The Drawing Ramsey Number $\operatorname{Dr}\left(K_{n}\right)$

Heiko Harborth and Ingrid Mengersen
Technische Universität
Braunschweig, Germany

Richard H. Schelp
University of Memphis
Memphis, Tennessee USA

Abstract

Bounds are determined for the smallest $m=\operatorname{Dr}\left(K_{n}\right)$ such that every drawing of K_{m} in the plane (two edges have at most one point in common) contains at least one drawing of K_{n} with the maximum number $\binom{n}{4}$ of crossings. For $n=5$ these bounds are improved to $11 \leq \operatorname{Dr}\left(K_{5}\right) \leq$ 113.

A drawing $D(G)$ of a graph G is a special realization of G in the plane. The vertices are mapped into different points of the plane (also called vertices of $D(G)$), the edges are mapped into lines (also called edges of $D(G)$) connecting the corresponding vertices such that two edges have at most one point in common, which is either a common vertex or a crossing. Two drawings are said to be isomorphic if there exists an incidence-preserving one-to-one correspondence between vertices, crossings, edges, parts of edges and regions.

It is well known that every drawing of the complete graph K_{4} has at most one crossing. Thus, the maximum number of crossings in a drawing $D\left(K_{n}\right)$ is at most $\binom{n}{4}$. Different nonisomorphic drawings $D\left(K_{n}\right)$ with $\binom{n}{4}$ crossings are discussed in [4]. In this note, we will show that for m sufficiently large every drawing of $D\left(K_{m}\right)$ must contain at least one drawing $D\left(K_{n}\right)$ with $\binom{n}{4}$ crossings. Moreover, bounds for the smallest such m, denoted by $\operatorname{Dr}\left(K_{n}\right)$, will be deduced.

It can be observed that the question for a subdrawing $D\left(K_{n}\right)$ with maximum number of crossings is similar to the Esther Klein problem if lines are used instead of straight line segments and if convexity of n points is replaced by drawings $D\left(K_{n}\right)$ with $\binom{n}{4}$ crossings.

Theorem 1. For every positive integer n there exists a least integer $\operatorname{Dr}\left(K_{n}\right)$ such that every drawing $D\left(K_{m}\right)$ with $m \geq \operatorname{Dr}\left(K_{n}\right)$ contains a subdrawing $D\left(K_{n}\right)$ with $\binom{n}{4}$ crossings.

Proof. The existence of $\operatorname{Dr}\left(K_{n}\right)$ will be deduced from Ramsey's theorem. Consider a drawing $D\left(K_{m}\right)$ with $m \geq r_{4}(5, n)$, where the Ramsey number $r_{4}(5, n)$ denotes the smallest l such that in every 2 -coloring of the four-element subsets of an l-element set V, using colors green and red, there is a 5 -element subset of V with all 4 -element subsets green or an n-element subset of V with all 4 -element subsets red. Color a 4-element subset of the vertex set V of $D\left(K_{m}\right)$ red if the four vertices determine a crossing and green otherwise. Among any five vertices there are four determining a crossing, since K_{5} is nonplanar. Thus, there exists no 5 -element subset of V with all 4 -element subsets colored green, and there must be an n-element subset of V with all 4 -element subsets red. These n vertices determine $\binom{n}{4}$ crossings and Theorem 1 is proved.

The proof of Theorem 1 yields $\operatorname{Dr}\left(K_{n}\right) \leq r_{4}(5, n)$. This bound might be very far from the truth, since none of the topological aspects of the problem besides the non-planarity of K_{5} is taken into account. Moreover, in case $n \geq 5$ only rough upper bounds are available for $r_{4}(5, n)$ (see for example [3]). A lower bound for $\operatorname{Dr}\left(K_{n}\right)$ can be deduced from the Esther Klein problem. In [5,6] it was shown that for $n \geq 2$ there are 2^{n-2} points in the plane no three of them collinear and no n of them determining a convex n-gon. Take 2^{n-2} such points as vertices of a drawing of a complete graph and draw all edges as straight line segments. Then no subdrawing $D\left(K_{n}\right)$ with $\binom{n}{4}$ crossings can occur, since among any n vertices there are four forming a non-convex 4 -gon and hence having no crossing. Thus we obtain

Theorem 2. $2^{n-2}+1 \leq \operatorname{Dr}\left(K_{n}\right) \leq r_{4}(5, n)$ for $n \geq 2$.

Figure 1. A $D\left(K_{10}\right)$ containing no subdrawing $D\left(K_{5}\right)$ with five crossings
Trivially, $\operatorname{Dr}\left(K_{n}\right)=n$ for $n \leq 3$, and Theorem 2 implies $\operatorname{Dr}\left(K_{4}\right)=5$. For $n \geq 5$, no exact values of $\operatorname{Dr}\left(K_{n}\right)$ are known so far. The next theorem will improve the
bounds given in Theorem 2 in case $n=5$. For $n \geq 6$, no better bounds are known.
Theorem 3. $11 \leq \operatorname{Dr}\left(K_{5}\right) \leq 113$.
Proof. The lower bound is given by the drawing $D\left(K_{10}\right)$ in Figure 1. The proof of the upper bound is divided into four lemmas. The following Lemma 1 (due to P . Erdös) can also be found in [1] or [2].

Lemma 1. A sequence $a_{1}, a_{2}, \ldots, a_{s t+1}$ of distinct real numbers either contains an increasing subsequence with $s+1$ elements or a decreasing subsequence with $t+1$ elements.

Proof. Assume there is no increasing subsequence with $s+1$ elements. Give a_{i} label l where l is the length of the largest increasing subsequence starting at a_{i}. Clearly the possible labels are $1,2, \ldots, s$. The sequence has $s t+1$ elements, so by the pigeonhole principle there are at least $t+1$ with the same label. From the definition of the labelling these $t+1$ (or more) elements with the same label form a decreasing subsequence.

In the following lemmas some special notation will be used. Let G be a graph consisting of a triangle Δ with vertices v_{1}, v_{2}, v_{3} and $n_{1}+n_{2}+n_{3}$ additional vertices of degree $1, n_{i}$ of them joined to v_{i}. A drawing $D(G)$ is denoted by $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ if all $n_{1}+n_{2}+n_{3}$ vertices are placed outside (or inside) of Δ and if all edges from v_{i} to the n_{i} vertices intersect the edge of Δ not incident to v_{i} (see Figure 2). A $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ with the vertices outside of Δ is isomorphic to one with the vertices inside; to see this, think of $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ drawn on a sphere.

Figure 2. A drawing $\Delta(4,3,2)$

In $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ the n_{i} vertices incident to v_{i} will always be labelled by $1^{i}, 2^{i}, \ldots, n_{i}^{i}$ in such a way that on edge (v_{i+1}, v_{i+2}) the point of intersection with (v_{i}, j^{i}) follows that with $\left(v_{i},(j-1)^{i}\right)$ when $\left(v_{i+1}, v_{i+2}\right)$ is oriented from v_{i+1} to v_{i+2} (all subscripts of the v_{i} are $\bmod 3$). Let $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ be a subdrawing of $D\left(K_{m}\right)$. Consider l vertices $j_{1}^{i}, \ldots, j_{l}^{i}$ with $1 \leq j_{1}<\ldots<j_{l} \leq n_{i}$. They are said to be of type $\mathrm{I}_{v_{i}, v_{i+k}}$ in $D\left(K_{m}\right)$,
$k=1,2$, if there is no point of intersection between the edges from the l vertices to v_{i} and to v_{i+k}. They are said to be of type $I_{v_{i}, v_{i+k}}$ if for $\lambda=1, \ldots, l$ the edge $\left(v_{i+k}, j_{\lambda}^{i}\right)$ intersects (in case $k=1$) all the edges $\left(v_{i}, j_{1}^{i}\right), \ldots,\left(v_{i}, j_{\lambda-1}^{i}\right)$ and (in case $k=2$) all the edges $\left(v_{i}, j_{\lambda+1}^{i}\right), \ldots,\left(v_{i}, j_{l}^{i}\right)$) (see Figure 3).

Figure 3. Five vertices of types $I_{v_{1}, v_{2}}$ and $I_{v_{1}, v_{3}}$

Lemma 2. Let $\Delta(s t+1,0,0)$ be a subdrawing of $D\left(K_{m}\right)$. If $D\left(K_{m}\right)$ does not contain a subdrawing $D\left(K_{5}\right)$ with five crossings then the following assertions hold.
(i) For all j, k with $1 \leq j<k \leq s t+1$, the edges $\left(v_{2}, j^{1}\right)$ and (v_{1}, k^{1}) have no common point of intersection in $D\left(K_{m}\right)$.
(ii) For $i=2,3$ there are either $s+1$ vertices of type $\mathrm{I}_{v_{1}, v_{i}}$ or $t+1$ vertices of type $\mathrm{II}_{v_{1}, v_{i}}$.

Proof. (i) Assume that, for some j and k with $j<k,\left(v_{2}, j^{1}\right)$ intersects $\left(v_{1}, k^{1}\right)$. Then the missing edges between the vertices $v_{1}, v_{2}, v_{3}, j^{1}$ and k^{1} can only be drawn in such a way that a subdrawing $D\left(K_{5}\right)$ with five crossings results.
(ii) We may assume that all $s t+1$ vertices of degree 1 in $\Delta(s t+1,0,0)$ are placed outside of Δ and that on Δ the vertex v_{i+1} follows v_{i} when taken in the counterclockwise direction. Set $e_{0}=\left(v_{1}, v_{2}\right)$. Denote the edges from v_{2} to the vertices $1^{1}, \ldots,(s t+1)^{1}$ by $e_{1}, \ldots, e_{s t+1}$ such that in the counterclockwise direction (around $\left.v_{2}\right) e_{j}$ follows e_{j-1} for $j=1, \ldots, s t+1$. Put $a_{j}=k$ if $e_{j}=\left(v_{2}, k^{1}\right)$. Apply Lemma 1 to the sequence $a_{1}, \ldots, a_{s t+1}$. If an increasing subsequence of length $s+1$ occurs, the corresponding vertices among $1^{1}, \ldots,(s t+1)^{1}$ are $s+1$ vertices of type $\mathrm{II}_{v_{1}, v_{2}}$ by Lemma 2(i). Similarly a decreasing subsequence of length $t+1$ leads to $t+1$ vertices of type $\mathrm{I}_{v_{1}, v_{2}}$. By symmetry, the corresponding result holds for v_{3} instead of v_{2}.

Lemma 3. If $D\left(K_{m}\right)$ for $m \geq 5$ contains no subdrawing $D\left(K_{5}\right)$ with five crossings a subdrawing $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ with $n_{1}+n_{2}+n_{3} \geq\lceil(m-4) / 4\rceil$ must occur.

Proof. Consider a subdrawing $D\left(K_{4}\right)$ without crossings which must occur in $D\left(K_{m}\right)$. It divides the plane into four triangles $\Delta_{1}, \ldots, \Delta_{4}$. Let the vertices of $D\left(K_{4}\right)$ be $u_{1}, u_{2}, u_{3}, u_{4}$ such that u_{j} does not belong to the boundary of Δ_{j}. Add to $D\left(K_{4}\right)$ all those edges from $D\left(K_{m}\right)$ joining u_{j} to an inner vertex of Δ_{j}. Thus, we obtain four subdrawings $\Delta_{j}\left(n_{1}^{j}, n_{2}^{j}, n_{3}^{j}\right)$ where each of the $m-4$ vertices of $D\left(K_{m}\right)$ different from u_{1}, \ldots, u_{4} belongs to exactly one of them. This implies $\sum_{j=1}^{4}\left(n_{1}^{j}+n_{2}^{j}+n_{3}^{j}\right)=m-4$
and, for some $j, n_{1}^{j}+n_{2}^{j}+n_{3}^{j} \geq\lceil(m-4) / 4\rceil$.
Lemma 4. A subdrawing $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ in $D\left(K_{m}\right)$ with $n_{1}+n_{2}+n_{3} \geq 28$ implies a subdrawing $D\left(K_{5}\right)$ with five crossings.

Proof. Assume that we have a $D\left(K_{m}\right)$ containing a subdrawing $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ where $n_{1}+n_{2}+n_{3} \geq 28$, and no subdrawing $D\left(K_{5}\right)$ with five crossings occurs. First we will show that this implies a subdrawing isomorphic to one of the drawings B_{1} and B_{2} in Figure 4. Note that $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ must contain a subdrawing isomorphic to $A_{1}=$ $\Delta(7,7,1), A_{2}=\Delta(10,10,0), A_{3}=\Delta(13,1,1), A_{4}=\Delta(19,1,0)$ or $A_{5}=\Delta(28,0,0)$.

Figure 4

Case 1. A_{2}, A_{4} or A_{5} occurs. First suppose that in one of these three drawings there are ten vertices of type $I_{v_{1}, v_{2}}$. If among these ten vertices there are four of type $I_{v_{1}, v_{3}}$, a subdrawing isomorphic to B_{2} occurs. Otherwise, by Lemma 2(ii), there are four vertices of type $I_{v_{1}, v_{3}}$ yielding a subdrawing isomorphic to B_{1} together with v_{1}, v_{2} and v_{3}. For the remaining case, that there are no ten vertices of type $I_{v_{1}, v_{2}}$, we will deduce from Lemma 2(ii) the existence of a subdrawing isomorphic to B_{1}. If A_{2} occurs, we may assume by symmetry that there are also no ten vertices of type $I_{v_{2}, v_{1}}$. Then, by Lemma 2(ii), there must be two vertices of type $\mathrm{II}_{v_{1}, v_{2}}$ and two of type $\mathrm{II}_{v_{2}, v_{1}}$ yielding the desired subdrawing B_{1} together with v_{1}, v_{2} and v_{3}. If A_{4} occurs, then there are three vertices of type $I_{v_{1}, v_{2}}$. These yield a subdrawing isomorphic to B_{1} together with v_{1}, v_{2}, v_{3} and the neighbor of degree one of v_{2} in A_{4}. If A_{5} occurs, there must be four vertices of type $I_{v_{1}, v_{2}}$ which yield the desired subdrawing B_{1} together with v_{1}, v_{2} and v_{3}.

Case 2. A_{1} or A_{3} occurs. Suppose there are seven vertices of type $I_{v_{1}, v_{2}}$. If among these seven vertices there are four of type $I_{v_{1}, v_{3}}$, a subdrawing isomorphic to B_{2} occurs. Otherwise, by Lemma 2(ii), there are three vertices of type $I_{v_{1}, v_{3}}$ which together with v_{1}, v_{2}, v_{3}, and one of the n_{3} neighbors of v_{3} yield a subdrawing isomorphic to B_{1}.

By Lemma 2(ii) it remains for A_{3} that there are three vertices of type $\mathrm{II}_{v_{1}, v_{2}}$ which together with v_{1}, v_{2}, v_{3}, and one of the n_{2} neighbors of v_{2} determine a subdrawing isomorphic to B_{1}. By symmetry and Lemma 2(ii) it remains for A_{1} that there are two vertices of type $\mathrm{I}_{v_{1}, v_{2}}$ and two vertices of type $\mathrm{I}_{v_{2}, v_{1}}$ which together with v_{1}, v_{2} and v_{3} yield a subdrawing isomorphic to B_{1}.

To complete the proof of Lemma 4 we now show that a subdrawing isomorphic to B_{1} or B_{2} implies a subdrawing $D\left(K_{5}\right)$ with five vertices. If among the five vertices $\alpha, \beta, \gamma, \delta, \epsilon$ from B_{1}, or among the four vertices $\alpha, \beta, \gamma, \delta$ from B_{2}, there are three vertices u, v, w such that in $D\left(K_{m}\right)$ the edge (u, v) intersects an edge from w to a or b, then five crossings are determined by u, v, w, a, b. Otherwise we obtain five crossings determined by $\alpha, \beta, \gamma, \delta, \in$ from B_{1} and five crossings determined by $c, \alpha, \beta, \gamma, \delta$ from B_{2}.

It follows from Lemmas 3 and 4 that every drawing $D\left(K_{113}\right)$ contains a subdrawing $D\left(K_{5}\right)$ with five crossings. This gives $\operatorname{Dr}\left(K_{5}\right) \leq 113$ and the proof of Theorem 3 is complete.

Finally, we note that there exist only two nonisomorphic drawings $D_{1}\left(K_{5}\right)$ and $D_{2}\left(K_{5}\right)$ which have the maximum number of five crossings. In [4], nonisomorphic drawings $D_{1}\left(K_{m}\right)$ and $D_{2}\left(K_{m}\right)$ were constructed such that every subdrawing $D\left(K_{5}\right)$ of $D_{i}\left(K_{m}\right)$ is isomorphic to $D_{i}\left(K_{5}\right)$. Moreover, for every $n \leq m$ all subdrawings $D\left(K_{n}\right)$ of $D_{i}\left(K_{m}\right)$ are pairwise isomorphic. Thus Ramsey like numbers for any single drawing $D\left(K_{n}\right)$ do not exist for $n \geq 5$.

References

[1] P. Erdös and G. Szekeres: A combinatorial problem in geometry. Compositio Math. 2 (1935), 463-470.
[2] P. Erdös: Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53 (1947), 292-294.
[3] R. L. Graham, B. L. Rothschild and J. H. Spencer: Ramsey Theory. J. Wiley, New York 1990.
[4] H. Harborth and I. Mengersen: Drawings of the complete graph with maximum number of crossings. Congressus Numerantium 88 (1992), 225-228.
[5] J. D. Kalbfleisch, J. G. Kalbfleisch and R. G. Stanton: A combinatorial problem on convex n-gons. Proc. Lousisiana Conf. on Combinatorics, Graph Theory and Computing, Baton Rouge 1970, 180-188.
[6] J. G. Kalbfleisch and R. G. Stanton: On the maximum number of coplanar points containing no convex n-gons. Unpublished manuscript.

