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Abstract

A graph is claw-free if it does not contain K 3 as an induced subgraph.
A graph is K, ,-free if it does not contain Kj, as an induced subgraph.
In this paper, we find bounds on the minimum number of edges needed
to ensure a K, ,-free graph contains k vertex disjoint cycles. The bound
on claw-free graphs is sharp.

1 Introduction

Throughout all of this paper, we will let p denote the number of vertices in a graph
and let ¢ denote the number of edges. For simplicity, we will call vertez disjoint
cycles disjoint cycles. The following result, due to Pésa, gives a sufficient condition
for a graph to have 2 disjoint cycles.

Theorem 1 ([7]) Let G be a graph. If ¢ > 3p—5, then G contains 2 disjoint cycles.

This result is sharp, since the graph K3 + nK; has p=n +3, ¢ = 3p — 6, and
does not contain 2 disjoint cycles.
For claw-free graphs, Matthews proved the following.

Theorem 2 ([6]) If G is a claw-free graph with ¢ > p+6, then G contains 2 disjoint
cycles.
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This is sharp since the graph Ky with a path of length n attached to any of its
vertices has ¢ = p 4+ 5 and does not contain 2 disjoint cycles. For K ,-free graphs,
Markus and Snevily proved the following.

Theorem 3 ([5]) If G is a Ky,-free graph with > 4 and ¢ > p + 2r — 1 then G
contains 2 disjoint cycles.

This is sharp as shown by the K; ,-free graph K3 + (r — 1)K, which is K ,-free
with ¢ = p 4+ 2r — 2 and does not contain 2 disjoint cycles.

For the case of finding k disjoint cycles in graphs, Erd8s and Pésa proved the
following.

Theorem 4 ([3]) Letk > 1 and p > 24k. Then every graph with ¢ > (2k—1)(p—k)
contains either k disjoint cycles or G = Koy + (p — 2k + 1) K.

In [4], Justensen proved the following result which was conjectured to be true by
Erd6s and Pésa.

Theorem 5 ([4]) Let k > 1 and p > 3k. Then every graph with
q > max{(2k — 1)(p — k), (3k — 1)(3k — 2)/2 + p — 3k + 1},
contains k disjoint cycles.

Recently, Bodlaender [1] showed that the problem of determining whether a graph
G of order p has k vertex disjoint cycles and k edge disjoint cycles can be solved in
O(p) times for each fixed positive integer k. In this paper, we improve the above
result for claw-free graphs. The following result is obtained.

Theorem 6 Let G be a claw-free graph and k > 1. If
g>p+(3k—1)B8k—4)/2+1,

then G contains k disjoint cycles.

In fact, we will completely characterize the claw-free graphs with n vertices and
n+(3k —1)(3k — 4)/2 edges which do not contain k-disjoint cycles by the following
theorem. To do so, the following notation is needed.

Definition 1 For any positive integer k, we say a graph F' € Fi if F is obtained
from the complete graph Kzp1 by

o replacing an edge by a path;

e attaching disjoint paths to different vertices of Kak—1 such that different paths
are attached to different vertices.
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Theorem 7 Let G be a claw-free graph with ¢ > p + (3k — 1)(3k — 4)/2. If G does
not contains k disjoint cycles, then G has ezactly p + (3k — 1)(3k — 4)/2 edges and
G e Fi.

In fact we will prove the following stronger result.
Theorem 8 Let G be a claw-free graph with
q>p+(3k—1)(3k —4)/2.

If G does not contain k disjoint cycles for which k — 1 of them are triangles, then
G e F.

For general 7 > 4, the following result is obtained.

Theorem 9 Let G be a Ky ,-free. If
q > p+ 167k%,
then G contains k disjoint cycles.

We believe that p+ 167k? can be improved in the above theorem. The graphs in

Fi and the following graph show that this bound cannot be lowered to something
less than

min{p+ (3k - 1)(3k —4)/2+1,p+ 2k - 1)}k +r —3) —r + 1}.

Let G be a graph obtained from K1 + (r — 1)K; and a path of length p —
(2k + r — 2) by identifying a vertex of (r — 1)K; with one of the endvertices of
the path. Clearly, G is K;,-free and does not contain k disjoint cycles and has
p+ (2k —1)(k+7r —3) — 7 edges.

2 Notation and Lemmas

Let @ be a graph. For any subgraph H of G, we let E(H) denote the edge set of H
and e(H) = |E(H)|. If Hy, Hy, ---, H,, are m vertex disjoint subgraphs of G, we let
E(Hy, Hy, -+, Hp) denote the set of edges with one endvertex in H; and the other
one in H; for 1 < i j < m. Let

e(Hl) HZ; Tty Hm) = 1E(H1) H2) e 1Hm)1

In general, we let P(Hi, Hs, - -+, H,,) be the set of paths P|u,v] from one of H; to
another H; (i  j) and every internal vertex of Plu,v] is not in Uicicm V(H;). We
let Py(Hy, H,- -, Hy) denote a subset of P(Hy, Hy,- -, Hy,) for which every path
has length < £.

For any graph G, we let S;(G) denote the set of vertices of degree 7 and S»:(G) =
U;»i8;(@). For each vertex v in a graph G, we let N(u) denote the set of vertices
which are adjacent to v and N[u] = N(u) U {u}. Further, we let Ny,(u)={v : 0 <
dist(u,v) < m} and Npu[u] = Np(u) U {u}. We will generally follow the notation in
[2]. The following lemmas will be needed in the proofs.
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Lemma 1 Let T be a tree with at least two vertices such that T contains no vertices
of degree two. Let

VA(T) = {{u, v} : d(uv) =d(v) =1, 0 < dist(u,v) < 4}.

Then
1Sy (T)| < 3[Va(T).

Proof: We use induction on the number of vertices of T'. The result is clearly true
for K3. Now we suppose that 7" has n vertices. If for every end-vertex u there is an
end-vertex v such that dist(u,v) < 4, then clearly 2|Vi(T")] > |S1(T")]. Let

U={v : dv) =1, Ng(v)n S(T) = 0}.

Note that for every pair of distinct vertices u and v € U we have Np[u] N Ni[v] = 0.
Now we construct a new tree, T from T by contracting N,[v] to a new vertex
v* for each v € U. Since T has no vertices of degree two, dr.(v*) > 4. Then
|S>4(T*)| > |U|. It is not difficult to see that

%(T) = W(T*) and SI(T*) = Sl(T) —U.
To prove the Lemma we only need to show that
3IVA(T™)] = |52(T*)| + 1S24(T™)-

Since every vertex v € §1(T™) has a vertex w € Si(T*) which is at distance no more
than 4 from v, we have 2{Vi(T™*)| > |S1(T*)|. Thus it is sufficient to show that

[VA(T*)| = |S24(T")]-

Let T* be the tree obtained from T* by removing all vertices of degree one. The
inequality |Vi(T*)| > |554(T™)]| follows from the following observations.

o |51(T**)| > |Si»3(T™**)| since T** is a tree. Each vertex v € S1(T™**) has at least
two vertices in S1(7™) adjacent to it;

o Each vertex v having dr+(v) > 4 and dr(v) = 2 is adjacent to at least two
vertices in S;(T*);

¢ Each vertex v having dr«(v) > 4 and dre(v) = 1 is adjacent to at least three
vertices in S1(T*), which gives us three pairs of vertices in V;(T*).

0

Lemma 2 Let G be a K, ,-free graph of girth g(G) > 5. If G has two vertez disjoint
cycles Cy and Cy such that

6(01, 02) Z ma.x{7,'r'},
then G contains two vertez disjoint cycles C; and Cj such that
[V(COI+ V(G < [V(C)l + [V(Ca),

and,

V(CrUCE) CV(CLUCy).
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Proof: To the contrary, suppose that there are not two such cycles Cf and C3. It is
readily seen that both Cy and C; must be induced cycles. Assume that

01 : ViUs - * " Vs

Cz : WWsy - - - WeWy
Without loss of generality, let v; € C; such that
IN(v1) N Cy| = max{|N(w)NCy|, IN(w;)NCayf : 1<2<s,1<5 <t}

Since G is K, .-free and girth g(G) > 5, |[N(v1) N Cy| < r — 3. We consider three
cases according to the value of |[N{v;) N Cs|.

Case 1: |[N(v;)NC,l=1
From the maximality of |N(v;) N C5|, we have in this case

IN(v;)NCy] < 1 foreveryv; € C; and
[N(w;)NCy] < 1 for every w; € C,.

Let v, wy, , vi,wy,, - -+, ¥4, Wj,, be the edges between C; and €y with 1 =21 < 25 <
o+ < 1y and m > 7. Without loss of generality, we may assume that 1 = wy < w,.
If ws > wy, then wy is either in Cy(wy, wy), or C(w,, w3), or C(ws,wr). It is readily
seen that in either of these cases, there are two cycles Cf and C; with the desired
properties. If w; < ws < w,, then either wy € C(wy,wy) or ws € C(wz,ws). In
either case, it is readily seen that there are two cycles Cf and Cj with the desired
properties.

Case 2: |N(vi)NCy| =2
Assume N(v) N C, = {z,y}. By the maximality of |N(v:) N Cs|, we have
[N(z)N(C1 —v1)| £ 1 and [N(y) N (C1 —v1)| < 1. Also, we have
6(01 - Vi, 02(18, y)) S 1,
6(01 -V, 02(?7’) :L')) < 1,

otherwise there are two cycles C} and C5 with the desired properties. Thus,
e(Ch, C2) < e(C1, Gy —{=, y}) + [N(z) N C1| + [N(y) N Ca| < 6,
a contradiction.

Case 3: |[N(vi)NC,y| >3

In this case, we have |N{w;) N (Cy — v1)| < 1 for every w; € V(C,). Since G
is Ki,-free, vy has at most r — 3 neighbors in C, so that e(Cy —v,C,) > 3. Note
that if z, y are two distinct neighbors of C; — vy in Oy, then |[N(v;) N Cy(z,y)| <1
and |N(v1) N Cy(y,z)] < 1. Thus the inequality |[N(vi) N Cy] > 3 implies that
e(Cy — v1, C3) < 3. So the following two equalities hold,

6(01 - V1, Cg) = 3, ‘N('L)l) n V(Cg)l = 3,
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which shows that e(C;, C' — 2) < 6, a contradiction. m

From the proof of the above lemma, it is not difficult to see the following gener-
alization holds. Since the proof is straightforward following the proof of the above
lemma, we leave the proof to the reader.

Lemma 3 Let G be a K, ,-free graph of girth ¢(G) > 4m and C; and C; be two
disjoint cycles of G. Let PL[C1,Cs] be a set of paths of length < m with one end
vertez 1n Cy and the other one in Cy and which are internally disjoint from Cy U C,.
Then, if

!7);1(01, CZ)! > ma.x{7,r},

G contains two vertez disjoint cycles C; and C; such that
V(CHI+IV(CIH)I < [V(C1)| + [V(C2)l-

Further,
V(CT U C3) € V(C1UC:) Upepy(ci,c2) V(P).

3 Proof of Theorem 8

We use induction on k. When k = 1, G has p vertices and at least p—1 edges. Then,
if G contains no cycles, it is a tree, in fact a path, so that the result holds. Assume
that the above theorem holds for £ — 1 and k > 2. Let G be a claw-free graph with
p vertices and at least p + (3k — 1)(3k — 4)/2 edges and that @ fails to contain k
disjoint cycles of which k — 1 of them are triangles. Without loss of generality, we
assume that G is connected. Suppose that G ¢ Fy.

Since & > 2, G must contain a vertex of degree at least three. Therefore G
contains a triangle.

Claim 1 Let T be a triangle in G and H = G — V(T). Then,

(1) e(H) < p—3+(3k—4)(B8k—1)/2,

(2) e(T,H) > 3(3k—4)=9k—12.

Proof: To the contrary, suppose that e(H) > p — 3 + (3k — 4)(3k — 7)/2. By our
induction hypothesis, H contains k — 1 disjoint cycles for which & — 2 of them are

triangles. Thus G contains k disjoint cycles for which k — 1 of them are triangles, a
contradiction. a

Claim 2 Let A(G) denote the mazimum degree of G. Then
3k—2<A(G)<3k -1

In particular on each triangle of G there is a vertex u such that d(u) > 3k — 2.
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Proof: Let T = uvw be a triangle of G such that d(u) > d(v) > d(w). Then by
Claim 1

AG) > d(u) > 2 + %e(T, G- V(T)> 3k — 2.

On the other hand suppose d(z) > 3k for some vertex z € V(). Recall, the Ramsey
number 7(3,3) = 6 and G(N(z)) contains no three independent vertices. Take any 6
vertices of N(z). There must be a triangle T here. Take any 6 vertices not including
any vertex of Ty, there is another triangle 75. Continuing in this way, we see that
G(N(z)) contains k& — 1 vertex disjoint triangles Ty, T3, -+, Tk-1. Since d(z) > 3k,
N(z) — UEZ}V(T;) has at least three vertices. Since G is claw-free, there is an edge
in N(z) — USV(T)), say yz. Let Ty = zyz. Then G has k disjoint triangles Ty, T3,
-+, T}, a contradiction. 0

Claim 3 Let w be a vertez of G. If w is on a triangle, then d(w) > 3k — 4.

Proof: Suppose w is on a triangle T'. Then this claim follows from e(T,G— V(T')) >
9k — 12 and A(G) < 3k — 1. o

In what follows, we will break the remainder of the proof into two cases depending

on the value of A(G).

3.1 The maximum degree A(G) =3k -1

Let z be a vertex of G such that d(z) = A(G) = 3k — 1. Since G(N(z)) contains no
three independent vertices and (3, 3) = 6, it follows as argued above, that G(N(z))
contains k — 2 disjoint triangles Th, T3, - -+, Th—a. Let W = N(z) — Uicick—2 V(T3).
Then [W| = 5. Assume that W = {wi, ws, wa, ws, ws}. If W contains a triangle,
say T = wywaws, and an edge waws vertex disjoint from the triangle T', then G has
k disjoint cycles

Ty, oy -+, Thezy Thor = wywws, Th = zwaws,

a contradiction.

It is not difficult to check that a graph of order 5 containing neither K3 U K, nor
three independent vertices is either a Cs or K4 U K;.

If W = Cs, without loss of generality, we assume that G(W) = wywywawawsw;.
If there is a vertex v ¢ Nfz] such that vw, € E(G), then either vws € E(G)
or vw, € E(G) since G is claw-free. Without loss of generality, we assume that
vw, € E(G). Then G has k disjoint cycles

Tl; T27 vt 7Tk-1 = Vuwhwy, Tk = TW3zWs,
a contradiction.

Thus N(w;) C N{x] which implies that d(w,) < 3k—3. Similarly, d(w,;) < 3k—3.
Let T = zwyw,. By Claims 1 and 2,

9k—12 < ¢(T, G—V(T)) < d(z)+d(w: )+d(ws)—6 < (3k—1)+2(3k—3)—6 = 9k—13,
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a contradiction.

Thus G(W) = K4 U K;. Without loss of generality, we assume that we is the
isolated vertex in G(W). If there are two vertices y, z € N(ws) — Nlz], then there
is a triangle Ty, with V(T%_1) € {ws, z, ¥, z} since G is claw-free. Then G has k
disjoint triangles

Ty, Ty, oy Ther, Ty = wiwaws,

a contradiction. Thus |N(ws) — N[zs]| < 1. Hence
d(ws) <1+ ((8k—1) —4) = 3k — 4.

If ws is not on a triangle, then d(ws) = 2. Since G(N(z)) contains no three
independent vertices, G(N(z) —ws) = Ksk—z. Thus G(N[z] —ws) = Ka_1. Since G
contains no k disjoint cycles of which k —1 of them are triangles, G — (N|z] — {ws})
is a forest and each tree of the forest is attached to N [z] — ws by one and only one
vertex. It is readily seen that G € Fy, a contradiction.

Thus ws is on a triangle. By Claim 3, d(ws) = 3k — 4. In particular, we have
N(ws) 2 Nlz] — W. If k = 2, d(ws) = 2. There is a triangle containing z and ws.
This triangle and a triangle in G(W — ws) shows that G contains two triangles, a
contradiction. Thus k > 3, which gives k — 2 > 1. Let Ty_p = ujusus. Considering
the triangle xu;,ws, we have d(u;) = A(G) = 3k — 1.

If [N(u1) — Nlz]| > 3, say v1, v, v3 € N(u) — N[z]. Then there is a triangle
Ti-, in G({u1, v, vz, vs}), which shows that G has k disjoint triangles

*
Tl, Tz, crty Tk-g, Tk——z: Tk—l = TUU3z, Tk = wiwiaws,

a contradiction.

Hence |N(u) — Nz]| < 2, which gives us |[N(u;) N N[z]| > 3k —3. In particular,
[N (u1) N {wy, wa, ws, wa}| > 2. Without loss of generality, assume wy, wa € N(uy).
Then G has k disjoint triangles

Ty, Tz, >Tk—3, Ty = wvwwy, Tpey = zwawy, Tp = WsUaU3,

a contradiction.

3.2 The maximum degree A(G) = 3k — 2

In this case, every vertex on a triangle has degree A(G) = 3k — 2 by Claim 1. In
particular, every vertex of degree > 2 has degree 3k— 2. Let z be an arbitrary vertex
of G with d(z) = A(G) =3k -2

Suppose that there is a vertex y € N(z) with d(y) < 2. Let S = N[z] —y. Then
G(S) = Kar_3 and [N(v) — S| = 1 for each v € S. Since G is claw-free and G(S)
contains k — 1 disjoint triangles, G — S is a union of paths. Let s denote the number
of components of G — S. Using the fact (3k —2)(3k — 3)/2 = (3k — 1)(3k —4)/2 +1,

we have

P+ (3k —1)(3k—4)/2 < ¢(G) e(G(S))+e(S, V- S5)+e(G-S5)
(3k —2)(3k — 3)/2+ (3k — 2) + (p — (3k — 2) — 5)

p+(3k—1)(38k—4)/2~-(s—1).

[ VAN
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Thus s = 1. Hence G — § is a path. Assume
G——.S':vlv;*u'um,

where m = p — (3k — 2).

Since G is claw-free and every vertex in S has exactly one neighbor outside S,
then N(v) NS = 0 for each 2 <i <m —1. Thus d(v;) =2fori=2,3, -, m—1.
Further

N()UN(vm) 2 S, and N(vi) N N(vm)NS=0.

Without loss of generality, assume that |[N(v1)NS| > |N(vm)NS|. If |[N(v,)NS| > 2,
say N(v1)NS D {z1, 25} and N(v)NS 2 {z3, 24}, then G contains triangles v 21z,
UmZ3Zs, and k—2 triangles in the complete subgraph G(S—{x1, =2, €3, z4}) = Kak—s,
a contradiction.

Thus we have either N(v;) 2 S and N(v)N S =0 or [N(v)N S| =|S] -1 and
|N(v,s) N S| = 1. It is readily seen that in either of these cases, we have G € Fk, a
contradiction.

Thus every vertex of degree 3k — 2 is not adjacent to the vertices of degree at
most 2. Since we assume that (G is connected, G is a 3k — 2 regular graph. Let z
be an arbitrary vertex of G and y € N(z) such that t = |N(y) — N[z]| is maximum
over all neighbors of z. Clearly, G € Fi if t = 0. If ¢ > 2, let v, w be two vertices
in N(y) — N[z]. Since G is claw-free and the vertex z is also in N(y), we have
vw € E(G). Thus G has a triangle T = yvw. In the same manner as above, we see
that G has k — 1 disjoint triangles such the vertices in N[z] — {y}, which implies
that G has k disjoint triangles, a contradiction. Therefore we have t = 1. So there is
at most a matching missed in the induced subgraph G(N(z)). Let w be the vertex
in N(y) but not in Niz]. If [N(w) — N[z]| > 2, let u, v € N(w) — N[z]. Since y
is also in N(w) and y is not adjacent to either u or v, uv € E(G). Then G has a
triangle wvw. In the same manner as before, it is not difficult to show that Niz]
contains k — 1 disjoint triangles, so G has k disjoint triangles, a contradiction. Thus
|N(w)— N[z]| < 1. Note that we ¢ E(G), we have |N(w)NN(z)| > |N(z)|—1 since
d(z) = 3k — 2. Since t = 1 and G is 3k — 2 regular, each vertex z € N{w) N N(z)
has exactly one nonadjacent vertex in N(z).

If |[N(w) — N[z]| = 1, then the vertex set N(w)N N(z) induces a clique since G is
claw-free, a contradiction. Thus N(w) = N(z) and there is exactly a 1-factor missed
in the subgraph induced by N(z). Using the Ramsey number r(3,3) = 6 in the
same manner as before, we can show that N(z) can be partitioned into k— 2 disjoint
triangles Ty, Ty, - -, Tx_2 and a set of 4 vertices, say {21, 22, 23, 24}. Since there are
at most two independent edges missed in the subgraph induced by {z1, 23, 23, 24},
the induced subgraph G({z1, 22, 23, z4}) contains two independent edges, say 212,
and z3z4. Thus G contains k disjoint triangles

Tl, Tz, e ,Tk-z, Tk_1 = TZ1232, T)c = W2324,

a contradiction. =
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3.3 Proof of Theorem 9

We will prove Theorem 9 by induction on k. It is clear that the result holds for k = 1.
Assume that & > 2 and the result holds for k£ — 1. To the contrary, we suppose that
the result fails. Let G be a K; ,-free graph on p vertices and at least p + 16rk? edges
and not contain k disjoint cycles. Further we assume that the p is minimum with
this property.

Claim 4 G contains no vertices of degree < 1. Every vertez of degree two lies on a
triangle.

Proof: If G contains a vertex of degree < 1, we simply remove the vertex, which
contradicts the minimality of p. If v is a vertex of degree 2, let v and w be two
neighbors of v. If uw ¢ E(G), we remove the vertex v and add a new edge uw. The
resulting graph contradicts the minimality of p. Thus v lies in a triangle uvw. O

Let v be an arbitrary vertex in G and S be a subset of N(v). Since G is K; ,-free,
then the subgraph G(S) induced by S must contain a cycle if |S| > 27 — 1. Thus for
every § C N(v) containing no less than (2r — 1)m vertices, G(S) contains at least
m disjoint cycles. The following proof is broken into two parts.

3.4 G contains a cycle of length < 16

Let C; be a cycle of G with the minimum length. Then |V(Cy)| < 16 and O
contains no chords. Let H = G — V(C). Since G does not contain k disjoint cycles,
[N(v) N H| < (2r —1)(k — 1) — 1 otherwise N(v) N H contains k — 1 disjoint cycles,
so G contains k disjoint cycles, a contradiction. Thus

e(H) > p+ 167k — ([V(C)l(2r — 1)(k— 1)+ [V(G)D) = (o~ [V(C1)]) + 16r(k — 17,

since |V(Cy)| < 16. By induction, H contains k — 1 disjoint cycles, so G contains k
disjoint cycles, a contradiction.

3.5 The girth g(G) > 17

By the induction hypotheses on k, we know @ contains k — 1 disjoint cycles. Let Cf,
Cs, -+, Ck_1 be k — 1 such cycles with

[V(COI+V(C) + -+ + [V(Cran)|

minimum. Let H = G — Uj<i<k-1V(C;). Then H is a forest. Since G contains
no triangle, the minimum degree §(G) > 3. Consider a component F induced by
H and the edges of E(U;<i<k-1C;, H). Form a tree T* from F as follows: if u
is a vertex of both F' and C; (for some 1) and dr(u) > 1, then replace u in F
by dr(u) new vertices of degree 1, each of them adjacent to a different vertex in
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A S Wl A et e et > R A -

VA(T*)| > %|E(U15i5k_10,-, T)|. Hence

|Pa(Ch, Ca, -+, C1)l = |[VA(T™)| + | E(Cy, Cyy - -+, Ciea)|
1
> L0 = (3 WO+ () > o

Let
p;(0i7 CJ) = P4(C1) Cy, -+ :Ck"l) N P4(Ci7 Cj);
that is, the subset of P4(Cy, s, - -, Ck_1) for which every path has an end vertex in

C; and the other one in C;. By the Pigeonhole Principle, we can assume, without
loss of generality, that

|P2(Cy, Co)| > %2—7' > max{10, r}.

By Lemma 3 for the case m = 4, since g(G) > 16, G contains two disjoint cycles C}
and Cj such that

[V(CDI+V(CHI < [V(C)| +V(C),
and
V(CT)UV(C3) C V(C1)UV(C2) Upery(cr,cr) V(P),

which contradicts the minimality of

V(COI+ IV(C)l + - - + [V(Cia)l.
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