The Drawing Ramsey Number $Dr(K_n)$

Heiko Harborth and Ingrid Mengersen Technische Universität Braunschweig, Germany

> Richard H. Schelp University of Memphis Memphis, Tennessee USA

Abstract Bounds are determined for the smallest $m = Dr(K_n)$ such that every drawing of K_m in the plane (two edges have at most one point in common) contains at least one drawing of K_n with the maximum number $\binom{n}{4}$ of crossings. For n = 5 these bounds are improved to $11 \leq Dr(K_5) \leq$ 113.

A drawing D(G) of a graph G is a special realization of G in the plane. The vertices are mapped into different points of the plane (also called vertices of D(G)), the edges are mapped into lines (also called edges of D(G)) connecting the corresponding vertices such that two edges have at most one point in common, which is either a common vertex or a crossing. Two drawings are said to be isomorphic if there exists an incidence-preserving one-to-one correspondence between vertices, crossings, edges, parts of edges and regions.

It is well known that every drawing of the complete graph K_4 has at most one crossing. Thus, the maximum number of crossings in a drawing $D(K_n)$ is at most $\binom{n}{4}$. Different nonisomorphic drawings $D(K_n)$ with $\binom{n}{4}$ crossings are discussed in [4]. In this note, we will show that for *m* sufficiently large every drawing of $D(K_m)$ must contain at least one drawing $D(K_n)$ with $\binom{n}{4}$ crossings. Moreover, bounds for the smallest such *m*, denoted by $Dr(K_n)$, will be deduced.

It can be observed that the question for a subdrawing $D(K_n)$ with maximum number of crossings is similar to the Esther Klein problem if lines are used instead of straight line segments and if convexity of n points is replaced by drawings $D(K_n)$ with $\binom{n}{4}$ crossings.

Theorem 1. For every positive integer n there exists a least integer $Dr(K_n)$ such that every drawing $D(K_m)$ with $m \ge Dr(K_n)$ contains a subdrawing $D(K_n)$ with $\binom{n}{4}$ crossings.

Australasian Journal of Combinatorics 11(1995), pp.151-156

Proof. The existence of $Dr(K_n)$ will be deduced from Ramsey's theorem. Consider a drawing $D(K_m)$ with $m \ge r_4(5, n)$, where the Ramsey number $r_4(5, n)$ denotes the smallest l such that in every 2-coloring of the four-element subsets of an l-element subset green or an n-element subset of V with all 4-element subsets red. Color a 4-element subset of the vertex set V of $D(K_m)$ red if the four vertices determine a crossing and green otherwise. Among any five vertices there are four determining a crossing, since K_5 is nonplanar. Thus, there exists no 5-element subset of V with all 4-element subsets colored green, and there must be an n-element subset of V with all 4-element subsets red. These n vertices determine $\binom{n}{4}$ crossings and Theorem 1 is proved.

The proof of Theorem 1 yields $Dr(K_n) \leq r_4(5, n)$. This bound might be very far from the truth, since none of the topological aspects of the problem besides the non-planarity of K_5 is taken into account. Moreover, in case $n \geq 5$ only rough upper bounds are available for $r_4(5, n)$ (see for example [3]). A lower bound for $Dr(K_n)$ can be deduced from the Esther Klein problem. In [5,6] it was shown that for $n \geq 2$ there are 2^{n-2} points in the plane no three of them collinear and no n of them determining a convex n-gon. Take 2^{n-2} such points as vertices of a drawing of a complete graph and draw all edges as straight line segments. Then no subdrawing $D(K_n)$ with $\binom{n}{4}$ crossings can occur, since among any n vertices there are four forming a non-convex 4-gon and hence having no crossing. Thus we obtain

Theorem 2. $2^{n-2} + 1 \le Dr(K_n) \le r_4(5, n)$ for $n \ge 2$.

Figure 1. A $D(K_{10})$ containing no subdrawing $D(K_5)$ with five crossings

Trivially, $Dr(K_n) = n$ for $n \leq 3$, and Theorem 2 implies $Dr(K_4) = 5$. For $n \geq 5$, no exact values of $Dr(K_n)$ are known so far. The next theorem will improve the

bounds given in Theorem 2 in case n = 5. For $n \ge 6$, no better bounds are known.

Theorem 3. $11 \leq Dr(K_5) \leq 113$.

Proof. The lower bound is given by the drawing $D(K_{10})$ in Figure 1. The proof of the upper bound is divided into four lemmas. The following Lemma 1 (due to P. Erdös) can also be found in [1] or [2].

Lemma 1. A sequence $a_1, a_2, ..., a_{st+1}$ of distinct real numbers either contains an increasing subsequence with s + 1 elements or a decreasing subsequence with t + 1 elements.

Proof. Assume there is no increasing subsequence with s + 1 elements. Give a_i label l where l is the length of the largest increasing subsequence starting at a_i . Clearly the possible labels are 1, 2, ..., s. The sequence has st + 1 elements, so by the pigeonhole principle there are at least t + 1 with the same label. From the definition of the labelling these t + 1 (or more) elements with the same label form a decreasing subsequence. \Box

In the following lemmas some special notation will be used. Let G be a graph consisting of a triangle Δ with vertices v_1, v_2, v_3 and $n_1 + n_2 + n_3$ additional vertices of degree 1, n_i of them joined to v_i . A drawing D(G) is denoted by $\Delta(n_1, n_2, n_3)$ if all $n_1 + n_2 + n_3$ vertices are placed outside (or inside) of Δ and if all edges from v_i to the n_i vertices intersect the edge of Δ not incident to v_i (see Figure 2). A $\Delta(n_1, n_2, n_3)$ with the vertices outside of Δ is isomorphic to one with the vertices inside; to see this, think of $\Delta(n_1, n_2, n_3)$ drawn on a sphere.

Figure 2. A drawing $\Delta(4,3,2)$

In $\Delta(n_1, n_2, n_3)$ the n_i vertices incident to v_i will always be labelled by $1^i, 2^i, ..., n_i^i$ in such a way that on edge (v_{i+1}, v_{i+2}) the point of intersection with (v_i, j^i) follows that with $(v_i, (j-1)^i)$ when (v_{i+1}, v_{i+2}) is oriented from v_{i+1} to v_{i+2} (all subscripts of the v_i are mod 3). Let $\Delta(n_1, n_2, n_3)$ be a subdrawing of $D(K_m)$. Consider l vertices $j_1^i, ..., j_l^i$ with $1 \leq j_1 < ... < j_l \leq n_i$. They are said to be of type $I_{v_i, v_{i+k}}$ in $D(K_m)$, k = 1, 2, if there is no point of intersection between the edges from the *l* vertices to v_i and to v_{i+k} . They are said to be of type $\prod_{v_i,v_{i+k}}$ if for $\lambda = 1, ..., l$ the edge (v_{i+k}, j_{λ}^i) intersects (in case k = 1) all the edges $(v_i, j_1^i), ..., (v_i, j_{\lambda-1}^i)$ and (in case k = 2) all the edges $(v_i, j_{\lambda+1}^i), ..., (v_i, j_{\lambda-1}^i)$ and (in case k = 2) all the edges $(v_i, j_{\lambda+1}^i), ..., (v_i, j_{\lambda-1}^i)$ (see Figure 3).

Figure 3. Five vertices of types I_{v_1,v_2} and II_{v_1,v_3}

Lemma 2. Let $\Delta(st+1,0,0)$ be a subdrawing of $D(K_m)$. If $D(K_m)$ does not contain a subdrawing $D(K_5)$ with five crossings then the following assertions hold.

- (i) For all j, k with $1 \leq j < k \leq st + 1$, the edges (v_2, j^1) and (v_1, k^1) have no common point of intersection in $D(K_m)$.
- (ii) For i = 2, 3 there are either s + 1 vertices of type I_{v_1,v_i} or t + 1 vertices of type II_{v_1,v_i} .

Proof. (i) Assume that, for some j and k with j < k, (v_2, j^1) intersects (v_1, k^1) . Then the missing edges between the vertices v_1, v_2, v_3, j^1 and k^1 can only be drawn in such a way that a subdrawing $D(K_5)$ with five crossings results.

(ii) We may assume that all st + 1 vertices of degree 1 in $\Delta(st + 1, 0, 0)$ are placed outside of Δ and that on Δ the vertex v_{i+1} follows v_i when taken in the counterclockwise direction. Set $e_0 = (v_1, v_2)$. Denote the edges from v_2 to the vertices $1^1, ..., (st + 1)^1$ by $e_1, ..., e_{st+1}$ such that in the counterclockwise direction (around v_2) e_j follows e_{j-1} for j = 1, ..., st + 1. Put $a_j = k$ if $e_j = (v_2, k^1)$. Apply Lemma 1 to the sequence $a_1, ..., a_{st+1}$. If an increasing subsequence of length s + 1 occurs, the corresponding vertices among $1^1, ..., (st + 1)^1$ are s + 1 vertices of type I_{v_1, v_2} by Lemma 2(i). Similarly a decreasing subsequence of length t + 1 leads to t + 1 vertices of type I_{v_1, v_2} . By symmetry, the corresponding result holds for v_3 instead of v_2 . \Box

Lemma 3. If $D(K_m)$ for $m \ge 5$ contains no subdrawing $D(K_5)$ with five crossings a subdrawing $\Delta(n_1, n_2, n_3)$ with $n_1 + n_2 + n_3 \ge \lceil (m-4)/4 \rceil$ must occur.

Proof. Consider a subdrawing $D(K_4)$ without crossings which must occur in $D(K_m)$. It divides the plane into four triangles $\Delta_1, ..., \Delta_4$. Let the vertices of $D(K_4)$ be u_1, u_2, u_3, u_4 such that u_j does not belong to the boundary of Δ_j . Add to $D(K_4)$ all those edges from $D(K_m)$ joining u_j to an inner vertex of Δ_j . Thus, we obtain four subdrawings $\Delta_j(n_1^j, n_2^j, n_3^j)$ where each of the m-4 vertices of $D(K_m)$ different from $u_1, ..., u_4$ belongs to exactly one of them. This implies $\sum_{j=1}^4 (n_1^j + n_2^j + n_3^j) = m - 4$ and, for some j, $n_1^j + n_2^j + n_3^j \ge \lceil (m-4)/4 \rceil$. \Box

Lemma 4. A subdrawing $\Delta(n_1, n_2, n_3)$ in $D(K_m)$ with $n_1 + n_2 + n_3 \ge 28$ implies a subdrawing $D(K_5)$ with five crossings.

Proof. Assume that we have a $D(K_m)$ containing a subdrawing $\Delta(n_1, n_2, n_3)$ where $n_1 + n_2 + n_3 \geq 28$, and no subdrawing $D(K_5)$ with five crossings occurs. First we will show that this implies a subdrawing isomorphic to one of the drawings B_1 and B_2 in Figure 4. Note that $\Delta(n_1, n_2, n_3)$ must contain a subdrawing isomorphic to $A_1 = \Delta(7, 7, 1), A_2 = \Delta(10, 10, 0), A_3 = \Delta(13, 1, 1), A_4 = \Delta(19, 1, 0)$ or $A_5 = \Delta(28, 0, 0)$.

Figure 4

Case 1. A_2 , A_4 or A_5 occurs. First suppose that in one of these three drawings there are ten vertices of type I_{v_1,v_2} . If among these ten vertices there are four of type I_{v_1,v_3} , a subdrawing isomorphic to B_2 occurs. Otherwise, by Lemma 2(ii), there are four vertices of type II_{v_1,v_3} yielding a subdrawing isomorphic to B_1 together with v_1 , v_2 and v_3 . For the remaining case, that there are no ten vertices of type I_{v_1,v_2} , we will deduce from Lemma 2(ii) the existence of a subdrawing isomorphic to B_1 . If A_2 occurs, we may assume by symmetry that there are also no ten vertices of type I_{v_2,v_1} . Then, by Lemma 2(ii), there must be two vertices of type II_{v_1,v_2} and two of type II_{v_2,v_1} yielding the desired subdrawing B_1 together with v_1 , v_2 and v_3 . If A_4 occurs, then there are three vertices of type II_{v_1,v_2} . These yield a subdrawing isomorphic to B_1 together with v_1 , v_2 , v_3 and the neighbor of degree one of v_2 in A_4 . If A_5 occurs, there must be four vertices of type II_{v_1,v_2} which yield the desired subdrawing B_1 together with v_1 , v_2 and v_3 .

Case 2. A_1 or A_3 occurs. Suppose there are seven vertices of type I_{v_1,v_2} . If among these seven vertices there are four of type I_{v_1,v_3} , a subdrawing isomorphic to B_2 occurs. Otherwise, by Lemma 2(ii), there are three vertices of type II_{v_1,v_3} which together with v_1 , v_2 , v_3 , and one of the n_3 neighbors of v_3 yield a subdrawing isomorphic to B_1 .

By Lemma 2(ii) it remains for A_3 that there are three vertices of type II_{v_1,v_2} which together with v_1 , v_2 , v_3 , and one of the n_2 neighbors of v_2 determine a subdrawing isomorphic to B_1 . By symmetry and Lemma 2(ii) it remains for A_1 that there are two vertices of type II_{v_1,v_2} and two vertices of type II_{v_2,v_1} which together with v_1 , v_2 and v_3 yield a subdrawing isomorphic to B_1 .

To complete the proof of Lemma 4 we now show that a subdrawing isomorphic to B_1 or B_2 implies a subdrawing $D(K_5)$ with five vertices. If among the five vertices $\alpha, \beta, \gamma, \delta, \epsilon$ from B_1 , or among the four vertices $\alpha, \beta, \gamma, \delta$ from B_2 , there are three vertices u, v, w such that in $D(K_m)$ the edge (u, v) intersects an edge from w to a or b, then five crossings are determined by u, v, w, a, b. Otherwise we obtain five crossings determined by $\alpha, \beta, \gamma, \delta, \epsilon$ from B_1 and five crossings determined by $c, \alpha, \beta, \gamma, \delta$ from B_2 . \Box

It follows from Lemmas 3 and 4 that every drawing $D(K_{113})$ contains a subdrawing $D(K_5)$ with five crossings. This gives $Dr(K_5) \leq 113$ and the proof of Theorem 3 is complete.

Finally, we note that there exist only two nonisomorphic drawings $D_1(K_5)$ and $D_2(K_5)$ which have the maximum number of five crossings. In [4], nonisomorphic drawings $D_1(K_m)$ and $D_2(K_m)$ were constructed such that every subdrawing $D(K_5)$ of $D_i(K_m)$ is isomorphic to $D_i(K_5)$. Moreover, for every $n \leq m$ all subdrawings $D(K_n)$ of $D_i(K_m)$ are pairwise isomorphic. Thus Ramsey like numbers for any single drawing $D(K_n)$ do not exist for $n \geq 5$.

References

- P. Erdös and G. Szekeres: A combinatorial problem in geometry. Compositio Math. 2 (1935), 463-470.
- [2] P. Erdös: Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53 (1947), 292-294.
- [3] R. L. Graham, B. L. Rothschild and J. H. Spencer: Ramsey Theory. J. Wiley, New York 1990.
- [4] H. Harborth and I. Mengersen: Drawings of the complete graph with maximum number of crossings. *Congressus Numerantium* 88 (1992), 225-228.
- [5] J. D. Kalbfleisch, J. G. Kalbfleisch and R. G. Stanton: A combinatorial problem on convex n-gons. Proc. Louissiana Conf. on Combinatorics, Graph Theory and Computing, Baton Rouge 1970, 180-188.
- [6] J. G. Kalbfleisch and R. G. Stanton: On the maximum number of coplanar points containing no convex n-gons. Unpublished manuscript.