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Abstract 

A strong matching S in a given graph G is a set of disjoint edges {el' e2, ... , em} such 
that no other edge of the graph G connects an end-vertex of ei with an end-vertex 
of ej,(ei =I- ej). 
Let Gn,p be the random graph on n vertices with fixed edge probability p, 0 < p < 1. 
It is shown that, with probability tending to 1 as n ~ 00, the maximum size f3 of a 
strong matching in Gn,p satisfies 

where Cl and C2 are constants depending only on p, and d = 
Resume 

Un couplage fort S dans un graphe G est un ensemble d'aretes disjointes {el' e2, ... , 
em} tel qu' aucune autre arete du graphe G ne relie une extremite de ei avec une 
extremite de ej, (ei =I- ej). 
Soit Gn,p Ie graphe aIeatoire an sommets et de probabilite d'arete fixee p, 0 < p < l. 
On montre qu'avec une probabilite qui tend vers 1 quand n ~ 00, la taille maximum 
f3 d'un couplage fort dans Gn,p verifie 

1 1 
logd n - "2 logd logd n - Cl S; f3 S; logd n - "2 logd logd n + C2 

ou Cl and C2 sont deux constantes dependant seulement de p, et d = l~P' 

Australasian Journal of Combinatorics lO( 1994), pp.97-104 



1 Introduction 

Let G (V, E) denote a graph with vertex set V and edge set E. Let S be a subset 
of E(G), S = {el,e2, .... ,em }. We say that S is a strong matching if el,e2, ... ,em 

are disjoint, and no other edge of the graph connects an end-vertex of ei with an 
end-vertex of ej (ei -# ej). We shall call a strong matching of size m am-strong 
matching. 
In what follows Gn,p denotes the random graph on n vertices with fixed edge prob
ability p, ° < p < 1. We put d = Here, almost always means with probability 
tending to 1 as n -+ 00. 

One of the surprising results in random graph theory was discovered by Matula 
[Mat 76], see also [Boll 85] (pages 251-257). He proved that, almost always, the 
independence number a of the random graph Gn,p achieves only two possible values. 
More precisely, for every E > 0, almost always 

e 
L 210gd n - 210gd logd n + 1 + 210gi "2) - E J ~ a 

e 
::; L 210gd n - 210gd logd n + 1 + 210gi "2) + E J . 

A similar problem devoted to maximal induced trees in Gn,p was considered by P. 

Erdos and Z. Palka [E. P. 83]. They proved that for every E > 0, almost always, Gn,p 
contains a maximal induced tree of order r if 

but, almost always, Gn,p does not contain a maximal induced tree of order smaller 
than (1 - E) logd n or greater than (2 + E) logd n. 

P. Erdos and B. Bollobas [B. E. 76] proved a similar result for maximal complete 
subgraphs in Gn,p' 

Rucinski [Ru. 87] considered the following more general case. Let:F = {Fk } be a 
family of graphs where Fk has Vk vertices and ek edges, k = 1, .... He showed that 
the order Tn of the largest induced copy of a graph from :F in Gn,p satisfies 

Tn 2 . 
n -+ A as n -+ 00 III probability 

and, if Fk is an induced subgraph of FkH , k 1, ... , then 

tn 1 . b bOlo n -+ A as n -+ 00 III pro all ty 

where A = a log (~) + (1 a) log C~p) and a = limk-+ooek/(v;), 

One can easily deduce from Rucinski's result that, almost always, the maximum size 
f3 of a strong matching in the random graph Gn,p satisfies 
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WHele t 1::5 ctll ctlULLlctl,Y pVi:>lUlVe L,UU;:'LctUL. 

The purpose of this paper is to estimate more precisely using the second moment 
method the parameter f3 in Gn,p' We shall prove that f3 achieves only a finite number 
of values as the following theorem shows. 

Theorem Let Gn,p be the random graph with edge probability p fixed} 0 < p < 1. 
Let d = l~p' There exist positive constants Cl and C2 depending only on p and not 
on n such that 
1) if m logd n - ~ logd logd n - Cl then} almost always} contains a strong 
matching of size m. 
2) if m logd n - ~ logd logd n + C2 then} almost always} G n,p does not contain a 
strong matching of size m. 

In sections 2 and 3 we compute the expectation and the variance of the number M 
of strong matchings of G, and in section 3 we conclude the proof of the theorem. 

2 of the number m-strong rnatch-. 
lngs 

Proposition 1 Let Gn,l' denote the random graph on n vertices with edge prob
ability p, 0 < p '< 1. Let d = l~P' Then} the expectation E(M) of the number of 
m-strong matchings in Gn,l' satisfies. 

i) E( M) ---+ 00 as n ---+ 00 if m < logd n - ~ logd logd n + ~ logd ( ~) . 

ii) E(M) ---+ 0 as n ---+ 00 if m 2: logd n ~ logd logd n + ~ logd (~). 

Proof. 
have 

Let M = Mrn be the number of m-strong matchings in Gn,p' Clearly, we 

E(M) = ( n ) ( 2m ) ~pm(1 p)2(m2 -m) 
2m 2, ... ,2 m! 

where (2::J C~:2) ~! is the total number of m-strong matchings in the complete graph 

on n vertices and pm(1 - p )2(m2
-m) is the probability that Gn,l' contains any fixed 

m-strong matching. 

n! [P(l - p )2(m-l)] 2m2 

E( M) = -m-' (-:-n---2m--=-)! 2 

Stirling's formula gives 

1 [en2p(1 - p)2mC-l)]m 
E(M)~--

J27rm 2m 
(1) 
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Then E(M) ~ 0 if m ~ 00 and for large n 

en2p(1 _ p)2m(-1) 
2m ~ l. 

Taking the log of both sides of (2) we get 

logn 1 logm log (-~) 
log(1 - p) + "2log( 1 - p) - -:-lo-g(":-l-'----'-p-:-)" 

By setting d = l~P' we get 

1 1 (ep ) m 2 logd n - "2logdm + 2 10gd "2 

(2) 

(3) 

The lower bound is asymptotic to logd n. We substitute this value in the r.h.s. of 
(3) and find 

1 1 (ep ) m 2 logd n - "21ogdlogdn + "2 logd "2 . 
Similarly, if 

1 1 (ep ) m < logd n - "2 logd logd n + "2 logd "2 

then E(M) ~ 00 o 

3 Variance of the number of m-strong matchings 

Let Sl and S2 be two fixed strong matchings of size m. We denote by c the cardinal
ity of the common part of the strong matchings 31 and S2, by a the number of edges 
belonging to 31 and not to 32 (a is also the number of edges belonging to 3 2 and not 
to 31 ) and by b the number of vertices which are incident to two distinct edges, one 
in 31 and the other in 32 (see Figure 1, next page). The parameters a, b, c satisfy 
a + b + c = m. Let us denote by Ea,b,c the expectation of the number of pairs (31 , 32 ) 

corresponding to the above notation. Then we have the following proposition. 

Proposition 2. Let M denote the number of strong m-matchings in Gn,p. We 
have 

E(M2) = L Ea,b,c 
a+b+c=m 

where 

Ea,b,c 
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edge in S J 

edge in S 2 

Figure 1: 

Proof. Let a,b and c be fixed. Then the number of possible pairs (Sl,S2) of 
m-strong matchings corresponding to the parameters a, b, cis 

Ca, 2a, 2c, b, b, b,: 
2a la! 2c (c!t1(b!)2. 

) [( ) ]
2 ( ) 

4a - 3b - 2c 2, ... ,2 2, '" ) 2 

The probability 7r that Gn,p contains any fixed pair (Sl, S2) of m-strong matchings 
IS 

7r p2a+2b+c(1 _ p )2c=)-CCr)-(2a+2b+c) 

p2a+2b+c(1 _ p)~[81'n2-8a-7b-4c-(b+2c)21. 

After some calculation we get (4), and for 4a + 3b + 2c o( yin), we have 

4m-(b+2c) 
E '" n 2-2a-cp2a+2b+c(1 _ p)8m2-8m+b+4c-(b+2c)2 

a,b,c - ( 1)2bl I . a. .c. 

4 End of the proof 

Let us prove that if log2 n - ~ log21og2 n < a where a is a positive constant which 
will be specified later, then 

as n -+ 00. (5) 
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This implies the Theorem, using Chebyshev's inequality. 
By relations (1) and (2) we have, for all (a, b, c) , 

( 1)2 -2c-b 
~ m. n 22m-2a-cp2a+2b+c-2m(1 _ p) ~[b+4c-(b+2c)21 

(a!)2(b!)c! 
Ea,b,c 

E2(M) 

( 1)2 -2c-b 
~ m. n 22b+cp2m-C(1_ p)Hb+4c-(b+2c)2) 

(a!)2(b!)c! . 

By writing n = (1 p)-logd n , the above relation gives 

Ea,b,c 
E2(M) 

~ (m!)2 22b+cp- C(1 _ p)~(b+2c)[21ogdn-(b+2c)1+b+4C 
( a!)2b!c! 

~ (m!)2 22b+c (~ _ l)C (1 _ p)~(b+2C)[21ogdn-(b+2c)+11. 
(a!)2b!c! p 

Thus 

Ea,b,c ~ ((~;~; I (~ - l)C (1 p)~(b+2C)[21ogdn-(b+2c)+1-logd21. (6) 
E2(M) a. .c. p 

Clearly, for a = m and b = c = 0, we have 

Em,Q,Q 1 
--- --I> as n --I> 00. 
E2(M) 

So, it remains to prove that 

~ Ea,b,c_, 0 L.J --,. as n --I> 00. 

a+b+c=m,a:f:m E2(M) 

Since the number of terms of the above sum is smaller than m 2
, we need to prove, 

for all (a, b, c) with a i- m 

Ea b c 1 ) 
E2(An = o(m2 . 

Set x = 2b + c, 1 ::; x :::; 2m. Let f( x) be the function defined by 

f(x) = x(210gd n - x + 1 -10gd2). 

So, for 1 :::; b + c ::; 210gd m, we have 

Therefore 

Ea,b,c S m 21og,m G -1) < (1 - p)21og,n-log,2 

S m 21og,m G) 21og,m (1- p)21og,n-log,2 

o (~m). 
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While, for 210gd m :::; b + c :::; 2m and for m sufficiently large, we have 

f(2b + c) ~ f(2m) 2m[2loga n - 2m + 1 -10gd2] 

~ 2m[10gd log a n + 2a 1 logd 2]. 

This bound can be applied to equation (6) to obtain 

Ea,b,c 
E2(M) 

It follows that 

Ea,b,c 
E2(M) 

b+c>21ogd m 

I (1 )c a~!'c! p - 1 

So, 

if 

(7) 

Any constant a > ~ [loga( 1 + ~) + logd 2 -1] satisfies the inequality (7). This concludes 
the proof of the theorem. 0 

5 Open problems 

Problem 1 

Find the minimum size of a maximal strong matching in the random graph Gn,p, 

where p is fixed. 

Problem 2 

Find estimates for the maximum size of a strong matching in the random graph Gn,p 

with edge probability p = ~ where c > 0 is a positive constant. 
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Problem 3 

The strong chromatic index sci( G) of a graph G is the smallest integer k such that 
the edge set of G can be partitioned into k induced matchings. If e( G) denotes the 
number of edges of G then 

'(G) > e(G) 
SC'L - f3( G)' 

From our result one can deduce immediately that, almost always, the strong chro
matic index sci = sci( Gn,p) of the random graph Gn,p, p fixed, satisfies 

pn2 
sci ~ (1 - 0(1))-1 -. 

ogd n 

Is true that, almost always, in Gn,p we have 
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