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ABSTRACT. In this we prove that every 3-connected planar graph 
has closed walk each vertex, none more than twice, such that any 
vertex visited twice is in a vertex cut of size 3. This both Tutte's 
Theorem that 4-connected planar graphs are Hamiltonian and the result of 
Gao and Richter that 3-connected planar graphs have a closed walk visiting 
each vertex at least once but at most twice. 

1. INTRODUCTION 

Tutte [Tu] proved that every 4-connected planar graph is Hamiltonian. Recently, 
Gao and Richter [GR) settled a conjecture of Jackson and Wormald [JW] by show
ing that every 3-connected planar graph has a closed 2-walk a closed walk that 
visits every vertex at least once but at most twice. In this paper we prove a common 
refinement of these results, which was conjectured by Thomas [T). A k-cut in G is 
a set A of vertices such that G - A is not connected and I A I k. 

Theorem 1. Let G be a 3-conneded planar graph and let X, y be two vertices both 
incident with the same face of G. Then there is a closed 2-walk W in G visiting x 

and y only once each, such that every vertex visited twice by W is in a 3-cut in G. 

That Theorem 1 generalizes Tutte's Theorem is obvious: if G is 4-connected and 
W is the closed 2-walk guaranteed by Theorem 1, then W must be a Hamilton 
cycle, since G has no 3-cuts and, therefore, W can have no repeated vertices. 

The same ideas improve Thomassen's Theorem [ThJ that 4-connected planar 
graphs are Hamilton-connected. A 2-walk is a walk visiting each vertex at least 
once but at most twice. 
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Theorem 2. Let G be a 3-conneded and let x and y be any vertices 
of G. Then there is a 2-walk W in G from x to y such that any vertex visited twice 
by W is in 3-cut of G. 

We remark that the proofs in this paper are simpler than 
those of [GR]. However, their form the core for the results by Brunet et al 
[BEGMR]' where it is proved that every 3-connected that embeds in either 
the torus or the Klein bottle has a 2-walk. It would be of substantial interest to 
know if Theorems 1 and 2 generalize to these graphs. 

2. CIRCUIT GRAPHS 

We shall in fact prove our results for circuit graphs, a class of planar graphs that 
includes the 3-connected planar graphs. 

A circuit graph is an ordered pair (G, C) consisting of a 2-conneded planar graph 
G and a cycle C of G such that, in some embedding of G in the plane, C bounds a 
face and, for every 2-cut A in G, every component of G - A contains a vertex of C. 

Obviously, if C is a face boundary of a 3-connected planar graph G, then (G, C) 
is a circuit graph. Circuit graphs have some very nice inductive properties. The 
ones relevant for this work are stated in the following result. Proofs can be found 
in [GR], A plane chain of blocks is a graph, embedded in the plane, with blocks 
B 1 ,B2 , ••. ,Bk, such that, for each i = 2,3, ... ,k, and Bi have a vertex in 
common, no two of which are the same, and, for each j 1,2, ... , k, Ui:;tj Bi is in 
the infinite face of Bj' 

Lemma 3. Let (G, C) be a circuit graph. 

(1) Let G be embedded in the plane with C bounding the infinite face and let 
C t be any cycle of G. Let H be the subgraph of G contained in the closed 
disc bounded by C', Then (H, ct) is a circuit graph. 

(2) If v E V( C), then G - v is a plane chain of blocks Bl ... , Bk. Moreover, 
one of the neighbours of v in C is in Bl and the other is in Bk. 

3. TUTTE PATHS AND TUTTE CYCLES 

In order to prove Theorem 1, we shall first prove the existence of a "Tutte path" 
and a "Tutte cycle" in a circuit graph. For a subgraph J of a graph G, a J -bridge 
in G is a component K of G V(J), together with the of G joining a vertex of 
K to a vertex of J and the ends of such edges. If L is a J-bridge, then the vertices 
in V(L) n V( J) are the vertices of attachment of L. 

We remark that the usual definition of J -bridge allows the possibility of an edge, 
not in J, together with its ends, which are in J. Such are of no concern to 
us, and, to simplify the later discussion, we have chosen not to include them in the 
definition used in this article. 

A Tutte path (Tutte cycle) in a circuit graph (G, C) is a path (cycle) P such that 
every P-bridge has at most 3 vertices of attachment and any P-bridge containing 
an edge of C has at most 2 vertices of attachment. 
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We abbreviate of distinct to SDR. If I is subgraph of 
a graph G, then a SDR of the J -bridges IS a SDR of the sets {V(L) n V(J) I 
L is a I-bridge}. 

Theorem 4. Let (G,C) be a circuit graph and let x,u E V(C), let y E V(G) with 
x i=- y and let a E {x,u}. Then there is a Tutte path P in G from x to y through u 
and a SDR S of the P-bridges such that artS. 

Proof. The proof proceeds by induction on IE(G)I. The unique smallest circuit 
graph is K 3 , for which the result is triviaL For the inductive we may suppose 
G is embedded in the plane so that C is the boundary of the infinite face. 

If u x, then pick any other vertex of V ( ex) and let it be u. (Of course we 
do not change a x.) Thus, we can assume that u rt {x,y}. The case u yand 
a u can be similarly dismissed, while if a u y, then interchange the roles of 
x and y and proceed as above. 

For any two distinct vertices T, s of C) let TC s denote the clockwise path in 
from T to Thus, the two paths in C between x and u are xCu and uCx. We can 
assume that the drawing is such that y is not in xCu and that uCx has length at 
least 2. Let Ul be the neighbour of u in the path uCx. It is possible that Ul y, 

in which case we let K {Ul}, P {ud and S 0. 
If Ul =/:: y, then let K be the minimal connected union of blocks of G - xCu 

containing both Ul and y. (Throughout this work, if H is a subgraph of G, 
then G - H denotes the subgraph G V(H) of G.) Clearly, K is a plane chain of 
blocks Bll B 21 ••• , Bl, with Ul E V(Bl) and y E V(Bl). For i 1,2, ... ,f - 1, let 
Vi be the vertex common to Bi and Bi+l. Set Vo Ul and Ve y. 

If Bl n C is not just Ul, then let k be the largest index such that Ble contains an 
edge of C. Otherwise, set k = 1. Let w be the vertex in B k nearest x in uC x. 

For 1 :::; i f, either Bi is just Vi-lVi and its ends or (Bi,C i ) is a circuit graph, 
where Ci bounds the infinite face of Bi. In the first case, let = (Vi-l,Vi-lVi,vd 

and Si = 0. 
For i E {I, 2, ... ,f} \ {k}, the inductive assumption yields a Tutte path Pi in Bi 

from Vi-l to Vi and a SDR Si of the Pi-bridges in Bi such that either Vi ~ Si (if 
i < k) or Vi-l ~ Si (ifi > k). 

Indutively there is a Tutte path Pie in Ble from VIe-l to Vic through wand a SDR 
of the Pie-bridges in B Ie such that w ~ S Ie. 

A l A l A 

Let P = Ui=l Pi and S = Ui=l Si. Set K = K U XCUI' 

We now extend P back to x. For each K-bridge L in G, LnK consists of at most 
one vertex, which we call a(L). Let t be the bridge (if there is one) containing the 

path wCx. Because (G, C) is a circuit graph, this is the only K-bridge in G that 
can have only two vertices of attachment. If t has only two vertices of attachment, 
then we shall do nothing with itj w will be its representative. 

Let F' denote the union of xCu, all k-bridges in G and all P-bridges in K that 
contain a vertex a( L) that is not in P. Let F = F' - P. Let aI, a2 1 ••• ,as be the 
cut vertices of F that are in xCu, in the order they appear from x to u. Note that 
aI, ... ,as do not include x and u, i.e. they are internal to the path xCu. Let ao = x 
and as+l = u. 
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Either there is a path in F from ai-l to ai that is disjoint from ai-l C ai for 
their common ends) or there is not. If there is not, then ai-I and ai are consecutive 
vertices of xCu and we set to be the path (ai-l,ai-Iai,ai) and Ri 0. 

Otherwise, let A~ be the block of F containing ai-l C ai and let Ai be the union 
of A~ and any Ai-bridge in F that does not contain either ai-lor ai. There is a 
bridge that has an edge in If there is no vertex a( L i ), then clearly Ai 
If there is a vertex a(Ld and it is not in P, then clearly Ai A~ U (Mi P), for 
some P -bridge Mi in K. Finally, if if a( Li) is in P, then, because (G, C) is a circuit 
graph, for each vertex p of there are three disjoint paths from p to the vertices 
ai-I, ai, a(Ld. Therefore, Li a(Li) is 2-connected. It follows that Ai A~. 

Let C~ be the cycle bounding the infinite face of Ai, so that (A~, CD is a circuit 
graph. 

If L has at least 3 vertices of attachment, then t - w ~ AI. Let z be the vertex 
of A~ n C such that zCx A~ n C. (It is possible that z :c, in which case zCx is 
also just x.) Inductively, there is a Tutte path Ql in A~ from x to al through z and 
a SDR Rl of the QI-bridges of A~ such that either x rf- RI (if a x ) or al rf- RI (if 
au). 

Now we treat the remaining A~, i = 1,2,. .5 + 1; we need to deal with the case 
i = 1 only if L has only two vertices of attachment. We remind the reader that we 
are assuming that (A~, CD is a circuit graph, as otherwise we have already obtained 
the path Qi and the SDR R i . 

If Ai n K is not empty, then Ai A~ U (Mi P). Let z be the vertex in A~ n Mi. 
If Ai n K is empty, then let z be any vertex in CJ. Inductively, there is a Tutte 
path Qi in A~ from ai-l to ai through z and a SDR Ri of the Qi-bridges such that 
either ai-l rf- Ri (if a x) or ai rf- Ri (if a = u). 

The required Tutte path in G is P = (U::: Qd U (u, UUl, ud u P with S 

(U::: Ri) uS U {w} as the required SDR of the P-bridges in G.D 

The following consequence of Theorem 4 is the heart of the proof of Theorem 1. 

Corollary 5. Let (G, C) be a circuit graph and let x, y E V( C). Then there is 
a Tutte cycle T in G and a SDR S of the T -bridges in G with x, y E V(T) and 
X,Y rf- S. 

Proof. Let x have neighbours U and v in C. The graph G x is a plane chain of 
blocks B 1 , B 2, •. . , Bk, with u E V(Bd and v V(Bk)' Let j be least such that 
y E V(Bj). For i = 1,2, ... , k -1, let Vi be the vertex common to Bi and Bi+lJ let 
Vo = U and Vk = v. 

For i 1,2, ... ,k, if Bi is just the edge Vi-l Vi and its ends, then we set Pi = 
(Vi-I,Vi-IVi,Vi) and Si 0. 

Otherwise, for 1 S; i j, by Theorem 4 there is a Tutte path Pi from Vi-I to Vi 
in Bi having a SDR Si of the Pi-bridges in B i , such that Vi rf- Si. Let Pj be a Tutte 
path in Bj from Vj-l to Vj through y in B j having a SDR Sj of the Pj-bridges in 
Bj, such that y rf- Sj. For j < i S; k, let Pi be a Tutte path in Bi from Vi-l to Vi 
having a SDR Si of the Pi-bridges in Bi, such that Vi-l rf- Si. 



The cycle obtained by adding X, xu and xv to the path U P2 U ... U Pk is the 
desired Tutte cycle and S U:=l Si is the required SDR.D 

4. PROOF OF THEOREMS 1 AND 2 

In this section we use Theorem 4 to prove Theorems 1 and 2 for circuit graphs. 
If (G, 0) is a circuit graph, an internal k-cut of G is a k-cut A of G such that G - A 
contains a component disjoint from C. 

Theorem 6. Let (G, 0) be a circuit graph and let X, y V( C). Then there is a 
closed 2-walk W in G visiting x and y only once each such that any vertex visited 
twice by W is in either a 2-cut or an internal 3-cut of G. 

Proof. In fact, we shall prove something slightly stronger. We shall require that if 
v is a vertex of G visited twice by W, then either v is in an internal 3-cut or there 
is a 2-cut {v, w} of G with v and w both in the same path in C from x to y) i.e. 
either both are in xOy or both are in yCx. 

We proceed by induction on IE(G)I, with the case IE(G)I 3 being trivial. For 
the inductive step, we can suppose that G is drawn in the plane so that 0 bounds 
the infinite face. 

By Corollary 5, G has a Tutte cycle T through x and y and a SDR S for the 
T-bridges of G with X, y t/:. S. We use this to construct the desired closed 2-walk. 

Let L be a T -bridge and let s be the representative of L in S. If L has only 
two vertices of attachment, then L contains an edge of C (as otherwise (G, C) is 
not a circuit graph). The only other possibility is that L has exactly 3 vertices of 
attachment. 

Suppose first that L has exactly two vertices of attachITIent, say sand s'. Let 
sO s' denote the path 0 n L and let t be the neighbour of S' in sC 13'. By Lemma 3 
(2), L 13' is a plane chain of blocks B l , B 2 , •• , B m , with 13 E V(BI), 13 ~ V(B2 ), 

t E V(Bm) and t t/:. V(Bm-d. For i = 1,2, ... ,m - 1, let Vi be the vertex common 
to Bi and BHl and let Vo 13, Vm = t. 

For i = 1,2, ... ,m, either Bi is just the edge Vi-l Vi and its ends or Ci is a cycle 
bounding the infinite face of Bi and (Bi, Oi) is a circuit graph. Moreover, Oi n Cis 
a path. 

In the first case, we let Wi = (Vi-I, Vi-l Vi, Vi, ViVi-l, Vi-d. In the second case, 
inductively, there is a closed 2-walk Wi in Bi visiting each of Vi-l and Vi only once 
such that any vertex visited twice by W is in either a 2-cut of Bi or an internal 
3-cut of Bi. 

Now suppose L has three vertices of attachment, say s, 13' and sit. Then L is 
disjoint from a except possibly for vertices of attachment. We claim that L-{ Sf,S"} 
is a plane chain of blocks B 1 , B 2 , ••• , B m) with 13 E Bl, 13 t/:. B 2 • We can add the 
edges 1313', ss", S' sit to L to create a circuit graph (L', Of), where A' is the triangle 
through the new edges and L' is L with the three new edges. Deleting 13' yields, by 
Lemma 3 (2), a plane chain of blocks with 13 in one leaf block and 13" in the other. 
Since they are adjacent, there is only one block. Therefore, L' - 13' is 2-connected 
and now Lemma 3 (2) shows that L - {S',S"} = L' {s', sit} is a plane chain of 
blocks, as required. 
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There is a vertex Vm in Bm that is in a face of G with both s' and s". 
We exactly as in the case L has only two vertices of attachment. 

It is important to observe that any internal 3-cut of Bi is an internal 3-cut of G 
and the 2-cuts of that we need to consider both vertices in either Vi-lor 

both vertices in ViCiVi-l) are either 2-cuts of G or are contained in internal 3-cuts 
of G. It is clear that we can get a closed 2-walk in G by traversing T from one 
representative to the next and then detouring into the bridges the walks Wi) 
being careful to go from Vi-l to Vi on Wi) and then going into Bi+l before returning 
from Vi to Vi-Ion the remainder of Wi.D 

The appropriate generalization of Theorem 2 to circuit graphs is the following. 
It follows from Theorem 4 in the same way that Theorem 6 follows from Corollary 
5. 

Theorem 7. Let (G, C) be a circuit graph let x E V(C) and let y V(G). Then 
there is a 2-walk from x to y in G such that any vertex visited twice by W is in 
either a 2-cut or an internal 3-cut of G. 
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