4(T*)1 follows from the following observations. 

• ISl(T**)1 ;::: ISi~3(T**)1 since T** is a tree. Each vertex v E Sl(T**) has at least 
two vertices in Sl(T*) adjacent to it; 

• Each vertex v having dT*( v) 4 and dT**( v) 2 is adjacent to at least two 
vertices in Sl(T*); 

• Each vertex v having dT* ( v) ;::: 4 and dT •• ( v) 1 is adj acent to at least three 
vertices in Sl(T*), which gives us three pairs of vertices in V1(T*). 

o 

Lemma 2 Let G be a K l,r -free graph of girth g( G) ;::: 5. If G has two vertex disjoint 
cycles 0 1 and O2 such that 

then G contains two vertex disjoint cycles and 0; such that 

and, 
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Proof: To the contrary, suppose that there are not two such cycles C; and C;. It is 
readily seen that both C1 and C2 must be induced cycles. Assume that 

C1 : VIVa' .. V.,V1 

C2 : W1W2'" WtWl 

Without loss of generality, let VI E C1 such that 

lS;iS;s,l j:s;t}. 

Since Gis KI,r-free and girth g(G);?: 5, IN(v1) n Cal S; r - 3. We consider three 
cases according to the value of IN( VI) n C2 1. 

Case 1: IN(v1) n C2 1 1 
From the maximality of IN(vl) n Cal, we have in this case 

IN(vlI:) n C2 1 S; 1 for every Vi E C1 and 

IN( Wi) n C1 1 S; 1 for every Wi E C2. 

Let Vii Wil' Vi] Wj2' .. " Vi.,.,. Wjm be the between C I and C2 with 1 = i1 ia < 
... < im and m ;?: 7. Without loss of generality, we may assume that 1 = WI W2' 
If W3 > W2, then W5 is either in C2(W1,W2), or C(W2,W3), or C(W3,Wt). It is readily 
seen that in either of these cases, there are two cycles C; and C; with the desired 
properties. If WI < W3 < W2, then either W5 E C(WI,W2) or W5 E C(W2lWt}. In 
either case, it is readily seen that there are two cycles C; and C; with the desired 
properties. 

Case 2: IN(v1) n C2 1 2 
Assume N(V1) n C2 {x, y}. By the maximality of IN(v1) n C2 1, we have 

IN(x) n (Cl - vI)1 S; 1 and IN(y) n (C1 - v1)1 S; 1. Also, we have 

e(CI-v1,C2(X,y)) < 1, 

e(CI - vI,C2(y,x)) S; 1, 

otherwise there are two cycles C; and C; with the desired properties. Thus, 

a contradiction. 

Case 3: IN( VI) n C2 1 ;?: 3 
In this case, we have IN(wt:) n (C1 - v1)1 S; 1 for every Wi E V(C2). Since G 

is K 1,r-free, VI has at most r - 3 neighbors in C2 , so that e( C1 - V, C2 ) ;?:. 3. Note 
that if x, yare two distinct neighbors of C1 - VI in C2, then IN(vI) n C2(x,y)1 :s; 1 
and IN(vt) n C2(y,x)1 S; 1. Thus the inequality IN(vt) n C21 ;?: 3 implies that 
e( C1 - Vl, C2 ) S; 3. So the following two equalities hold, 
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which shows that e( CII C - 2) S 6, a contradiction. o 

From the proof of the above lemma, it is not difficult to see the following gener
alization holds. Since the proof is straightforward following the proof of the above 
lemma, we leave the proof to the reader. 

Lemma 3 Let G be a KIlT-free graph of girth g( G) > 4m and C I and C2 be two 
disjoint cycles of G. Let P~[CI, C2] be a set of paths of length m with one end 
vertex in C1 and the other one in C2 and which are internally disjoint from CI U C2 · 

Then} if 

G contains two vertex disjoint cycles C; and C; such that 

Further! 

3 Proof of Theorem 8 

We use induction on k. When k = 1, G has p vertices and at least p - 1 edges. Then, 
if G contains no cycles, it is a tree, in fact a path, so that the result holds. Assume 
that the above theorem holds for k - 1 and k ~ 2. Let G be a claw-free graph with 
p vertices and at least p + (3k - 1)(3k 4)/2 edges and that G fails to contain k 
disjoint cycles of which k - 1 of them are triangles. Without loss of generality, we 
assume that G is connected. Suppose that G (j. :Fk. 

Since k 2: 2, G must contain a vertex of degree at least three. Therefore G 
contains a triangle. 

Claim 1 Let T be a triangle in G and H = G - V(T). Then} 

(1) 
(2) 

e(H) < P 3 + (3k - 4)(3k - 7)/2, 

e(T, H) > 3(3k - 4) = 9k 12. 

Proof: To the contrary, suppose that e(H) > p - 3 + (3k - 4)(3k - 7)/2. By our 
induction hypothesis, H contains k - 1 disjoint cycles for which k - 2 of them are 
triangles. Thus G contains k disjoint cycles for which k 1 of them are triangles, a 
contradiction. 0 

Claim 2 Let .6.(G) denote the maximum degree of G. Then 

3k - 2 S .6.( G) S 3k - 1. 

In particular on each triangle of G there is a vertex u such that d( u) ~ 3k - 2. 
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Proof: Let T uvw be a triangle of G such that d(u) ~ d(v) 2:: dew). Then by 
Claim 1 

1 
~(G)2::d(u)~2+3e(T,G VeT)) 3k 2. 

On the other hand suppose d(x) ~ 3k for some vertex x E V(G). Recall, the Ramsey 
number r(3, 3) 6 and G(N(x)) contains no three independent vertices. Take any 6 
vertices of N(x). There must be a triangle TI here. Take any 6 vertices not including 
any vertex of there is another triangle T2• Continuing in this way, we see that 
G(N(x)) contains k 1 vertex disjoint triangles TI, T21 "', Since d(x) 2:: 3k, 
N(x) - Uf,:;;}V(T.:) has at least three vertices. Since G is claw-free, there is an edge 
in N(x) uf;fV(Ti ), say yz. Let Tk = xyz. Then G has k disjoint triangles TI , T2, 
.. " Tkl a contradiction. 0 

Claim 3 Let w be a vertex of G. If w is on a triangle, then d( w) ~ 3k - 4. 

Proof: Suppose w is on a triangle T. Then this claim follows from e(T, G - V(T)) ~ 
9k - 12 and ~(G) 3k 1. 0 

In what follows, we will break the remainder of the proof into two cases depending 
on the value of ~(G). 

3.1 The maximum degree ~(G) = 3k 1 

Let x be a vertex of G such that d( x) = ~(G) = 3k 1. Since G( N( x)) contains no 
three independent vertices and r(3,3) = 6, it follows as above, that G(N(x)) 
contains k 2 disjoint triangles TIl T2 ) "', Tk - 2 . Let W N(x) - UI~i~k-2 V(Ti)' 
Then IWI 5. Assume that W = {WI, W2, wa, W4, W5}. If W contains a triangle, 
say T WI W2W3, and an edge W4WS vertex disjoint from the triangle T, then G has 
k disjoint cycles 

a contradiction. 
It is not difficult to check that a graph of order 5 containing neither Ka U K2 nor 

three independent vertices is either a Cs or K4 U K I . 

If W Cs, without loss of generality, we assume that G(W) = WIW2WaW4WsWI. 
If there is a vertex v ct N[x] such that vWI E E(G), then either VWs E E(G) 
or VW2 E E( G) since G is claw-free. Without loss of generality, we assume that 
VW2 E E( G). Then G has k disjoint cycles 

a contradiction. 
Thus N(WI) ~ N[x] which implies that d(wd :::; 3k-3. Similarly, d(W2) :::; 3k-3. 

Let T = XWIW2. By Claims 1 and 2, 

9k-12 :::; e(T, G-VeT)) :::; d(x )+d(WI)+d( w2)-6 :::; (3k-l)+2(3k-3)-6 = 9k-13, 
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a contradiction. 
Thus G(W) K4 U K l . Without loss of generality, we assume that Ws is the 

isolated vertex in G(W). If there are two vertices y, z E N(W5) N[x], then there 
is a Tk - 1 with V(Tk - 1 ) ~ {W51 X, y, z} since G is claw-free. Then G has k 
disjoint triangles 

Tll T21 "', Tk- 1 , Tk WIW2W3, 

a contradiction. Thus IN(W5) - N[X5]1 ~ 1. Hence 

dews) ~ 1 + ((3k 1) 4) = 3k 4. 

If Ws is not on a triangle, then d( ws) 2. Since G( N( x)) contains no three 
independent vertices, G(N(x) ws) K 3k- 2 • Thus G(N[x] W5) K 3k- 1 . Since G 
contains no k disjoint cycles of which k 1 of them are triangles, G (N[x] {ws}) 
is a forest and each tree of the forest is attached to N[x] - Ws by one and only one 
vertex. It is readily seen that G E F k , a contradiction. 

Thus Ws is on a triangle. By Claim 3, d( ws) 3k - 4. In particular, we have 
N(ws) N[x] W. If k 2, dews) 2. There is a triangle containing x and Ws. 
This triangle and a triangle in G(W - ws) shows that G contains two triangles, a 
contradiction. Thus k 2:: 3, which k 2 2:: 1. Let Tk- 2 UIU2U3. Considering 
the triangle XUIWS, we have d(Ul) = L\(G) 3k L 

If IN(Ul) N[x]1 3, say VI, V2, V3 E N(Ul) N[x]. Then there is a triangle 
Tk-2 in G( {UI' VI, V2, V3}), which shows that G has k disjoint triangles 

a contradiction. 
Hence IN(UI) - N[x]1 ~ 2, which gives us IN(UI) N[xll 2:: 3k 3. In particular, 

IN(Ul) n {WI, W2, W3, w4}1 2:: 2. Without loss of generality, assume Wl, W2 E N(Ul)' 
Then G has k disjoint triangles 

a contradiction. 

3.2 The maximum degree ~(G) = 3k 2 

In this case, every vertex on a triangle has degree L\( G) 3k - 2 by Claim 1. In 
particular, every vertex of degree> 2 has degree 3k - 2. Let X be an arbitrary vertex 
of G with d(x) = L\(G) = 3k - 2 

Suppose that there is a vertex y E N(x) with dey) ~ 2. Let S = N[x] - y. Then 
G(S) K 3k- 2 and IN(v) - SI 1 for each V E S. Since G is claw-free and G(S) 
contains k - 1 disjoint triangles, G - S is a union of paths. Let s denote the number 
of components of G S. Using the fact (3k - 2)(3k 3)/2 = (3k - 1)(3k - 4)/2 + 1, 
we have 

p + (3k 1)(3k - 4)/2::; e(G) e(G(S)) + e(S, V - S) + e(G - S) 
::; (3k - 2)(3k 3)/2 + (3k 2) + (p - (3k - 2) - 5) 

p + (3k 1)(3k - 4)/2 - (s - 1). 
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Thus s 1. Hence G - S is a path. Assume 

where m p (3k 2). 
Since G is claw-free and every vertex in S has exactly one neighbor outside S! 

then N(Vi) n S 0 for each 2 sis m 1. Thus d(Vi) 2 for i 2,3"" m - 1. 
Further 

N(V1) U N(vm ) ::2 S, and N(vd n N(vm ) n S 0. 

Without loss of generality, assume that IN(V1)nSI 2:: IN(vm)nsl. If IN(vm)nSI 2, 
say N(VI)nS ::2 {Xl! X2} and N(vm)nS ::2 {X3, X4}, then G contains triangles V1 XIX2, 

VmX3X4, and k-2 triangles in the complete subgraph G(S -{ Xl, X2, X3, X4}) = K 3k- 6 , 

a contradiction. 
Thus we have either N(VI)::2 Sand N(vm) n S = 0 or IN(VI) n SI lSI 1 and 

IN(vm ) n SI 1. It is readily seen that in either of these cases, we have G E f"k, a 
contradiction. 

Thus every vertex of degree 3k - 2 is not adjacent to the vertices of degree at 
most 2. Since we assume that G is connected, G is a 3k - 2 regular graph. Let X 

be an arbitrary vertex of G and y E N(x) such that t IN(y) - N[x]1 is maximum 
over all neighbors of x. Clearly, G E f"k if t O. If t 2:: 2, let v, w be two vertices 
in N(y) N[x]. Since G is claw-free and the vertex x is also in N(y), we have 
vw E E(G). Thus G has a triangle T = yvw. In the same manner as above, we see 
that G has k 1 disjoint triangles such the vertices in N[x] {y}, which implies 
that G has k disjoint triangles, a contradiction. Therefore we have t 1. So there is 
at most a matching missed in the induced subgraph G(N(x)). Let w be the vertex 
in N(y) but not in N[x]. If IN(w) - N[xll 2:: 2, let u, v E N(w) - N[x]. Since y 
is also in N(w) and y is not adjacent to either u or v, uv E E(G). Then G has a 
triangle uvw. In the same manner as before, it is not difficult to show that N[x] 
contains k 1 disjoint triangles, so G has k disjoint triangles, a contradiction. Thus 
IN(w) N[xll 1. Note that wx tJ. E(G), we have IN(w)nN(x)1 ~ IN(x)l-l since 
d(x) = 3k - 2. Since t 1 and Gis 3k - 2 regular, each vertex Z E N(w) n N(x) 
has exactly one nonadjacent vertex in N(x). 

If IN(w) N[x]1 = 1, then the vertex set N(w)nN(x) induces a clique since Gis 
claw-free, a contradiction. Thus N( w) = N( x) and there is exactly a I-factor missed 
in the subgraph induced by N(x). Using the Ramsey number r(3,3) 6 in the 
same manner as before, we can show that N( x) can be partitioned into k - 2 disjoint 
triangles Tl, T2 , . ", Tk - 2 and a set of 4 vertices, say {Zll Z2, Z3, Z4}' Since there are 
at most two independent edges missed in the subgraph induced by {Zl' Z2, Z3, Z4}, 

the induced subgraph G( {Zl, Z2, Z3, Z4}) contains two independent edges, say ZlZ2 

and Z3Z4. Thus G contains k disjoint triangles 

a contradiction. 0 
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3.3 Proof of Theorem 9 

We will prove Theorem 9 by induction on k. It is clear that the result holds for k 
Assume that k ~ 2 and the result holds for k 1. To the contrary, we suppose that 
the result fails. Let G be a K1.r-free graph on p vertices and at least p + 16rk2 edges 
and not contain k disjoint cycles. Further we assume that the p is minimum with 
this property. 

Claim 4 G contains no vertices of degree 1. Every vertex of degree two lies on a 
triangle. 

Proof: If G contains a vertex of degree :S; 1, we simply remove the vertex, which 
contradicts the minimality of p. If v is a vertex of degree 2, let u and w be two 
neighbors of v. If uw r:f- E(G), we remove the vertex v and add a new uw. The 
resulting graph contradicts the minimality of p. Thus v lies in a triangle uvw. 0 

Let v be an arbitrary vertex in G and S be a subset of N( v). Since Gis Kl,r-free, 
then the subgraph G(S) induced by S must contain a cycle if lSI ~ 2r -1. Thus for 
every S ~ N(v) containing no less than (2r l)m vertices, G(S) contains at least 
m disjoint The following proof is broken into two parts. 

3.4 G contains a cycle of length::; 16 

Let C1 be a cycle of G with the minimum length. Then IV(Cdl :S; 16 and C1 

contains no chords. Let H G V( Cd. Since G does not contain k disjoint 
IN(v) n HI::; (2r - l)(k - 1) -1 otherwise N(v) n H contains k - 1 disjoint cycles, 
so G contains k disjoint cycles, a contradiction. Thus 

since IV(C1)1 :S; 16. By induction, H contains k - 1 disjoint cycles, so G contains k 
disjoint cycles, a contradiction. 

3.5 The girth g( G) ~ 17 

By the induction hypotheses on k, we know G contains k - 1 disjoint cycles. Let Cll 

C2 , .• " Ck - 1 be k 1 such cycles with 

mInImum. Let H = G - U1:5i :5k-l V( Ci ). Then H is a forest. Since G contains 
no triangle, the minimum degree 8(G) ~ 3. Consider a component F induced by 
H and the edges of E(U1<i<k-1Ci , H). Form a tree T* from F as follows: if u 
is a vertex of both F and Ci (for some i) and dF ( u) > 1, then replace u in F 
by dF ( u) new vertices of degree 1, each of them adj acent to a different vertex in 
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.1. Yp'\. LLj_ .1.'VV\.", uJ..1.o"v tt.L~v..L 'LL.v ....... ..;, .L.L\JV ..... V .. L!.\iIAl~..L..LU' 'LN V .......... U'-'...n.. '-" .... '-'--0 .................... V"....,. J-J'J .L....J ........ .£...L...t....L...L.£."-4' -L) 

IVi(T*)1 2:: ~IE(Ul:::;i:::;k-lCi' T)I· Hence 

IP4(C1 , C2, ' Ok-I)I IViCT*)1 + IE(Cl , .•. I Ck-dl 
1 16 

2:: -(e(G) - ( I: IV(Ci)1 + e(H)) 2:: -rk2
• 

3 l:::;i:::;k-l 3 

Let 
P~(Cil Cj) P4 (Cl , C2 , . ,Ck- I ) n P 4 (Ci ) OJ), 

that the subset of P 4 ( Cl , C2 ,'" Ck-l) for which every path has an end vertex in 
Ci and the other one in Cj . By the Pigeonhole Principle, we can assume, without 
loss of generality, that 

IP:(OI, C2 )1 2:: 332r 2:: max{10, r}. 

By Lemma 3 for the case m 4, since g( G) > 16, G contains two disjoint cycles C; 
and 0; such that 

and 
V(C;) U V(C;) c V(Cl ) U V(C2 ) UPEP4 (C1 ,C2 ) V(P), 

which contradicts the minimality of 
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