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Abstract 

A diagonal Latin square is a Latin square whose main diagonal and 
back diagonal are both transversals. A Latin square is self-orthogonal 
if it is orthogonal to its transpose. In an earlier paper Danhof, Phillips 
and Wallis considered the question of the existence of self-orthogonal 
diagonal Latin squares of order 10. In this paper we shall present some 
constructions of self-orthogonal diagonal Latin squares and consequently 
consider the existence of self-orthogonal diagonal Latin squares. 

1 Introduction 

A Latin square of order n is an n X n array such that every row and every column is 
a permutation of an n-set. A transversal in a Latin square is a set of positions, one 
per row and one per column, among which the symbols occur precisely once each. A 
transversal Latin square is a Latin square whose main diagonal is a transversal. A 
diagonal Latin square is a transversal Latin square whose back diagonal also forms 
a transversal. 

Two Latin squares of order v are orthogonal if each symbol in the first square 
meets each symbol in the second square exactly once when they are superposed. 
A Latin square is self-orthogonal if it is orthogonal to its transpose. Orthogonal 
(transversal) Latin squares of order v are denoted briefly by OLS(v) (OTLS(v)). 
Self-orthogonal (diagonal) Latin squares of order v are denoted briefly by SOLS( v) 
(SODLS(v)). 

In an earlier paper [1] Danhof, Phillips and Wallis considered the question of 
the existence of self-orthogonal diagonal Latin squares of order 10. In this paper 
we shall present some constructions of self-orthogonal diagonal Latin squares and 
consequently consider the existence of self-orthongal diagonal Latin squares. We 
shall prove 

Theorem 1.1 A SODLS of order v exists for all positive integers v, with the excep­
tion of v E {2, 3, 6} and the possible exception of v E {lO, 14}. 
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For our purpose, we need the following construction which was devised by Wal­
lis. A Latin square is symmetric if it is equal to its transpose. We denote by 
SOLSSOM(v) a self-orthogonal Latin square of order v with a symmetric orthogo­
nal mate. 

Lemma 1.2. ([7]) If there exists a SOLSSOM(v), then there exists a SODLS(v). 

For SOLSSOM we have the known 

Lemma 1.3. ([6, 9, 11]) A SOLSSOM of order v exists for all positive integers 
v, with the exception of v E {2, 3, 6} and the possible exception of v E {10, 14} U E, 
where 

E {46, 54, 58, 62, 66, 70} . 

Now we need only consider the case vEE. For our purpose, let OLS(v,n) de­
note OLS(v) with a sub-OLSen) missing. Usually we leave the size n hole in the 
lower right corner. Similarly we define IOTLS(v,n), ISOLS(v,n), ISODLS(v,n) 
and ISOLSSOM(v,n). We also denote by ISOLS*(v,n) an ISOLS(v,n) in which 
the elements in the cells {( i, v - n + 1 - i) : 1 :S i :S v - n} are distinct and differ­
ent from the missing elements. Finally, we denote by SOLS(v, k) the SOLS(v) in 
which the cells {(v - k + i, v - i + 1) : 1 :S i :S k} are a transversal about the ele­
ments aI, a2, ... ,ak· 

For subsequent use, we construct the following examples. 

Example 1.4. There exists a SOLS(9, 2). 

Proof. Let GF(9) = {al = 0, a2 = 1, a3,' .. ,ag}. Define the 9 X 9 square array 
A = (Cij) by 

Cij = Aa,; + (1 A)aj 

where A E GF(9)\ {aI, a2} and 2A =1= 1. It is easy to see that A is a SOLS(9, 2). 

Example 1.5. There exists a SOLS(l1, 6). 
Proof. Define the 11 X 11 square array A (Cij) by 

Cij = 2i - j (mod 11) 

1 :S Cij :S 11. It is easy to see that A is a SOLS(l1, 6). 

2 Main result 

In this section we shall consider the case vEE. For these values of v we use 
recursive constructions. These recursive constructions rely on the existence of other 
orthogonal arrays and on information regarding the location of transversals in certain 
Latin squares. To this end we need more notation. 
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Let A (ai.j) be a Latin square. We call two transversals disjoint if they have no 
cell in common. A transversal T is symmetric if (i,j) E T if and only if (i,i) E T. 
A pair of transversals T and S are symmetric if (i,j) E T if and only if (i,i) E S. 
Finally, t transversals will be called n-intersecting if the only elements they have in 
common are the elements in their missing of side n. 

For our purpose, we need IS0LSSOM(12,2) from a starter-adder type con­
struction. This idea has been described by several authors (see, for example, [5, 
10]). The plan is to construct an 1 SOL S ( v, n) A and a symmetric orthogonal 
mate B from their first row (given by ~ = (ec( I! ec( 1,2), . .. ec( 1, v - n)) and 
f = (ec(l, v n + 1), ec(l, v - n + 2), ... , ec(l, v)) and from the last n entries of the 
fust column (given by 9-e (ec(v-n+l,l), ec(v-n+2, 1)"", ec(v, 1)), where C = A 
or B. The entries of the array are {I, 2, ... ) v - n} U where X {Xl, X2, ••• , xn }. 

The array is constructed modulo v n, where the Xi act as "infinity" elements 
according to the following rules. 

ec(s,t) if ec(s,t) Xi 

ec(s, t) + 1 (mod v n) otherwise 

{ 

ec(s + l,v - n + t) 
(b) 

ec(v n+ t,s + 1) 

ec ( s, v - n + t) + 1 
(mod v - n) 

ec ( v - n + t, s) + 1 
1 :::; t :::; n, 1 :::; s :::; v - n. 

Note that in case ( a) all cell labels are determined modulo v - n, but in case (b) this 
applies only to the row and column labels respectively. 

It is not difficult to determine the conditions that ~,f ,g , C = A or B, must 
satisfy, but we shall not concern ourselves with that. Simpk ~lculations verify that 
they work. For example, an IS0LS(14, 1) can be constructed from 

~ (1,9,4,13,10,3,6,11,7,12,2,5,xl) 

LA (8) 9..A = (9), 

an IS0LSSOM(12,2) can be constructed from 

~ (1,8,2,9,6,3,xl,10,x2,4) 

L (5,7) gA = (4,9) 
~ (xl,1,6,8,7,x2,3,5,4,10) 

b (2,9) flB = (2,9). 

We then have 

Example 2.1. There exists an IS0LSSOM(12, 2) and a SOLS(14, 6). 
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Proof. It is easy to see that a SOLS(14, 6) comes from the above I SOLS(14, 1). 
Now we want to construct a special IS0DLS(12, 2) A and a special 

I SOLS*(12, 2) B from this I SOLS SOM(12, 2). 

Lemma 2.2. A is an I SOLS(12, 2) with two pairs of symmetric transversals and 
a symmetric transversal, all six transversals (including the main diagonal) being 2 -
intersecting and pairwise disjoint. 

Proof. It is easy to see that the elements in the cells {( i, i + j) : 1 :S i :S 10} (j = 
1,3,5,7,9) are a transversal about the elements 1,2, ... , 10, in which the cells 
{( i, i + 5) : 1 :S i :S 10} are a symmetric transversal, the cells {( i, i + 1) : 1 :S i :S 10} 
and {(i,i + 9): 1 ~ i ~ 10} and the cells {(i,i + 3): 1 :S i:S 10} and {(i,i + 7) : 
1 ~ i ~ 10} are two pairs of symmetric transversals. 

Lemma 2.3. For the I SOLS(12, 2) A, any permutation, when applied simultane­
ously to the rows and columns of A, produces an IS0LS(12,2) with two pairs of 
symmetric transversals and a symmetric transversal, all six transversals (including 
the main diagonal) being 2-intersecting and pairwise disjoint. 

Lemma 2.4. For the incomplete symmetric Latin square B, there exists a permuta­
tion which, when applied simultaneously to the rows and columns of B, produces an 
incomplete Latin square with constant back diagonal. 

( 
1 2 3 4 5 6 7 8 9 10 Xl X2) 

Proof. (7 = 1 8 9 7 5 6 4 2 3 10 Xl X2 . 

Lemma 2.5. For the incomplete symmetric Latin square B, there exists a permu­
tation which, when applied simultaneously to the rows and columns of B, produces a 
incomplete Latin square with constant value X2 in cells Hi,ll i): 1 :S i :S 10}. 

( 
1 2 3 4 5 6 7 8 9 10 Xl X2) 

Proof. (7 = 1 2 3 4 5 10 9 8 7 6 Xl X2 . 

By combining Lemma 2.3 and Lemma 2.4, we have 

Example 2.6. There exists an I SO D LS(12, 2) with two pairs of symmetric transver­
sals and a symmetric transversal, all six transversals (including the main diagonal) 
being 2-intersecting and pairwise disjoint. 

By combining Lemma 2.3 and Lemma 2.5, we have 

Example 2.7. There exists an IS0LS*(12, 2) with two pairs of symmetrictransver­
sals, all five transversals (including the main diagonal) being 2-intersecting and pair­
wise disjoint. 

We also need the following: 

Lemma 2.8. ([4,5]) If v 2:: 3n + 1 and v f. 6, then there exists an IS0LS(v,n) 
except possibly for (v, n) = (6m + 2, 2m). 

In the remainder of this section we shall prove our main result. We shall assume 
that the reader is familiar with the various methods of constructing an IS0LS(v,n) 
starting with an IS0LS(s, t) (see, for example, [3,5]). We shall also assume that the 
reader is familiar with the various techniques of constructing an ODLS(v) from an 
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OLS( v) by permuting rows and columns (see, for eXctmJl1e, [2,8]). So we state the 
following constructions without proof. 

Lemma 2.9. If there exist an ISODLS(v,n) (v even) with t pairs of symmetric 
transversals and a symmetric transversal, a1l2t + 2 transversals (including the main 
diagonal) being n-intersecting and pairwise disjoint, an OT LS( a), an lOT LS( a + 
hi, hi), i = 0,1"", t, an ISOLS(a + h, h), and a SOLS(na + k, k), where k = 
b + bo + 2(hl + ... + bt ) and k is even, then there is a SODLS(va + k). 

Lemma 2.10. If there exist an ISOLS*(v,n) (v n even) with t pairs of sym­
metric transversals, all 2t + 1 transversals (including the main diagonal) being n­
intersecting and pairwise disjoint, an OTLS(a), an IOTLS(a+bi,bi ), i = 1,2,··· ,t, 
an ISOLS(a+h,b), and aSODLS(na+k), where k b+2(b1 + .. ·+bt ) andna+k 
is even, then there is a SODLS(va + k). 

From Lemma 2.9 we have the following Lemmas: 

Lemma 2.11. If there exists a SOLS(a)J an ISOLS(a+2, 2) and a SOLS(a+k, k), 
then there is a SODLS(8a + k), where k is even and k ~ 6. 

Proof. Apply Lemma 2.9 to an ISODLS(8,l) with a of symmetric transversals, 
all three transversals (including the main diagonal) and pairwise 
disjoint. 

Lemma 2.12. If there exist a SOLS(A), and ISOLS(a+ 1, I), a SOLS(2a + k, k), 
then there is a SODLS(12a + k), where k is even and k 6. 

Proof. Lemma 2.9 to the 2) in 2.6. 

We then have 

Lemma 2.13 There exists a SODLS(v) for v E {46,54,58}. 

Proof. v E {46,58} comes from Lemma 2.11 with a, k E {(5, 6), (7, 2)}. v = 54 
comes from Lemma 2.12 with (a,k) = (4,6). The conditions SOLS(a + k,k) and 
SOLS(2a + k, k) come from Examples 1.4, 1.5 and 2.1, others from Lemma 2.8. 

From Lemma 2.10. we have 

Lemma 2.14. There exists a SODLS(v) for v E {62, 66, 70}. 

Proof. Apply Lemma 2.10 with (v, n) = (12,2), t b 2, bi 0 or 2, a = 5, and k E 
{2, 6, 10}. The condition ISOLS*(12, 2) comes from Example 2.7, SODLS(nh + k) 
from Lemmas 1.2, 1.3 and 2.8. 

By combining Lemma 2.13 and Lemma 2.14 we then have 

Theorem 2.15. There exists a SODLS(v) for vEE. 

By combining Lemmas 1.2 and 1.3 and Theorem 2.15, we obtain Theorem 1.1. 
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