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Let ¢ be a simple graph with vertices V = {1,2,..
2 and j are joined by an edge, we write ¢ ~ 5. Let C = {c1,¢,...¢,} be a set of
indeterminates called colors and for each 7, 1 <7 < n, let §; C C be a list of colors
available at vertex ¢. The S-list coloring question asks whether there exists a proper
(vertex-) coloring ¢ : V = C of G such that, for each ¢ € V, ©(z) € S;. Such a
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Abstract

Let G be o simple graph and let S = (Sy,...,5,) be a set of lists of colors at
the vertices of G. G is said to be S list-colorable if there exists a proper coloring
of G such that each vertex i takes its color from S;. Alon and Tarsi [I] have
shown that G is S list-colorable if and only if its graph polynomial

fo(a) = [ (e = 25)
i~g
does not lie in the ideal I gencrated by the annithilator polynomials g;(z) of the
colors available at the vertices.

We consider the case where G is uniquely list-colorable and determine the
irreducible factors of the remainder polynomial (or stipulation polynomial)
fo = fomod I. We establish a bijection between the factors of fe and the
edges of G.
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proper coloring is called an S-legal coloring and G is said to be .S list-colorable, where
S= {8, 8.

List colorings have arisen in several contexts, mainly in situations where one wishes
to determine whether or not a given partial coloring of a graph may be completed
to a proper coloring. The actual definition of a list coloring first appeared in Erdos,
Rubin, and Taylor [5]. Their motivation was the so-called “Dinitz problem”, whichis a
special type of list coloring problem (see Janssen [7] and Cipra [3]). A recent paper [6]
by Haggvist and Chetwynd gives a history of the general problem (as well as some
new results) as does the paper [§] by Kahn. There has been renewed interest in list
colorings due to some powerful results obtained recently by N. Alon and M. Tarsi [1].
Indeed, their work has been the motivating factor in the present paper.

Let z = (z1,22,...,%,) be a vector of indeterminates, one for each vertex of G.
Define the edge difference polynomial of G

fo(z) = [ (z: = ;).

i
It is easy to see that G is list-colorable (with the given lists Sy, ...,5,) if and only if
there exists a vector ¢ = (c(1),¢(2),...,¢(n)) in Sy x Sax---x S, satisfying fa(c) # 0.
Now define the annihilator polynomial g;(z) at vertex 7 to be the polynomial which
is zero precisely when z; € S;:

c€S;

Define [ to be the ideal generated by {¢:;(z) : 1 <7 < n} in Z[z]. For any proper list
coloring ¢ of G, we have fo(c) # 0 while gi(c) = 0 for 1 <7 < n. Extending this,
Alon and Tarsi prove

Theorem 1.1 (Alon and Tarsi, [1, Prop. 2.7])
Either G is S list-colorable or fg € I, not both. O

This theoremn as it stands is difficult to use. Perhaps the more important part
of their paper from the practical viewpoint is the following theorem. (An Eulerian
subgraph of a directed graph is a subgraph in which every vertex has in-degree equal
to its out-degree.)

Theorem 1.2 (Alon and Tarsi, [1, Theorem 1.1]) Let G' and S be given. Sup-
pose there is an orientation D of G such that (i) the out-degree of vertez i in D is
less than |S;| for all i, and (ii) the number of Eulerian subgraphs of D with an even
number of edges is not equal to the number of Fulerian subgraphs of D with an odd
number of edges. Then G is S list-colorable. O
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While this thieorem has been the focus of several recent papers [1. 7] on list coloring,
we prefer to work direetly with Theorem 1.1, Our strategy is to consider graphs
which can be list colored. Tn these cases. we would like to understand the remainder
polyuomial fo = fo mod [. We view the irreducible factors of fr; as stipulations on
colorability of (7. Several examples may help here.

Example 1: Let (7 be the graph with V = {1,2,3,4} and £ = {12,23, 34, 14, 24}.

{e, 62,63}

Suppose the lists at the vertices are S; = Sz = Sy = {c1, 0,0} and S5 = {1 }.
Then the edge difference polynomial is

fC(Q) = (’Jil - 232)(332 - «'33)(353 - 334)(‘I1 - 134)(-82 - 174)’

and the four annihilator polynomials are
gi(z) = (21— a)( —a)(@1 — ), ga2(z) = (22— er)(w2 = e)(2 — c3),

93(&) = (13 - ). 94(£) = (ih - Cl)('M - Cz)(l‘-x - C:3)-
If [ is the ideal generated by ¢1(z), ..., gs(z) in Z[z], we can compute fo; = fo mod [
to be
fo(z) = —(x1 — e2)(z1 — ea)(z2 — c1)(za — 1 ) (g — 24).

An evaluation ¢ : z — C of this polynomial is non-zero if and only if vertex 1 does
not get color ¢y or c¢3, neither vertex 2 nor 4 get color ¢; and vertices 2 and 4 receive
different colors. On the other hand, observe that the evaluation ¢ is non-zero if and
only if () is a proper list-coloring. Note that the condition that a vertex be assigned
a color from its list has been “modded out”; i.e., this is to be assumed at this point.

In this way, we feel that the irreducible factors of the polynomial fe: correspond
to stipulations on the colorings of . Our task is to decipher the algebraic language
in which f presents these conditions to us. In general, these irreducible factors may
be quite unwieldy. We will determine fi completely in the case where G has exactly
one S-legal coloring. In this case, we say G is uniquely list-colorable. Let us now look
at a graph which has a unique S-legal coloring.
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Example 2: Suppose (7 is again Ay —e as in the previous example. Let Sy = {c1, 2},
Syi={enex), S5oo= {eg, 03}, and Syo= {en, e}

(c, )

Then
falz) = (xy = 22) (w2 — z3) (23 — z4)(z1 — z4) (32 — 24),
gi(z) = (21— a)(zr — &), g2(x) = (@2 — c1)(z2 ~ ca),
ga(z) = (23 — e2)(z3 — ca),  galz) = (x4 — a)(x4 — c2),
and

f((iﬁ) = (21— a)(z2 = 1) (23 — e3) (T4 — 2) (2 — c3).

We describe again how we will “read” this polynomial. It says that vertex 1 cannot
be colored ¢;, vertex 2 cannot be colored ¢y, vertex 3 cannot be colored ¢3, and vertex
4 cannot be colored ¢;. Thus it gives us the unique list coloring. While the factor
¢y — ¢ seems to give us no new information, we will see later that “inessential” factors
of this sort arise often in the case where G is uniquely colorable.

Most of the detailed calculations seen here were performed with the aid of the
MAPLE computer algebra system.
2 Algebraic Preliminaries

The following lemma was used in the proof of Theorem 1.1.

Lemma 2.1 (Alon and Tarsi, [1, Lemma 2.1]) Let P = P(z) be a polynomial
in n variables over the ring of integers Z. Suppose that for 1 < i < n, the degree of P
as @ polynomial in x; is at most d; and let S; C Z be a set of d; + 1 distinct integers.
If P(z) =0 for all n-tuples z € Sy x --- x 5, then P =0. O

Fach of the polynomials ¢;(z) is univariate and monic. Thus, using the division
algorithm for any fixed 1 < 1 < n, there is a natural way to write any polynomial
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P(z) € z[z]as P(z) = q(z)g.(z)+r(z) where q(z), 7(z) € Z[z] and deg, (r) < deg, g:.
We can perform this reduction repeatedly on fo(z) to obtain

falz) = hi(z)o(x) + halz)galz) + ++ halz)gn (z) + folz).

While the polynomials h; are not unique (they may depend on the ordering of the
vertices), the remainder polynomial f¢ is. For using Lemma 2.1, one can show that fi;
is the unique polynomial satisfying deg,. fo < deg, ¢; which is also congruent to fe
modulo the ideal 1. For the remainder of this paper, we will refer to fo = fo mod [
as the stipulation polynomial of the pair (G, S) or, simply the stipulation polynomial
of 4.

Note that fq is a homogeneous polynomial of degree m = |E| in the variables
Ty, Tg,. .., T,. Treating the colors ¢, ¢s,. .., ¢, as indeterminates, each of the anni-
hilator polynomials g; can be treated as a homogeneous polynomial in the variables
Tiy. .., Ty, and c1,...,¢,. We can obtain any remainder P(z,c) mod g,(z,¢) by re-
peatedly replacing xisd by a homogeneous polynomial in x;,¢1,..., ¢, of degree |5;]
having strictly lower degree in the variable z;. Thus, when all such substitutions have
been made, and we arrive at fg, we still have a homogeneous polynomial of degree
m, now in the variables x1,...,2,,¢1,...,¢,. Moreover, every irreducible factor of fg
is a homogeneous polynomial in these variables. This proves

Lemma 2.2 If G is a graph with n vertices and US; = {c1,...,¢,}, then the stipu-
lation polynomial f¢ of the pair (G,S) is a homogeneous polynomial of degree m =
|E(G)] in the variables xy,...,%u,¢1,...,¢,. Moreover, every proper factor of fe is
homogeneous (of lesser degree) in these variables. O

We shall call an irreducible factor of fg a k-th order stipulation if it is homogeneous
of degree k. We shall see below that first order stipulations are relatively easy to
interpret but those of larger order can be quite difficult. In the case where G is

uniquely list-colorable, we will observe in Section 3 that all stipulations are first-
order.

3 The stipulation polyhomial

In this section, we completely determine the stipulation polynomial f of a graph G
when @ is uniquely list-colorable.

Our first result is essentially obtained by Lagrange interpolation. Let graph ¢ be
given with a set S = {51,...,5,} of lists of colors at the vertices of (. For a given
vector ¢ € 51 X -+ X Sy, ¢ = (c(1),...,¢(n)) say, define §; .(z) = g:i(2)/(z; — c(z)) for
1=1,...,n.
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Theorem 3.1 With (G, S given, we have

folzy= ) L fie (x)f (c). (1

CES XX 5n Hl Ig” <

Proof: It is clear that this polynomial has degree less than |.9;| in variable z; for
each 2. Moreover, for any s € S; X --+ x 5, we have

Fls) = ,QIMNSZ S § R E))
fals) ﬂ*>rmﬁdgﬁu ggisﬂuﬁﬁﬂd)

So the polynomial given takes on the same values as f(; on the grid ) x -+ X S,.
Using Lemma 2.1, we conclude that they are equal. O

Now, in the case where (G is uniquely S list-colorable, we have fo(c) = 0 for all
but one point ¢ on the grid Sy x --- x S,. Thus, we immediately get

Corollary 3.2 Assume G and S are given and that G has a unique S-legal coloring
c. Then

. [l Giclz) ¢

fala) = 7t (o)

=1 g (g)

Theorem 3.1 also gives us some information about linear factors in the general

case. Let ¢ be a vertex of G and let ¢ be a color. We say that color ¢ is forbidden at

vertex ¢ if ¢ € .5; and there is no S-legal coloring of G which assigns color ¢ to vertex
1. Let F; C .S, be the set of colors which are forbidden at vertex ¢. Then we have

Corollary 3.3 If F; is the set of colors forbidden at vertex 1, then for each 7,

ged(fa, 90) = l_l(xz —¢).

c€F;

Proof: Clearly, if 2;—c¢ divides fo(z), then any coloring which uses color ¢ at vertex
¢ corresponds to a vector ¢ for which fc(g) is zero. Thus fa(c) = 0 as well and so
the coloring is not proper. Conversely, if no proper list-coloring of GG uses color ¢ at
vertex 1, then the factor z; — ¢ divides every non-zero summand on the right-hand
side of Equation 1. So it also divides the left-hand side. O

Of course it is clear that, when (& has many S-legal colorings, the factors of fg
can become quite complex. We are interested in finding and interpreting factors of
small degree. In the next section, we report our progress in this direction.
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4 Essential sets of edges

We have shown that, when 7 is umquely list-colorable, its stipulation polynomial
factors into m = | E(()] linear factors, each either of the form (; —¢;) or (i) —¢(j)).
We call factors of the former type essential and factors of the latter type tncssential.
The original polynomial f has one linear factor for each edge of . Thus, the
numnerology of this situation suggests that there could be a set £ of edges of (7 which
correspond to the essential factors with the remaining edges playing the part of the
inessential factors. When & is uniquely list-colorable, define a subset &€ € E(G) to
be an essential set if the members of £ can be oriented so that, for each vertex ¢ and
for each forbidden color ¢ at vertex i, there is a unique directed edge & — 7 in this
set £ such that ¢(k) = ¢. A naive interpretation here is that when vertex k is colored
with color ¢, this forbids color ¢ at vertex 7 and this contributes the factor (xz; —¢) to

f

Example 3: The following graph is uniquely list-colorable. An essential set is indi-
cated in bold.

tepes) leye; ) fepey)

Here

f=4(zy —c1)(z2 — e3)(ws — c3)(wa — e1) (x5 — c2)(2e — c2)(e1 — ¢3) (2 — ).

In this section, we will show that, whenever G is uniquely list-colorable, such an
essential set exists. However, (i) this set of edges is not always unique, and (ii) the
presence of an essential set does not prove that the coloring is unique.
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Theorem 4.1 Let ( be a uniquely list-colorable graph. Then E(() contains an es-
sential set.

Proof:, Let (G be as given with lists S = (S, 52,..., 5.). Let c(z) be the forced color
at vertex ¢ and define F; = S; \ ¢(z). Construct a bipartite graph B with bipartition
(X, E) where

X={(i,c): 1 <i<n, cel}

and E = E(G). A node (2,¢) € X is joined to node ¢ € E in B precisely when e
is incident to 1 in ¢ and the other endpoint of e is forced to take on color ¢. It is
not difficult to see that an essential set in ( is equivalent to a matching in B which
saturates X. (See Example 4.)

Suppose there is no matching in B which saturates X. By Hall’s Theorem (see,
e.g., [2]), there must exist a set § C X such that the neighbor set N(&) = UsesN(s)
(where N(s) is the set of neighbors of node s) has strictly smaller cardinality than S.

By throwing components away if necessary, we may assume that the subgraph M of
B induced by S U N(S) is connected.

Now in B, every element of E has either zero, one, or two neighbors. We claim
that every element of N(S) has two neighbors in S. Let |N(S)| = ky + ky where k; is
the number of vertices whose degree in M is 1. The numnber of edges in M is ky + 2k,.
Since M is connected, it contains a spanning tree: so

ko + 2k > ky o+ by + S| — 1> 2k + 2k,

since, under our assumption that there is no matching, |S] > |N(S)|. This forces
ky = 0 as desired. Thus |[N(S)| = ky = $|E(M)] < |S| and, since M is connected, M
looks like a tree on S in which each edge has been subdivided once.

Let (i, ¢) be a node in S. Then every node in S at distance 2 from (7, ¢) in M must
be of the form (7, ¢(¢)) by construction of B. Extending this, there must be only two
colors, ¢ and ¢ say, which occur as second coordinates of members of S. Let (¢, ¢) be
any node of 5. Then every neighbor of ¢ in G which is colored ¢ must be in 5 since
M contains no nodes ¢ € £ of degree one. Therefore, if for each node (4,¢) € 5 we
recolor vertex 7 of (G with color ¢, we obtain a second S-legal coloring of the graph G.
Yet our hypothesis was that (7 is uniquely list-colorable, So this must be impossible.
We conclude that the matching we seek exists. This provides us with our essential
set. O
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Example 4:

(l’cz) €,
(Ley) €,
(Z’Cx) €5
(4¢,) e

€s

G B

Whenever G is uniquely list-colorable and we have an essential set £ of edges, we
can easily read off the stipulation polynomial of G. Given essential set £, we define
an edge e = 15 to be inessential if it does not belong to £ These edges arve then
directed arbitrarily. We are now in a position to prove our main theorem.

Theorem 4.2 Let G be a uniquely lst-colorable graph with coloring ¢ = {c(1),
—...e(n)} and with essential set €. Let T = E(G)\ £ be the set of inessential

edges. Then
fa =[] (e; = (i) TT(c) = i)

yeE ij€T

Proof: By definition of an essential set, the right hand side is

+ [T o [ () —ei))-

ijeT
So, using Theorem 3.2, we need only prove that

A = T (el = )

=1 ijeT

Examining the left-hand side of this equation, this quotient corresponds set-theoreti-
cally to deleting an essential set of edges. Thus, the terms of fr(c) which remain
correspond precisely to the terms that arise from the inessential edges, up to multi-
plication by —1. O

The presence of an essential set is not sufficient to declare a graph uniquely list-
colorable. In the following example, there are two colorings and an essential set for
each.
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Example 5:

{CI,CZ) o 9 {cz‘cj}
leper () (3) fee,)

[ndeed, uniquely list-colorable graphs are rare. However, even in the case where
the graph has many coloriugs, empirical evidence suggests that the irreducible fac-
tors can still be interpreted combinatorially. In many cases, there exists a function
from the edge set of (¢ to the set of irreducible factors of f¢; with the property that
the pre-image of any irreducible factor induces a connected graph whose stipulation
polynomial (perhaps. with some colors deleted from the lists) is precisely that factor.
Unfortunately, this does not hold in general. Ifedges (1,3) and (2,4) are added to the
above example, the stipulation polynomial of the resulting Ky has a quartic factor
which cannot be so interpretted. A question related to this is the following: “Is it true
that, for each irreducible factor h, the set {i : x; appears in h} induces a connected
subgraph of G7”

5 Further results and examples

The following is an immediate corollary to Theorem 1.2 and Corollary 3.3. The proof
is omitted.

Corollary 5.1 Suppose G has an orientation D satisfying Theorem [.2 and having

outdegree sequence d = (dv,...,d,). Then there are at most d; colors forbidden at
vertex 7 for 1 <i<n. O

Let us say that a color ¢ is allowable at vertex ¢ if there exists a proper list coloring
@ of ( with () = ¢. Suppose that the only stipulations involving x; are of the form
2z — ¢ where ¢ is a color. Then, for any coloring of G which makes f non-zero, we can
change the color of vertex 7 to any color allowable there — leaving all other colors the
same — and f will remain non-zero. (This is true since the only way this expression

can be made zero simply by changing z; is by choosing a forbidden color there.) This
proves

Proposition 5.2 Suppose the polynomial

_ Jolz)
Hcgq (i~ c)

has degree zero in x; and let § be a neighbor of vertez i. Then no color can be allowable
at ¢ and also allowable at 7. O
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We now construct, for each positive integer k a graph with a unique coloring
having all lists of size k.

In [5], Erdds et al. construct, for each k, a complete bipartite graph £ which is
not k-choosable. The vertices of £, correspond to two copies of the k-sets of a set
of size 2k — 1. These k-sets are chosen as the lists af the 3(2;“[1> vertices. If k or
more colors are utilized on one side of the bipartition, then some vertex on the other
side has its entire list forbidden. On the other hand, at least & colors must be used
on each side since, for every set of k — 1 or fewer colors, there is a vertex whose list
contains none of these.

To construct a graph with a unique coloring, we proceed as follows. For each j
(1 <7 < 2k~—1), construct a complete bipartite graph as above and modify just
one list. Choose a vertex, v;, whose list does not contain color ¢; and replace some
element of that list with color ¢;. The bipartite graph is now list-colorable, but color
¢; must be used at vertex v;. For each of these graphs, we choose a fixed list coloring
and join a vertex ¢ to those vertices v; such that color ¢; is not the color of vertex 1.
The resulting graph has a unique coloring. It is not difficult to modify this argument
so as to guarantee that the graph obtained is bipartite.
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