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Abstract 

Let G be graph and let S be a set of lists of colon; at 
the vertices G is said to be S list-colorable if there exists a proper' /'rllnr"'Hl 

of G sllch that each vertexi takes its color . Alan and Tarsi! I] have 
shown that G is S list-colorable if and only if its graph polynomial 

fC(;1;..):= IT(Xi - Xj) 
i~J 

does not lie in the ideal I generated by the annihilator polynomials 
colors available at the vertices. 

of the 

We consider the case where G is list-colorable and determine the 
irreducible of the remainder polynomial (or stipulation polynomial) 
1c = fa mod J. We establish a bijection between the factors of and the 
edges of G. 

1 Introduction 

Let G be a simple with vertices V = {I, and edges E. When vertices 
i and j are joined by an edge, we write i rv . Let = {Cl,C2, ... Cq } be a set of 
indeterminates called colors and for each i, 1 i n, let Si ~ C be a list of colors 
available at vertex i. The S -list coloring question asks whether there exists a proper 

coloring <p : V -t C of G such that, for each i E V, <p( i) E 8 i . Such a 
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called an -legal coloring and said to be where 

arisen in several in situatioIls where one wishes 
whether or Hot of 

The actual definition of o.,PIJ,,"':;'L ,~"U 1Il 

Their motivation was the so-called "Dinitz 1 which is 
'''''"'''''1'0 problem JanSSt:n [7] and [J]). A recent paper [6] 

a history of the problem well some 
does the paper [8] Eahn. There has been renewed interest in list 

rrd",'tnn'e due to some powerful results obtained by N. Alon and M. Tarsi [1]. 
Indeed, their work has been the motivating factor in the present paper. 

Let ~ J ;)';2,· ., xn) be vector of one for each vertex of G. 
Define the edge polynomial of G 

It is to that G is list-colorable (with the given lists 81 . . 

there exists a vector f (c(1), c(2), ... , c(n)) in 81 x 82 x··· x fe;(f) :::J O. 
Now define the annihilator polynomial gi(:r) at vertex i to be the polynomial which 

is zero precisely when Xi E 8 i : 

giCrJ := IT c). 
CESi 

Define I to be the ideal generated by : 1 ::; i ::; n} in 
f of we have fc;(f) :::J 0 whik gi(r:.) = 0 for 1 ::; i 

Aloll and Tarsi prove 

Theorem 1.1 (Alon and Tarsi, [1, Prop. 2.7]) 
Either G S l£st-colorable or fe; E I) not both. 0 

For any proper list 
n. Extending this, 

This theorem as it stands is difficult to use. Perhaps the more important part 
of their paper from the practical viewpoint is the following theorem. (An Eulerian 

of directed graph is a subgraph in which every vertex has in-degree equal 

Theorem 1.2 (Alon and Tarsi, [1, Theorem 1.1]) Let G and be given. Sup­
pose there is an orientation D of G such that (i) the out-degree of vertex i in D is 
less than lSi I for all i) and (ii) the number of Eulerian subgraphs of D 'With an even 
number of edges is not eqlLal to the nnmber of Eulerian subgraphs of D with an odd 
n1t1nber of edges. Then G is S list-colorable. 0 
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\Vhik this theorelll has \w(,1l the fOlus of se\'('ral recellt pavers [I. i] ull list coluri llg. 

Wf? prefer to work direct Iy with Theorem l.1. Om stratpgy is to consider 

which call \w list colored. III these cases. we \vOldd like to understand thl' ITmaillder 

polynomial Ie; Je mod I. VIe view the irrf'ducible factors of as stipulatiolls Oil 

colorability of G. Several examples may help here. 

Exalnple 1: Let G be the gritph with V {1,2,:~,q (wei E = {1:2, :34,14, 

Suppose the lists at the vertices are 81 

Then the difference polynomial is 

and the four itnnihilator polynomials are 

gl(.:r) = (Xl - Cl)(;r:j - C2)(Xl - g2(;!J (:r2 cJ)(:r2 C3), 

.173(:£) (X3 - Cl L g4(£') (X4 - CJ)(X4 - C2)(X4 

If [ is the ideal generated by gl (£.), ... ,g4(£') in 
to be 

we citn compute 

JG(:£) = -(:rl - C2)(Xl - C3)(X2 - Cd(X4 - Cl )(X2 - X4). 

Ie; mod I 

An evaluation r.p : £. --7 C of this polynomial is non-zero if and only if vertex 1 does 
not color C2 or C3, neither vertex 2 nor 4 get color Cl and vertices 2 and 4 receive 
different colors. On the other hand, observe that the evaluation r.p is nOll-zero if and 
only if r.p(;r) is a proper list-coloring. Note that the condition that a vertex be assigned 
a color from its list has been "modded out"; i.e., this is to be assumed at this point. 

In this way, we feel that the irreducible factors of the polynomial Jc: correspond 
to stipulations on the colorings of G. Our task is to decipher the algehraic language 
in which JG presents these conditions to us. In general, these irreducible factors may 
be quite unwieldy. We will determine Je: completely in the case where G has exactly 
one 8-legal coloring. In this case, we say G is uniquely list-colorable. Let us now look 
at a graph which has a unique S'-legal coloring. 
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Example 2: Suppose (; is again /\" -(' 
::-"2. { (' I , Cl } , { ("2, C:l }, (tIl d ,S'" 

Then 

gl (XI - CJ)(:Cl - C'2), 

g3(:£) (X3 - C2)(:C3 - (3), 

and 

in the 
{Cl, 

X4)(XI - :2:4)(.2:2 - X4), 

(;r2 - Cd(X2 - C3), 

g4C~') = (X4 - Cl)(X4 -

We describe again how we will "read" this polynomial. It says that vertex 1 cannot 
be colored C1, vertex 2 cannot be colored Cl, vertex ;3 cannot be colored C.1, and vertex 
4 cannot be colored C2. Thus it gives us the unique list coloring. While the factor 
C2 - seems to give us no new information, we will see later that "inessential" factors 
of this sort arise often in the case where G is uniquely colorable. 

Most of tbe detailed calculations seen here were performed with the aid of the 
MAPLE computer algebra system. 

2 Algebraic Preliminaries 

The folluwing lemma was used in the proof of Theorem 1.1. 

Lemma 2.1 (Alan and Tarsi, [1, Lemma 2.1)) Let P = P(:!J be a polynomial 
in n variables over the ring of integers:2:. Suppose that for 1 :s; i :s; 12, the degree of P 
as a polynomial in :ri is at most eli and let Si C :z be a set of eli + 1 distinct integers. 
If = 0 for all n-t7Lplcs .:£ E 5\ x ... x then P == O. 0 

Each of the polynomials gi(:rJ is univariate and monic. Thus, using the division 
algorithm for any fixed 1 :s; i :s; Tt, there is a natural way to write any polynomial 
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and 

While the OIl the of the 

9i W h i eh is also con gruen t to 
For the remainder this paper; we will rder to mod J 

as the stipnlation polynomial of the pair (G, or, the 

of O. 
of 111 the Vitri;ddec: 

:r}, as ea.ch the alllli-

hilator pOlynloIl11alS "n'.",,.,,,,,,· polynomial in the variables 

We can obtain any remainder f) mod {J 
peatedly a nom()g(~n(;OLIS polynomial in ;r;i, Cl J ., Cq of 
having strictly lower when all such substitutions have 
been made, and we ani ve at of 
m, now in the variables Xl, ... , C1, ... J every irreducible factor 
IS a polynomial in these This proves 

Lemma 2.2 If G is a graph with n vertices and thcn the 
lation polynomial of the S) a homogeneous polynomial of 

IE(O)I in the variables Xl, ... , C1, ... , Cq . Moreover) every proper factor of IS 

homogeneous (of lesser degree) in these variables. 

We shall call an irreducible factor of a k-th onle7' stipulation if it 
of degree k. We shall see below that first order stipulations are easy to 
interpret but those of larger order can be quite difficult. In the case where G is 
uniquely list-colorable, we will observe in Section :3 that all stipulations are first­
order. 

3 The stipulation polynomial 

In this section, we completely determine the stipulation polynomial of graph G 
when G is uniquely list-colorable. 

Our first result is essentially obtained by Lagrange interpolation. Let graph G be 
given with a set S , ... ,Sn} of lists of colors at the vertices of G. For a given 
vector f E 51 X ... X Snl f = (c(1), ... , c(n)) say, defme 9i,c(;r.) = 9i(:SJ/(Xi - c(i)) for 
i = 1, ... , n. 
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Theorem 3.1 vVith S' we have 

( 1 ) 

Proof: It is that this less than variable for 

each . 

So the polynomial takes on the same values as 5\ . x 
Lemma 2.1, we conclude that 0 

Now, in the case where G is 
but one point f on the grid 81 

list-colorable, we heLVe fc;(fJ 
Thus, we Inl.mE~(ll;He 

o for all 

Corollary 3.2 Assume G and S are given and that G has 

f. Then 

o 

S -legal coloring 

Theorem ;3.1 also gives us some information about linear factors in the 
case. Let i be a. vertex of G and let c be a. color. We say that color c is forbidden at 
vertex i if c E Si and there is no coloring of G which color c to vertex 
i. Let Fi ~ S! be the set of colors which are forbidden at vertex i. Then we have 

Corollary 3.3 If Fi is the set of colors forbidden at vertex i) then for each i) 

9i) IT (Xi c). 
cEF, 

Proof: C]f'arly, if Xi - c divides then any coloring which uses color c at vertex 
i corresponds to a vector f for which zero. Thus fG(f) = 0 as well and so 
the is not proper. if no proper list-coloring of G uses color c at 
vertex i, then the factor Xi c divides every non-zero summand on the right-hand 
side of Equation 1. So it also divides the left-hand side. 0 

Of course it is clear that, when has many S-legal colorings, the factors of fG 
can become quite complex. vVe are interested in finding and interpreting factors of 
small degree. In the next section, we report our progress in this direction. 
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4 Essential of edges 

VVe have shown wlwll list-colorable, its polynomial 
factors Into m IE(G)llillt'ar each either of tlw form c)} or (c(i) -c(j)). 
vVe call factors of the former type f's8cntial and factors of t lw lattE-'r type inessential. 
TIl{' polynomial has one linear factor for each of G. Thus, the 
numerology of this situation that there could be a set [; of of (; which 
('nl",'PC'n(\nri to the essential fadors with the remaining the part of the 

illC'ssenti,d factors. When G uniquely list-colorable, define subset E ~ E( G) to 
be it.n essential set if the members of [; can be oriented so that. for each vertex i and 

for each forbidden color c at vertex i , there is a unique directed k -t i in this 
set [; such that c( k) = c. A naive interpretation here is that when vertex k is colored 
with color c, this forbids color c at vertex i and this contributes thE-' factor c) to 

.r. 

Exalnple 3: The following graph is uniquely list-colorable. An essent.ial set is indi­
cated in bold. 

Here 

In this section, we will show that, whenever G is uniquely list-colorable, such an 
essential set exists. However, (i) this set of edges is not always unique, and (ii) the 
presence of an essential set does not prove that the coloring is unique. 
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Theorem 4.1 Let U be a uniquely list-colorable 
sential 

Proof:, Ld G be as with lists ,82 , 

at vertex i (LIHl defilW Fi \ c( i). Construct a 
(X, where 

n, E 

Then contain.') an 

be the forced color 
13 with 

E in B when c 

to take on color c. It is 
J1<""'-.'.'1."-<::' in B which 

We claim 

since, under our assumption that there is no 181 > IN(S) I. This forces 
kl 0 as desired. Thus IN(8) I = k2 = since M is connected, 1\:1 
looks like a tree on 8 in which each has been subdivided once. 

Let (i, c) be a node in 8. Then every node in S at distance 2 from (i, c) in Jli1 must 
be of the form (j, c( i)) by construction of B. this, there must be two 
colors, c and c' say, wbich occur as second coordinates of members of S. Let (i, c) be 
allY node of S. Then every neighbor of i in G which is colored c' must be in S since 
Ai contains no nodes e E E of degree one. Therefore, if for ea,ch node (i, c) S we 
recolor vertexi of G with color c, we obtain a second of the graph G. 
Yet our hypothesis was that is uniquely So this must be impossible. 
'vVe conclude that the matchillg we seek exists. This us with our essential 
set. 
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Example 4: 

B 

Whenever G is uniquely list-colorable and we have an essential of edges, we 
can read off the stipulation polynomial of G. Given essential set ,we define 

ij to be 'inessential if it does not belong to E These are then 
We are now in a position to prove our main theorem 

Theorem 4.2 Let G be a uniquely list-colorable graph with coloring ~ = {c( 1), 
... , c(n)} and with essential set E. Let I := E(G) \ be the set of inessential 
edges. Then 

Proof: By definition of an essential set, the right hand side is 

n 

± IT9i(:r) IT (c(i) c(j)). 
£=1 ijET 

So, using Theorem :3.2, we need only prove that 

fC(fJ IT ( (.) ( .)) 
nn h .(c) = C t - c J . 

1=1 gt - ijET 

Examining tbe left-hand side of this equation, this quotient corresponds set-theoreti-
cally to deleting an essential set of edges. Thus, the terms of which remain 
correspond precisely to the terms that arise from the inessential up to multi-
plication by -1. 0 

The presence of an essential set is not sufficient to declare a graph uniquely list­
colorable. In the following example, there are two colorings and an essential set for 
each. 
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5: 

ra.re. However, even in the case where 
til<' 
tors ('it.ll many 
from tlw edge of G to the set of irreducible factors of 
the pre-image of any irreducible factor induces connected 
polynomial ~ith some colors deleted from the 

that the irreducible 
the["(~ a function 
with the property that 

whose stipulation 
that factor. 

Unfortunately, this does not holdin If (1,:3) and 
above example, the stipulation polynomial of the resulting has a quartic factor 
which cannot be so interprf'tted. A question related to this is the following: "Is it tme 

for each irreducible factor h, the set {i appears in h} induces a connected 
subgraph of G?" 

5 Further results and 

The following is an immediate corollary to Theorem 1 and Corollary :3.:3. The proof 
is omitted. 

Corollary 5.1 Supposc G has an oricntation D satisfying Theo1'em 1.2 and having 
outrifgl'ff sequcncc d = (ell,"" dn ). Then there a7'e at most eli colors forbidden at 
uertf.r i fol' 1 ::; i ::; n. 0 

Let liS say that a color c is allowable at vertex i if there exists a proper list coloring 
y of (,' with y(i) c. Suppose that the only stipulations involving :ri are of the form 
.I:i - c where c is a color. Then, for any of G which makes J nOll-zero, we can 
cbange tlll' color of vertex i to any color allowable there - leaving all other colors the 
same- and J will remain non-zero. 1S true since the only way this c>v-nr<',C'",1"n 

can be made zero simply by changing is by choosing a forbidden color there.) This 
proves 

Proposition 5.2 Suppose the polynomial 

has d(gree ::(1'0 in .l:i and let j be a neighbor of vertex ·i. Then no coloI' can be allowable 
at i and also allowable at j. 0 
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We now construct. for each 
all lists of k. 

In [5], Erdos et al. construct, for each 
not k-choosable. The vertices of Ek 
of 2k 1. These chosen as the 
more colors are utilized all one side of the 
side its entire list forbidden. On the other 
OIl each side for every set of k 
contains none of these. 

with a 

k 

which is 
of a set 

vertices. If k or 
then some vert(~x on the other 
at least k color:; must be used 

there is vertex whos!:, list 

To construct with itS follows. For each j 

(1 J 2k 1), construct just 
one list. Choose vertex, Vj, whose list does not contain sorne 

element of that list with color Cj. The bipartite IS now l10,,-\..\!1\Jl 

Cj must be used at vertex Vj. For each of these we choose a fixed list 
and join vertex i to those verticf~s Vj such that color Cj is not the color of vertex i. 
The graph has a unique coloring. It is not difficult to modify this argument 

LlU,L<kl1~\'.\_. that the obtained is 
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