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Abstract 

A graph is claw-free if it does not contain K I ,3 as an induced subgraph. 
A graph is KI,r-free if it does not contain KI,r as an induced subgraph. 
In this paper, we find bounds on the minimum number of edges needed 
to ensure a KI,.,.-free contains k vertex disjoint cycles. The bound 
on claw-free graphs is sharp. 

1 Introduction 

Throughout all of this paper 1 we will let p denote the number of vertices in a graph 
and let q denote the number of edges. For simplicity, we will call vertex disjoint 
cycles disjoint cycles. The following result, due to P6sa, gives a sufficient condition 
for a graph to have 2 disjoint cycles. 

Theorem 1 ([7]) Let G be a graph. If q ~ 3p-5, then G contains 2 disjoint cycles. 

This result is sharp, since the graph K3 + nKI has p n + 3, q = 3p - 6, and 
does not contain 2 disjoint cycles. 

For claw-free graphs, Matthews proved the following. 

Theorem 2 ([6]) If G is a claw-free graph with q ~ p+6, then G contains 2 disjoint 
cycles. 
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This is since the graph K5 with a path of length n attached to any of its 
vertices has q = p + 5 and does not contain 2 disjoint cycles. For KI,T-free graphs, 
Markus and Snevily proved the following. 

Theorem 3 ([5]) If G is a KI,T-free graph with r ~ 4 and q p + 2r - 1 then G 
contains 2 disjoint cycles. 

This is as shown by the KI,T-free graph K3 + (r l)Kl, which is KIlT-free 
with q p + 2r 2 and does not contain 2 disjoint 

For the case of finding k disjoint cycles in graphs, Erdos and Pasa proved the 
following. 

Theorem 4 ([3]) Let k 1 andp 24k. Then every graph with q (2k-I)(p-k) 
contains either k disjoint cycles or G K 2k- 1 + (p - 2k + 1 )KI . 

In [4], Justensen proved the following result which was conjectured to be true by 
Erdos and pasa. 

Theorem 5 ([4]) Let k ~ 1 and p 3k. Then every graph with 

q > max{(2k - I)(p - k), (3k 1)(3k - 2)/2 + p 3k + I}, 

contains k disjoint cycles. 

Recently, Bodlaender [1] showed that the problem of determining whether a graph 
G of order p has k vertex disjoint cycles and k edge disjoint cycles can be solved in 
O(p) times for each fixed positive integer k. In this paper, we improve the above 
result for claw-free graphs. The following result is obtained. 

Theorem 6 Let G be a claw-free graph and k 2:: 1. If 

q 2:: p + (3k - 1)(3k - 4)/2 + 1, 

then G contains k disjoint cycles. 

In fact, we will completely characterize the claw-free graphs with n vertices and 
n + (3k 1)(3k - 4)/2 edges which do not contain k-disjoint cycles by the following 
theorem. To do so, the following notation is needed. 

Definition 1 For any positive integer k, we say a graph F E Fie if F is obtained 
from the complete graph K 31e- 1 by 

• replacing an edge by a path; 

• attaching disjoint paths to different vertices of K 31e- I such that different paths 
are attached to different vertices. 
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Theorem 7 Let G be a graph with q ~ p + (3k - 1 )(3k 
not contains k cycles, then G has p + (3k - 1 )(3k 
GE 

In fact we will prove the following stron:l!:er resuit. 

Theorem 8 Let G be a claw-free graph with 

q ~ p + (3k - 1)(3k - 4)/2. 

4)/2. If G does 
4)/2 edges and 

If G does not contain k disjoint 
G E :F1c • 

for which k - 1 of them are triangles, then 

For r 4, the following result is obtained. 

Theorem 9 Let G be a KI,T-free. If 

q ~ p + 16rk2
, 

then G contains k disjoint cycles. 

We believe that p + 16rP can be improved in the above theorem. The graphs in 
:Fie and the following graph show that this bound cannot be lowered to something 
less than 

min{p + (3k 1)(3k 4)/2 + 1, p + (2k - l)(k + r - 3) r + I}. 

Let G be a graph obtained from K 21e- 1 + (r - l)KI and a path of length p -

(2k + r 2) by identifying a vertex of (r - l)KI with one of the endvertices of 
the path. Clearly, G is KI,T-free and does not contain k disjoint cycles and has 
p + (2k - l)(k + r - 3) r edges. 

2 Notation and Lemmas 

Let G be a graph. For any subgraph H of G, we let E(H) denote the edge set of H 
and e(H) JE(H)J. If HI, H2 , "', Hm are m vertex disjoint subgraphs of G, we let 
E(Hl, H2 , "', Hm) denote the set of edges with one endvertex in Hi and the other 
one in H j for 1 :S i -::J j m. Let 

In general, we let P(HI1 H2 , "', Hm) be the set of paths P[u,v] from one of Hi to 
another H j (i /: j) and every internal vertex of P[u, v] is not in UI<t<m V(Ht ). We 
let Pt(Hl, H2 ,'" ,Hm) denote a subset of P(HI1 H2 ," • ,Hm) for whi~h every path 
has length :S t. 

For any graph G, we let Si( G) denote the set of vertices of degree i and S>i( G) = 
Uj>iSj(G). For each vertex u in a graph G, we let N(u) denote the set of~ertices 
which are adjacent to v and N[u] = N(u) U {u}. Further, we let Nm(u) = {v : 0 < 
dist(u,v) :S m} and Nm[u] = Nm(u) U {u}. We will generally follow the notation in 
[2]. The following lemmas will be needed in the proofs. 
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Lemma 1 Let T be a tree with at least two vertices such that T contains no vertices 
of degree two. Let 

~(T) {{u, v} d(u) = d(v) 1, 0 dist(u,v) 4}. 

Then 

Proof: We use induction on the number of vertices of T. The result is clearly true 
for K 2 • Now we suppose that T has n vertices. If for every end-vertex u there is an 
end-vertex v such that dist(u,v)::::; 4, then 21V1(T)1 ISl(T)I. Let 

U {v: d(v) = 1, N4(v) n Sl(T) 0}. 

Note that for every pair of distinct vertices u and v U we have N 2 [u] n N 2 [v] 0. 
Now we construct a new tree, T* from T contracting N2 [v] to a new vertex 
v* for each v E U. Since T has no vertices of two, dT.(v*) 4. Then 
IS~4(T*)1 lUI. It is not difficult to see that 

Vl(T) Vl(T*) and Sl(T*) Sl(T) U. 

To prove the Lemma we only need to show that 

Since every vertex v E Sl(T*) has a vertex w Sl(T*) which is at distance no more 
than 4 from v, we have 21V1(T*)1 ISl(T*)I. Thus it is sufficient to show that 

I~(T*)I IS>4(T*)I· 

Let T** be the tree obtained from T* by removing all vertices of one. The 
inequality 1V1(T*)1 IS~4(T*)1 follows from the following observations. 

• ISl(T**)1 ;::: ISi~3(T**)1 since T** is a tree. Each vertex v E Sl(T**) has at least 
two vertices in Sl(T*) adjacent to it; 

• Each vertex v having dT*( v) 4 and dT**( v) 2 is adjacent to at least two 
vertices in Sl(T*); 

• Each vertex v having dT* ( v) ;::: 4 and dT •• ( v) 1 is adj acent to at least three 
vertices in Sl(T*), which gives us three pairs of vertices in V1(T*). 

o 

Lemma 2 Let G be a K l,r -free graph of girth g( G) ;::: 5. If G has two vertex disjoint 
cycles 0 1 and O2 such that 

then G contains two vertex disjoint cycles and 0; such that 

and, 

160 



Proof: To the contrary, suppose that there are not two such cycles C; and C;. It is 
readily seen that both C1 and C2 must be induced cycles. Assume that 

C1 : VIVa' .. V.,V1 

C2 : W1W2'" WtWl 

Without loss of generality, let VI E C1 such that 

lS;iS;s,l j:s;t}. 

Since Gis KI,r-free and girth g(G);?: 5, IN(v1) n Cal S; r - 3. We consider three 
cases according to the value of IN( VI) n C2 1. 

Case 1: IN(v1) n C2 1 1 
From the maximality of IN(vl) n Cal, we have in this case 

IN(vlI:) n C2 1 S; 1 for every Vi E C1 and 

IN( Wi) n C1 1 S; 1 for every Wi E C2. 

Let Vii Wil' Vi] Wj2' .. " Vi.,.,. Wjm be the between C I and C2 with 1 = i1 ia < 
... < im and m ;?: 7. Without loss of generality, we may assume that 1 = WI W2' 
If W3 > W2, then W5 is either in C2(W1,W2), or C(W2,W3), or C(W3,Wt). It is readily 
seen that in either of these cases, there are two cycles C; and C; with the desired 
properties. If WI < W3 < W2, then either W5 E C(WI,W2) or W5 E C(W2lWt}. In 
either case, it is readily seen that there are two cycles C; and C; with the desired 
properties. 

Case 2: IN(v1) n C2 1 2 
Assume N(V1) n C2 {x, y}. By the maximality of IN(v1) n C2 1, we have 

IN(x) n (Cl - vI)1 S; 1 and IN(y) n (C1 - v1)1 S; 1. Also, we have 

e(CI-v1,C2(X,y)) < 1, 

e(CI - vI,C2(y,x)) S; 1, 

otherwise there are two cycles C; and C; with the desired properties. Thus, 

a contradiction. 

Case 3: IN( VI) n C2 1 ;?: 3 
In this case, we have IN(wt:) n (C1 - v1)1 S; 1 for every Wi E V(C2). Since G 

is K 1,r-free, VI has at most r - 3 neighbors in C2 , so that e( C1 - V, C2 ) ;?:. 3. Note 
that if x, yare two distinct neighbors of C1 - VI in C2, then IN(vI) n C2(x,y)1 :s; 1 
and IN(vt) n C2(y,x)1 S; 1. Thus the inequality IN(vt) n C21 ;?: 3 implies that 
e( C1 - Vl, C2 ) S; 3. So the following two equalities hold, 
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which shows that e( CII C - 2) S 6, a contradiction. o 

From the proof of the above lemma, it is not difficult to see the following gener­
alization holds. Since the proof is straightforward following the proof of the above 
lemma, we leave the proof to the reader. 

Lemma 3 Let G be a KIlT-free graph of girth g( G) > 4m and C I and C2 be two 
disjoint cycles of G. Let P~[CI, C2] be a set of paths of length m with one end 
vertex in C1 and the other one in C2 and which are internally disjoint from CI U C2 · 

Then} if 

G contains two vertex disjoint cycles C; and C; such that 

Further! 

3 Proof of Theorem 8 

We use induction on k. When k = 1, G has p vertices and at least p - 1 edges. Then, 
if G contains no cycles, it is a tree, in fact a path, so that the result holds. Assume 
that the above theorem holds for k - 1 and k ~ 2. Let G be a claw-free graph with 
p vertices and at least p + (3k - 1)(3k 4)/2 edges and that G fails to contain k 
disjoint cycles of which k - 1 of them are triangles. Without loss of generality, we 
assume that G is connected. Suppose that G (j. :Fk. 

Since k 2: 2, G must contain a vertex of degree at least three. Therefore G 
contains a triangle. 

Claim 1 Let T be a triangle in G and H = G - V(T). Then} 

(1) 
(2) 

e(H) < P 3 + (3k - 4)(3k - 7)/2, 

e(T, H) > 3(3k - 4) = 9k 12. 

Proof: To the contrary, suppose that e(H) > p - 3 + (3k - 4)(3k - 7)/2. By our 
induction hypothesis, H contains k - 1 disjoint cycles for which k - 2 of them are 
triangles. Thus G contains k disjoint cycles for which k 1 of them are triangles, a 
contradiction. 0 

Claim 2 Let .6.(G) denote the maximum degree of G. Then 

3k - 2 S .6.( G) S 3k - 1. 

In particular on each triangle of G there is a vertex u such that d( u) ~ 3k - 2. 
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Proof: Let T uvw be a triangle of G such that d(u) ~ d(v) 2:: dew). Then by 
Claim 1 

1 
~(G)2::d(u)~2+3e(T,G VeT)) 3k 2. 

On the other hand suppose d(x) ~ 3k for some vertex x E V(G). Recall, the Ramsey 
number r(3, 3) 6 and G(N(x)) contains no three independent vertices. Take any 6 
vertices of N(x). There must be a triangle TI here. Take any 6 vertices not including 
any vertex of there is another triangle T2• Continuing in this way, we see that 
G(N(x)) contains k 1 vertex disjoint triangles TI, T21 "', Since d(x) 2:: 3k, 
N(x) - Uf,:;;}V(T.:) has at least three vertices. Since G is claw-free, there is an edge 
in N(x) uf;fV(Ti ), say yz. Let Tk = xyz. Then G has k disjoint triangles TI , T2, 
.. " Tkl a contradiction. 0 

Claim 3 Let w be a vertex of G. If w is on a triangle, then d( w) ~ 3k - 4. 

Proof: Suppose w is on a triangle T. Then this claim follows from e(T, G - V(T)) ~ 
9k - 12 and ~(G) 3k 1. 0 

In what follows, we will break the remainder of the proof into two cases depending 
on the value of ~(G). 

3.1 The maximum degree ~(G) = 3k 1 

Let x be a vertex of G such that d( x) = ~(G) = 3k 1. Since G( N( x)) contains no 
three independent vertices and r(3,3) = 6, it follows as above, that G(N(x)) 
contains k 2 disjoint triangles TIl T2 ) "', Tk - 2 . Let W N(x) - UI~i~k-2 V(Ti)' 
Then IWI 5. Assume that W = {WI, W2, wa, W4, W5}. If W contains a triangle, 
say T WI W2W3, and an edge W4WS vertex disjoint from the triangle T, then G has 
k disjoint cycles 

a contradiction. 
It is not difficult to check that a graph of order 5 containing neither Ka U K2 nor 

three independent vertices is either a Cs or K4 U K I . 

If W Cs, without loss of generality, we assume that G(W) = WIW2WaW4WsWI. 
If there is a vertex v ct N[x] such that vWI E E(G), then either VWs E E(G) 
or VW2 E E( G) since G is claw-free. Without loss of generality, we assume that 
VW2 E E( G). Then G has k disjoint cycles 

a contradiction. 
Thus N(WI) ~ N[x] which implies that d(wd :::; 3k-3. Similarly, d(W2) :::; 3k-3. 

Let T = XWIW2. By Claims 1 and 2, 

9k-12 :::; e(T, G-VeT)) :::; d(x )+d(WI)+d( w2)-6 :::; (3k-l)+2(3k-3)-6 = 9k-13, 

163 



a contradiction. 
Thus G(W) K4 U K l . Without loss of generality, we assume that Ws is the 

isolated vertex in G(W). If there are two vertices y, z E N(W5) N[x], then there 
is a Tk - 1 with V(Tk - 1 ) ~ {W51 X, y, z} since G is claw-free. Then G has k 
disjoint triangles 

Tll T21 "', Tk- 1 , Tk WIW2W3, 

a contradiction. Thus IN(W5) - N[X5]1 ~ 1. Hence 

dews) ~ 1 + ((3k 1) 4) = 3k 4. 

If Ws is not on a triangle, then d( ws) 2. Since G( N( x)) contains no three 
independent vertices, G(N(x) ws) K 3k- 2 • Thus G(N[x] W5) K 3k- 1 . Since G 
contains no k disjoint cycles of which k 1 of them are triangles, G (N[x] {ws}) 
is a forest and each tree of the forest is attached to N[x] - Ws by one and only one 
vertex. It is readily seen that G E F k , a contradiction. 

Thus Ws is on a triangle. By Claim 3, d( ws) 3k - 4. In particular, we have 
N(ws) N[x] W. If k 2, dews) 2. There is a triangle containing x and Ws. 
This triangle and a triangle in G(W - ws) shows that G contains two triangles, a 
contradiction. Thus k 2:: 3, which k 2 2:: 1. Let Tk- 2 UIU2U3. Considering 
the triangle XUIWS, we have d(Ul) = L\(G) 3k L 

If IN(Ul) N[x]1 3, say VI, V2, V3 E N(Ul) N[x]. Then there is a triangle 
Tk-2 in G( {UI' VI, V2, V3}), which shows that G has k disjoint triangles 

a contradiction. 
Hence IN(UI) - N[x]1 ~ 2, which gives us IN(UI) N[xll 2:: 3k 3. In particular, 

IN(Ul) n {WI, W2, W3, w4}1 2:: 2. Without loss of generality, assume Wl, W2 E N(Ul)' 
Then G has k disjoint triangles 

a contradiction. 

3.2 The maximum degree ~(G) = 3k 2 

In this case, every vertex on a triangle has degree L\( G) 3k - 2 by Claim 1. In 
particular, every vertex of degree> 2 has degree 3k - 2. Let X be an arbitrary vertex 
of G with d(x) = L\(G) = 3k - 2 

Suppose that there is a vertex y E N(x) with dey) ~ 2. Let S = N[x] - y. Then 
G(S) K 3k- 2 and IN(v) - SI 1 for each V E S. Since G is claw-free and G(S) 
contains k - 1 disjoint triangles, G - S is a union of paths. Let s denote the number 
of components of G S. Using the fact (3k - 2)(3k 3)/2 = (3k - 1)(3k - 4)/2 + 1, 
we have 

p + (3k 1)(3k - 4)/2::; e(G) e(G(S)) + e(S, V - S) + e(G - S) 
::; (3k - 2)(3k 3)/2 + (3k 2) + (p - (3k - 2) - 5) 

p + (3k 1)(3k - 4)/2 - (s - 1). 
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Thus s 1. Hence G - S is a path. Assume 

where m p (3k 2). 
Since G is claw-free and every vertex in S has exactly one neighbor outside S! 

then N(Vi) n S 0 for each 2 sis m 1. Thus d(Vi) 2 for i 2,3"" m - 1. 
Further 

N(V1) U N(vm ) ::2 S, and N(vd n N(vm ) n S 0. 

Without loss of generality, assume that IN(V1)nSI 2:: IN(vm)nsl. If IN(vm)nSI 2, 
say N(VI)nS ::2 {Xl! X2} and N(vm)nS ::2 {X3, X4}, then G contains triangles V1 XIX2, 

VmX3X4, and k-2 triangles in the complete subgraph G(S -{ Xl, X2, X3, X4}) = K 3k- 6 , 

a contradiction. 
Thus we have either N(VI)::2 Sand N(vm) n S = 0 or IN(VI) n SI lSI 1 and 

IN(vm ) n SI 1. It is readily seen that in either of these cases, we have G E f"k, a 
contradiction. 

Thus every vertex of degree 3k - 2 is not adjacent to the vertices of degree at 
most 2. Since we assume that G is connected, G is a 3k - 2 regular graph. Let X 

be an arbitrary vertex of G and y E N(x) such that t IN(y) - N[x]1 is maximum 
over all neighbors of x. Clearly, G E f"k if t O. If t 2:: 2, let v, w be two vertices 
in N(y) N[x]. Since G is claw-free and the vertex x is also in N(y), we have 
vw E E(G). Thus G has a triangle T = yvw. In the same manner as above, we see 
that G has k 1 disjoint triangles such the vertices in N[x] {y}, which implies 
that G has k disjoint triangles, a contradiction. Therefore we have t 1. So there is 
at most a matching missed in the induced subgraph G(N(x)). Let w be the vertex 
in N(y) but not in N[x]. If IN(w) - N[xll 2:: 2, let u, v E N(w) - N[x]. Since y 
is also in N(w) and y is not adjacent to either u or v, uv E E(G). Then G has a 
triangle uvw. In the same manner as before, it is not difficult to show that N[x] 
contains k 1 disjoint triangles, so G has k disjoint triangles, a contradiction. Thus 
IN(w) N[xll 1. Note that wx tJ. E(G), we have IN(w)nN(x)1 ~ IN(x)l-l since 
d(x) = 3k - 2. Since t 1 and Gis 3k - 2 regular, each vertex Z E N(w) n N(x) 
has exactly one nonadjacent vertex in N(x). 

If IN(w) N[x]1 = 1, then the vertex set N(w)nN(x) induces a clique since Gis 
claw-free, a contradiction. Thus N( w) = N( x) and there is exactly a I-factor missed 
in the subgraph induced by N(x). Using the Ramsey number r(3,3) 6 in the 
same manner as before, we can show that N( x) can be partitioned into k - 2 disjoint 
triangles Tl, T2 , . ", Tk - 2 and a set of 4 vertices, say {Zll Z2, Z3, Z4}' Since there are 
at most two independent edges missed in the subgraph induced by {Zl' Z2, Z3, Z4}, 

the induced subgraph G( {Zl, Z2, Z3, Z4}) contains two independent edges, say ZlZ2 

and Z3Z4. Thus G contains k disjoint triangles 

a contradiction. 0 
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3.3 Proof of Theorem 9 

We will prove Theorem 9 by induction on k. It is clear that the result holds for k 
Assume that k ~ 2 and the result holds for k 1. To the contrary, we suppose that 
the result fails. Let G be a K1.r-free graph on p vertices and at least p + 16rk2 edges 
and not contain k disjoint cycles. Further we assume that the p is minimum with 
this property. 

Claim 4 G contains no vertices of degree 1. Every vertex of degree two lies on a 
triangle. 

Proof: If G contains a vertex of degree :S; 1, we simply remove the vertex, which 
contradicts the minimality of p. If v is a vertex of degree 2, let u and w be two 
neighbors of v. If uw r:f- E(G), we remove the vertex v and add a new uw. The 
resulting graph contradicts the minimality of p. Thus v lies in a triangle uvw. 0 

Let v be an arbitrary vertex in G and S be a subset of N( v). Since Gis Kl,r-free, 
then the subgraph G(S) induced by S must contain a cycle if lSI ~ 2r -1. Thus for 
every S ~ N(v) containing no less than (2r l)m vertices, G(S) contains at least 
m disjoint The following proof is broken into two parts. 

3.4 G contains a cycle of length::; 16 

Let C1 be a cycle of G with the minimum length. Then IV(Cdl :S; 16 and C1 

contains no chords. Let H G V( Cd. Since G does not contain k disjoint 
IN(v) n HI::; (2r - l)(k - 1) -1 otherwise N(v) n H contains k - 1 disjoint cycles, 
so G contains k disjoint cycles, a contradiction. Thus 

since IV(C1)1 :S; 16. By induction, H contains k - 1 disjoint cycles, so G contains k 
disjoint cycles, a contradiction. 

3.5 The girth g( G) ~ 17 

By the induction hypotheses on k, we know G contains k - 1 disjoint cycles. Let Cll 

C2 , .• " Ck - 1 be k 1 such cycles with 

mInImum. Let H = G - U1:5i :5k-l V( Ci ). Then H is a forest. Since G contains 
no triangle, the minimum degree 8(G) ~ 3. Consider a component F induced by 
H and the edges of E(U1<i<k-1Ci , H). Form a tree T* from F as follows: if u 
is a vertex of both F and Ci (for some i) and dF ( u) > 1, then replace u in F 
by dF ( u) new vertices of degree 1, each of them adj acent to a different vertex in 
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.1. Yp'\. LLj_ .1.'VV\.", uJ..1.o"v tt.L~v..L 'LL.v ....... ..;, .L.L\JV ..... V .. L!.\iIAl~..L..LU' 'LN V .......... U'-'...n.. '-" .... '-'--0 .................... V"....,. J-J'J .L....J ........ .£...L...t....L...L.£."-4' -L) 

IVi(T*)1 2:: ~IE(Ul:::;i:::;k-lCi' T)I· Hence 

IP4(C1 , C2, ' Ok-I)I IViCT*)1 + IE(Cl , .•. I Ck-dl 
1 16 

2:: -(e(G) - ( I: IV(Ci)1 + e(H)) 2:: -rk2
• 

3 l:::;i:::;k-l 3 

Let 
P~(Cil Cj) P4 (Cl , C2 , . ,Ck- I ) n P 4 (Ci ) OJ), 

that the subset of P 4 ( Cl , C2 ,'" Ck-l) for which every path has an end vertex in 
Ci and the other one in Cj . By the Pigeonhole Principle, we can assume, without 
loss of generality, that 

IP:(OI, C2 )1 2:: 332r 2:: max{10, r}. 

By Lemma 3 for the case m 4, since g( G) > 16, G contains two disjoint cycles C; 
and 0; such that 

and 
V(C;) U V(C;) c V(Cl ) U V(C2 ) UPEP4 (C1 ,C2 ) V(P), 

which contradicts the minimality of 
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