
On the Integrity of Distance DomInation In Graphs 

Timothy J. 
Department of Mathematics 

University of Natal 
Durban, South Africa 

Michael A. Henning 
Department of Mathematics 

University of Natal 
P.O. Box 375 

Pietermaritzburg, South Africa 

Henda C. Swart 
Department of Mathematics 

University of Natal 
Durban, South Africa 

Abstract 

Let nand k be positive integers and let G be a graph. A set D of vertices 
of G is defined to be an (n, k )-dominating set of G if every vertex of V( G) D 
is within distance n from at least k vertices of D. The minimum cardinality 
among all (n, k )-dominating sets of G is called the (n, k )-domination number of 
G and is denoted by 'Yn,k(G). A set I of vertices of G is defined to be an (n, k)­
independent set in G if every vertex of I is within distance n from at most k-1 
other vertices of I in G. We denote by f3n,k( G) the maximum cardinality of an 
(n, k)-independent set of G. We show that the problem of computing 'Yn,k is 
in the NP-complete class, even when restricted to bipartite graphs and chordal 
graphs. We prove that in every graph there exist some subsets of vertices that 
are both (n, k )-independent and (n, k )-dominating, so In,k :s; f3n,k' We also 
investigate lower and upper bounds on 'Yn,k' 
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1 Introduction 

Let n .:?: 1 be an integer. The open n-neighbourhood N n ( v) of a vertex v in a graph 
G is the set of all vertices, different from v, which are within distance n from v, that 
is to say, Nn(v) = {u I 0 < d(u,v) :::; n}. The n-degree degnv of v in G is given by 
INn(v)l, while Lln(G)(8n(G)) denotes the maximum (respectively, minimum) n-degree 
among all the vertices of G. For A a subset of vertices of G, let us denote by mn(A) 
the number of pairs (u, v) of vertices with u, v E A and dG ( u, v) ::; n. Further, we let 
degn(x, A) = I{a E A I 0 < dG(x,a)::; n}1 and Lln(A) = max degn(x, A). For other 

xEA 

graph theory terminology, we follow [11]. Specifically, p( G) denotes the number of 
vertices (order) and q(G) denotes the number of edges (size) of a graph G with vertex 
set V( G) and edge set E( G). 

Let nand k be positive integers and let G be a graph. We define a set V of 
vertices of G to be an (n,k)-dominating set of G if every vertex of V( G) - V is within 
distance n from at least k vertices of V. The minimum cardinality among all (n, k)­
dominating sets of G is called the (n,k)-domination number of G and is denoted by 
T'n.k (G). We note that (1,1 )-dominating sets are the classical dominating sets, that is, 
T'l.l(G) = T'(G). When n = 1, our definition of (n, k)-domination coincides with the 
notion of k-domination, introduced by Fink and Jacobson [15, 16] and further studied 
by Cockayne, Gamble and Shepherd [12], Favaron [13, 14], Hopkins and Staton [24] 
and Jacobson and Peters [25]. When k = 1, our definition of (n, k)-domination 
coincides with the notion of n-domination, results on which have been presented 
by, among others, Bacso and Tuza [1,2], Beineke and Henning [3], Bondy and Fan 
[4], Chang [7], Chang and Nemhauser [8 - 10], Fraisse [17], Fricke, Hedetniemi and 
Henning [18], Henning, Oellermann and Swart [20 - 23], Meir and Moon [26], Mo and 
Williams [27] and Topp and Volkmann [28, 29]. 

The vertices of G may represent centres, some pairs of which are in direct commu­
nication with each other (represented by adjacent vertices), and V a set of centres 
from which signals may be sent, where a signal may be reliably transmitted along a 
route between centres corresponding to a path in G of length at most n. A break­
down in reliable communication may occur for a number of reasons. For example, 
an erroneous massage may be sent from one or more of the transmitting centres, or 
a transmitter may fail. To retain the integrity of the communication network in the 
event of such failures, further conditions must be imposed on the set of transmitting 
centres represented by V. One may require the each non-transmitting centre be able 
to receive messages from at least k transmitters, where k is a positive integer suffi­
ciently large to allow for adequate security of transmission in all likely events of a 
breakdown in reliable communications as mentioned above. The set of transmitting 
centres then corresponds to an (n, k )-dominating set of G. 

Next we define the set I of G to be an (n, k)-independent set in G if every vertex 
of I is within distance n from at most k - 1 other vertices of I in G, that! is to say, 
~n(I) < k. Let (3n.k(G) denote the maximum cardinality of an (n, k)-independent set 
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ot (i. We note that (I,l)-mdependent sets are the classical independent that is, 
(31,1(G) (3(G). For n = 1, our definition of (n, k)-independence coincides with the 
notion of k-independence (also called (k - I)-small in [24]) introduced by Fink and 
Jacobson [15, 16] and further studied by Favaron [13, 14], Hopkins and Staton [24] 
and Jacobson and Peters [25]. 

In this paper we show the problem of determining In,k and (3n,k is in the NP­
complete even when restricted to bipartite graphs and chordal graphs. We 
prove that for any graph G, and for all positive integers nand k, In,k( G) (3n,k( G). 
Finally we bounds on In,k that do not involve f3n,k' 

2 Complexity Issues 

Jacobsen and Peters [25] showed that the problem of determining Ik for an arbitrary 
graph is in the NP-complete class. In this section, we show that even when restricted 
to bipartite graphs and chordal graphs the problem of determining Ik is in the NP­
complete class. We also show that the problem of determining In,k for bipartite 
graphs and chordal graphs is NP-complete. The following decision problem for the 
domination number of a bipartite graph is known to be NP-complete (see [19]). 

Problem: Bipartite Domination (BDM) 
INSTANCE: A bipartite graph G and a positive integer m. 
QUESTION: Is I(G) ::; m? 

We will demonstrate a polynomial time reduction of this problem to the bipartite 
k-domination problem. For notational convenience we will write Ik instead of /l,k. 

Problem: Bipartite k-Domination (BkDM) 
INSTANCE: A bipartite graph G'" and positive integers k 2 2 and m"'. 
QUESTION: Is Ik(GOO) ::; mOO? 

Theorem 1 Problem BkDM is NP-complete. 

Proof. It is obvious that BkDM is a member of NP since we can, in polynomial time, 
guess a subset of vertices V and then verify, in polynomial time, whether or not V is 
a k-dominating set of G'" and that IVI ::; m"'. 

We next show how a polynomial time algorithm for BkDM could be used to solve 
BDM in polynomial time. Given a graph G and positive integer m, construct the 
graph G'" by adding to each v E V (G) a set of k - 1 paths of length 1. Let p = IV (G) I 
and q = IE(G)I. We have IV(GOO)I = pk and IE(GOO)I q + (k -1)p, and so Goo can be 
constructed from G in polynomial time. Note that if G is bipartite, then Goo is also 
bipartite. 

We will show that G has a dominating set V with IVI ::; m if and only if G'" has a 
k-dominating set D'" with IVOOI :f m'" = m + p( k - 1). Let VOO be a k-dominating set of 
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G* with IV* I ~ m* = m + p( k + 1). Note that every vertex of G* of degree less than k 
must be in V*. In particular, each end-vertex of G* must be in V*. Consider the set 
V = V* n V(G). We claim that V is a dominating set of G. Suppose v E V(G) - V. 
Since v is adjacent to only k - 1 vertices of V( G*) - V( G), it follows that v is 
adjacent to at least one vertex of V. Thus V is a dominating set of G of cardinality. 
I'D*I- p(k - 1) ~ m, so ')'(G) ~ IVI ~ m. Next suppose that G has a dominating 
set V with /VI ~ m. Then it is evident that V, together with the set V(G*) - V(G), 
forms a k-dominating set of G* of cardinality IVI + p(k -1) ~ m + p(k -1) = m*, so 
')'k(G*) ~ m*. 0 

The following decision problem for the domination number of a chordal graph is 
known to be NP-complete (see [5,6)). 

Problem: Chordal Domination (CDM) 
INSTANCE: A chordal graph G and a positive integer m. 
QUESTION: Is ')'(G) ~ m? 

Using the same construction as that in the proof of Theorem 1, we may demonstrate 
a polynomial time reduction of this problem to the chordal k-domination problem. 

Problem: Chordal k-Domination (CkDM) 
INSTANCE: A chordal graph G* and positive integers k ~ 2 and m*. 
QUESTION: Is ')'k(G*) ~m*? 

Hence we have the following result. 

Theorem 2 Problem CkDM is NP-complete. 

Next we demonstrate a polynomial time reduction of the problem BDM to our 
bipartite (n, k )-domination problem. 

Problem: Bipartite (n, k )-Domination (BnkDM) 
INSTANCE: A bipartite graph G* and integers n, k ~ 2 and m*. 
QUESTION: Is ')'n,k(G*) ~ m*? 

Theorem 3 Problem BnkD M is NP-complete. 

Proof. Clearly there exists a nondeterministic-polynomial algorithm for deciding 
whether or not a graph G* has a subset V of V( G*) that is an (n, k )-dominating set 
with IVI ~ m*. So BnkDM is in the class N P. 

We next show how a polynomial time algorithm for BnkDM could be used to solve 
BDM in polynomial time. Given a graph G with vertex set {vt, V2, ••• , vp } and size 
q and a positive integer m, we construct a graph G* as follows. Consider a complete 
bipartite graph Kk-1,k-l with partite sets U and W. Add three new vertices u, v 
and w to this graph, join u to every vertex in U, join w to every vertex in W, and 
join v and w. Now subdivide each of the k - 1 edges incident with u n - 1 times, 
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ana SUOUIVlue Lue euge 'Ow n - L. Llllleti. LeI, fl ueUULe LHe re::;U1\,Illg grapH. runner, 
let HI, HI, .. " Hp be p (disjoint) copies of H. Let Wi be the name of the set in Hi 
corresponding to W, and let Ui, Vi and Wi be the names of the vertices of Hi that are 
named u, V and w, respectively, in H. For each i = 1,2, ... ,p, identify the vertex Vi 

of G and the vertex Vi of Hi. Let G* be the graph so constructed from G. We have­
IV(G*)I = IV(H)I'p k(n+1)p and IE(G*)I = q+IE(H)I'p q+[k2 +(n 1)k-1]p, 
so G* can be constructed from G in polynomial time. An example is presented in 
Figure 1 with n = 3 and k 4, and where G is the 4-cycle VI, V3, V4, VI' Note that 
if G is bipartite, then G* is also bipartite. 

G*: 

Figure 1: G is a (4,4) graph; G* is a (64,96) graph, 

We will show that G has a dominating set V with IVI ::; m if and only if G* has 
an (n, k)-dominating set V* with IV*I ::; m* = m + kp. Suppose first the G has a 
dominating set V with IVI ::; m. Then it is evident that V U (WI U W2 U ... U Wp ) U 
{ut, U2, ••• , Up} is an (n, k)-dominating set of G* of cardinality IVI + p(k - 1) + p ::; 
m+kp=m*. 

Now let V* be an (n, k)-dominating set of G* with IV*I ::; m* = m + kp. Before 
proceeding further, We introduce some notation. Let Vi = V* n V(Hi) and let Pi 
denote the Vi - Wi path. For each j = 0,1,2, ... , 2n + 1, let Uij be the set of all vertices 
of Hi at distance j from Vi. Note that Uio = {vd, Uin = Wi, and Ui ,2n+1 = {ud· 
Further, let Ui be the set of all vertices, distinct from Ui, that are within distance n 

2n 
from Ui, so Ui = U Uij. We now prove five claims. 

j=n+l 
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Claim 1 IVi I 2:: k for all i. 

Proof. If Uj t/:. Vi, then the vertex Uj is within distance n from at least k vertices of 
Vi, so IVil 2:: k. On the other hand, if Ui E Vi, then consider the set of vertices Ui ,2n' 

If some vertex of Ui ,2n does not belong to Vi, then IVil 2:: k. If every vertex of Ui ,2n' 

belongs to Vi, then Vi contains these k 1 vertices in addition to the vertex Ui, so 
IVil 2:: k. 0 

Claim 2 If Uj t/:. Vi, then IVil 2:: k + 1. 

Proof. Assume, to the contrary, that IVil < k + 1. Then, by Claim 1, IVd = k. 
Since Uj t/:. Vi, the vertex Ui is within distance n from each of the k vertices of Vi, so 
IVi n Uil = k and Vi CUi. Note that by the way in which Hi is constructed, each 
vertex v E Ui belongs to exactly k - 2 cycles of length 2n + 2 that contain no chords. 
Hence, for each v E Ui , there is a (unique) set Sv of k - 2 vertices of Ui at distance 
n + 1 from v, and Sv C Uij for some j with n + 1 ::; j ::; 2n. Now consider a vertex 
v E Vi. Then each vertex of Sv is within distance n from at most IVi - {v} I = k - 1 
vertices of Vi. This means that Sv C Vi. Since IVil = k, and ISv U {v}1 = k - 1, 
there is a vertex U E Vi that does not belong to Sv U {v}, so Vi Sv U {U, v}. Since 
v =1= u, Sv =1= Suo Let U* E Su - Sv' Since U t/:. Sv, we note that d( u, v) ::; n, so since 
d(u, u*) = n + 1 we know that U* =1= v. Hence U* t/:. Vi. But this means that U* must 
be within distance n from each of the k vertices of Vi. This contradicts the fact that 
d(u, u*) = n + 1 and U E Vi. We deduce, therefore, that IVil ~ k + 1. 0 

Claim 3 If IVd = k, then Vi = Uin U {ud. 

Proof. Necessarily, Ui E Vi by Claim 2. Now consider a vertex v E Ujn' Then 
d(uj, v) = n + 1. Furthermore, d(v, Vi) = n, so d(v, V(G*) ~V(Hi)) ;:: n + 1. Hence if 
v does not belong to Vi, then 11\ - {udl2:: k, so that IVil 2:: k + 1, which produces a 
contradiction. We deduce that every vertex of Uin belongs to Vi, so Uin U {Ui} ~ Vi. 
But IVil = k, and IUin U {ui}1 = k, whence Uin U {ud = Vi.D 

As an immediate consequence of Claim 3, we have the following result. 

Claim 4 If Vi contains some vertex of Pi) then IVd 2:: k + 1. 

For each i = 1,2, .... , p, do the following. If IVd = k, then let 'Di = Vi. If 
IVd 2:: k+1, then let 'Di = Uinu{Uj,vd, SO I'DiI = k+1. Now let V' = ~U~U ... U~. 

p p 

Then IV'I = I: I'DiI::; I: IVil = IV*I· We show next that V' is an (n, k)-dominating 
i=l i=l 

set of G*. 
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\..JlaIm a v zs an ~n,K;)-aomznanng seT: OJu'. 

Proof. If I~I = k + 1, then it is evident that every vertex of Hi is (n, k)-dominated 
by~, and therefore by V'. If I~I k, then ~ Vi = Uin U {ud by Claim 3. Hence 
every vertex of Hi that is not on the Vi - Wi path Pi is clearly (n, k )-dominated by ~, . 
and therefore by V'. The only vertices of Hi whose (n, k ):domination are in doubt are 
those vertices on Pi. That these vertices are (n, k )-dominated by V' may be seen as 
follows. Consider the vertex Wi. Since d( Ui, Wi) > n, Wi is within distance n from only 
k -1 vertices of Vi. However D'" is an (n, k )-dominating set of C"', so there must exist 
a vertex w E D* Di that is within distance n from Wi. Since d( Vi, Wi) = n - 1, and 
W r;!. V(Hi ), it follows that d( w, Wi) = n. Thus W is a vertex of C that is adjacent to 
Vi, that is to say, W Vr for some r with 1 ~ r ~ p and i #- r. Since Vr E Dr, we have 
by Claim 4 that IDr I ;::: k + 1, and therefore that D~ = Urn U { Un v,. }. Hence we note 
that Uin U {vr } cD'. Consequently, every vertex on Pi is within distance n from at 
least k vertices of D' Hence if IDil k, then every vertex of Hi is (n, k)-dominated 
by D'. The result now follows. 0 

It follows from Claim 5 that D' is an (n, k)-dominating set of C'" with ID'I :::; ID"'I :::; 
m'" = m+pk. Now consider the set D D'nV(C). We claim that D is a dominating 
set of C. Suppose Vi E V(C) D. Then Vi t/:. Di, so we must have IDil = k. As in the 
proof of Claim 5; there exists a vertex Vr of C that belongs to D' which is adjacent to 
Vi. So Vr E D and Vi is adjacent to at least one vertex of V. Hence D is a dominating 

set of C with IDI = ID'I- IUin U {udl ~ m'" + pk = m. This completes the proof 

of Theorem 3. 0 

Finally, we demonstrate a polynomial time reduction of the problem CDM to our 
chordal (n, k )-domination problem. 

Problem: Chordal (n, k)-Domination (CnkDM) 
INSTANCE: A chordal graph C'" and integers n, k ~ 2 and m"'. 

QUESTION: Is "Yn,k(C"') :::; m"'? 

Theorem 4 Problem CnkDM is NP-complete. 

Proof. Clearly CnkDM is in the class N P. We next show how a polynomial time 
algorithm for CnkD M could be used to solve DC M in polynomial time. Given a 
graph C with vertex set {Vb V2, ... , vp } and size q and a positive integer m, we construct 
a graph C'" as follows. Consider a complete bipartite graph Kk,k-l with partite sets U 
and W, where lUI = k. Add a new vertex W to this graph and join every two vertices 
of WU {w} with an edge. Attach to every vertex of U a path of length n in such a way 
that the resulting paths Qb Q2, ... , Qk (say) are pairwise disjoint. For j = 1,2, ... , k, 
let Uj be the end-vertex of Qi that does not belong to U. Finally, attach to w a W - V 

path P of length n - 1. Let H denote the resulting graph. Further, let HI, H2 , ... , Hp 
be p (disjoint) copies of H. Let Wi be the name of the set in Hi corresponding to 
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W, and let Qil, Qi2, ... , Qik and Pi be the names of the paths of Hi corresponding to 
QI,Q2, ... ,Qk and P, respectively, in H. Further, let UiI,UiZ, ... ,Uik,Vi and Wi be the 
names of the vertices of Hi that are named UI, U2, .. " Uk, V and w, respectively, in H. 
For each i = 1,2, ... ,p, identify the vertex Vi of G and the vertex Vi of Hi. Let G* be 
the graph so constructed from G. We have IV(G*)I = IV(H)I P = [k(n+2) +n-1]· p­
and IE(G*)I q +JE(H)I' p = q+ [~P + (n - ~)k+ n l]p, so G* can be constructed 
from G in polynomial time. An example is presented in Figure 2 with n = k = 3, and 
where G is the 3-cycle VI, V2, V3, VI. Note that if G is chordal, then G* is also chordal. 

G*: 

Ul,l Ul,2 Ul,3 

Figure 2: G is a (3,3) graph; G* is a (51,63) graph. 

We will show that G has a dominating set V with 1"01 s m if and only if G* has an 
(n, k )-dominating set D* with 1"0* I s m* = m + (2k - 1 )p. Suppose first that G has 
a dominating set V with I'DI s m. Then it is evident that VU (WI U W2 U , .. U Wp ) u 

C9. j~' {U;j}) is an (n, k)-dominating set of C' of cardinality IDI + (k -l)p + kp ::; 

m+(2k-1)p=m*. 

Now let "0* be an (n, k )-dominating set of G* with 1"0* I s m* = m + (2k - 1 )p. Let 
Vi = "0* n V(Hi)' For each j = 0,1,2, , .. , 2n + 1, let Uij be the set of all vertices of 
Hi at distance j from Vi. Note that Uin = Wi and Ui,2n+1 = {UiI, Ui2, ... , Uik}. Before 
proceeding further we prove five claims. 

Claim 6 IVil ~ 2k - 1 for all i. 

Proof. Let J be the set of all integers j for which Uij ¢ ''OJ. If IJI 1, then for each 
j E J, the vertex Uij is within distance n from at least k vertices of Vi which must lie 
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on tne patn ~ij, so IVil1 V ~~ij}l ::::: /C. lnus, II IJ I::::: 1, tnen IVil ::? L IVir 1 V llJij) I = 
j=l 

L IVjnV(Qij)l+ L IVjnV(Qij)1 ~ k·IJI+(k-l1l) (k-1)(IJI+1)+1 ~ 2k-1. 
jEJ j~J 

On the other hand, if IJI 0, then Ui,2n+1 C Vi. Now consider the set Uin . If some 
vertex of Uin does not belong to Vi, then since this vertex is at distance n + 1 from 
each vertex of Ui,2n+l1 we have IVi - Ui,2n+11 k, so IVil ~ k + IUi ,2n+11 = 2k. If 
every vertex of Uin belongs to Vi, then 11\1 IUinl + IUi ,2n+ll = 2k - 1.0 

Claim 7 If Ui,2n+1 rt. Vi, then IVd ~ 2k. 

Proof. Let J be the set of all integers j for which Uij 1:. Vi. Since Uj ,2n+1 rt. V i, we 
know that 111 1. If IJI ~ 2, then, as in the proof of Claim 6, IViI ~ (k l)(IJI + 
1) + 1 3k - ~ 2k since k ~ 2. On the other hand, if 111 = 1, then, without loss 
of generality, we may assume that UtI is the vertex in Ui,2n+1 that does not belong to 
Vi, so IVi n V( Qil)1 k. For r 1,2, ... , k, let uir be the vertex that immediately 
precedes Uir on the path Q ir, and consider the set - {U~l}' If u~r is a vertex in 
this set that does not belong to Vi, then it is evident that IVi n (V(Qir) U Uin ) I ;::::: k, 
so in this case IVd ~ IVi n V(Qil)1 + IVi n (V(Qir) U Uin)1 + IUi ,2n+1 - {uil,uir}1 ~ 
k + k + (k 2) 3k - 2 2k. If Ui ,2n {Uil} C Vi, then IVil ;::::: IUi ,2n+1 - {uidl + 
IUj ,2n {uidl + IVi n V(Qil)1 ~ (k -1) + (k 1) + k 3k 2;::::: 2k. In both cases, 
IVil ~ 2k.D 

Proof. Necessarily, Ui,2n+1 C Vi by Claim 7. Now consider the set Uin . If some 
vertex of Uin does not belong to Vi, then this vertex is within distance n from at least 
k vertices of Vi, so IVi - Ui,2n+11 ~ k; that is to say, IVd ;::::: 2k, which contradicts 
the fact that IVil = 2k - 1. We deduce, therefore, that Uin U Ui,2n+1 ~ Vi. But 
IUin U Ui ,2n+11 = 2k 1, implying that Uin U Ui ,2n+l = Vj.O 

As an immediate consequence of Claim 8, we have the following result. 

Claim 9 If Vi contains some vertex of Pi, then IVd ~ 2k. 

For each i = 1,2, ... ,p, do the following. If IVil = 2k-1, then let Vi = Vi. If IVd ~ 
2k, then let V'i = {Vi} U Uin U Ui,2n+1, so lV'il = 2k. Now let 1)' = V'l UV'2 U ... UV'p. 

p p 

Then IV'I = L lV'd :::; L IVd = IV*I. We show next that V' is an (n, k)-dominating 
i=l i=1 

set of G*. 
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Claim 10 V' is an (n, k )-dominating set of G* . 

Proof. If lV'd 2k, then it is evident that every vertex of Hi is (n, k)-dominated by 
V'i, and therefore by V'. If IVil 2k 1, then V'i = Vi Uin U Uj ,2n+1 by Claim 8. 
Hence every vertex of Hi that is not on the Vi - Wi path Pi is clearly (n, k)-dominated· 
by V'i, and therefore by V. The only vertices of Hi whose (n, k)-domination arein 
doubt are those vertices on Pi. That these vertices are (n, k )-dominated by D', may 
be seen as follows. Consider the vertex Wi. Since Wi is at distance n + 2 from each 
vertex of Uj,2n+11 the vertex Wi is within distance n from only k - 1 vertices of Vi. 
However V* is an (n, k )-dominating set of G*, so there must exist a vertex W E V* - Vi 
that is within distance n from Wi. Since d(vj, Wi) = n - 1, and W rt V(H j ), it follows 
that d( w, wd n. Thus w is a vertex of G that is adjacent to Vi, so W = Vs for some 
s with 1 ::; s ::; p and i =I s. Since Vs E V s, we have by Claim 9 that IVsl 2:: 2k, 
and therefore that ~ {vs} U Usn U Us ,2n+1' Hence we note that Uin U {vs} C V'. 
Consequently, every vertex on Pi is within distance n from at least k vertices of V. 
Hence, if lV'il = 2k -1, then every vertex of Hi is (n, k)-dominated by V'. The result 
now follows. 0 

It follows from Claim 10 that V' is an (n, k )-dominating set of G* with IV'I ::; 
IV*I ::; m* = m + (2k - l)p. Now consider the set V = V' n V(G). We claim that 
V is a dominating set of G. Suppose Vi E V(G) - V. Then Vi rt V'i, so we must 
have lV'il = 2k - 1. As in the proof of Claim 10, there exists a vertex Vs of G that 
belongs to V' and that is adjacent to Vi. So Vs E V and Vi is adjacent to at least one 

p 

vertex of V. Hence V is a dominating set of G with IVI = 1'0'1- L IUin U Ui.2n+11 ::; 
i=l 

m + (2k - l)p - (2k - 1)p = m. This completes the proof of Theorem 4. 0 

The following decision problem for the independence number is known to be NP­
complete for general graphs (see [19]). 

Problem: Independence (ID) 
INSTANCE: A graph G and an integer m. 
QUESTION: Is fi(G) 2:: m? 

We will demonstrate a polynomial reduction of this problem to the bipartite (n, k)­
independence problem with n even. 

Problem: Bipartite (n, k)-Independence (BnkID) 
INSTANCE: A bipartite graph G* and integers n, k 2:: 2 and m*. 
QUESTION: Is fin,k(G*) 2:: m*? 

Theorem 5 Problem BnkI D with n even is NP-complete. 

Proof. Clearly BnkI D is in the class N P. In what follows let n = 2r where r is 
a positive integer. We show how a polynomial time algorithm for BnkI D could be 
used to solve I D in polynomial time. Given a graph G = (V, E) of order p and size 
q, and a positive integer m, we construct a graph G* = (V*, E*) as follows: Replace 
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eacn eage uv or li oy tne tree 1 snown m 1'lgure .j, ana at,tacn to eacn vertex ot 
G k 1 of length 1. Let denote the set of k end-vertices in Tuv at distance 
n + 1 from u and v, and for each v E V, let Sv denote the set of k - 1 end-vertices of 
G* adjacent to v. Then IV*I = kp + (¥- + k - l)q and IE"I (k - l)p + (¥- + k) q, 
so G* can be constructed from G in polynomia( time. Since every cycle in G* is of. 
even length, we note that G* is bipartite. 

r edges r edges 

u .e--4Iell--

n - r edges 

k vertices 

Figure 3: The tree Tuv. 

We will show that the problem of determining the independence number of G can 
be transformed to the problem of determining the (n, k)-independence number of the 
bipartite graph G*. We will prove that f3nAG*) = f3(G) + (k - l)p + kq. 

Let S be a maximum independent set in G and consider the set S* S U U (Su U 
uvEE 

Sv U Suv). For any x E V* and y E SUVl dc.(x,y) ::; n implies x is a vertex of 
Tuv - {u, v}, so each vertex of Suv is within distance n from exactly k - 1 other 
vertices of S*, namely the k - 1 other vertices in Suv' For any u, v E S, uv rf. E 
so dGo (u, v) 4r > n. Thus each u E S is within distance n from exactly k - 1 
other vertices of S", namely the k - 1 vertices in Su. For any x E Su, x is within 
distance n from at most k - 1 other vertices of S*, namely the k 2 other vertices 
of Su and, if u E S, then also u. Thus S* is an (n, k)-independent set of G*, whence 
f3n,k(G*) 2:: IS*I = f3(G) + (k - l)p + kq. 

Conversely, suppose S* is a maximum (n, k )-independent set in G*. Let S:v be 
the set of vertices of Tuv - {u, v} that belong to S". Since every two vertices of 
Tuv - {u, v} are within distance n from each other, it is evident that IS:vl ~ k. Since 
(S* - S:v) U Suv is an (n, k)-independent set of G" of cardinality at least IS*I, we 
may assume, without loss of generality, that S:v = Suv' Further, let S: = S* n 
(Su U {u}). If IS:I < k - 1, then (S* - S:) U Su is an (n, k )-independent set of 
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C'" of cardinality exceeding that of S .. , which is impossible. Hence we know that 
IS:I ::::: k - 1. If IS:I k 1, then, since (S'" - S:) U Su is an (n, k)-dominating set 
of G'" of cardinality IS"'I, we may assume, without loss of generality, that S* contains 
the k - 1 vertices of Su. So either IS~I k - 1, in which case S: = Su, or IS:I = k, 
in which case S: Su u {u}. Now consider the set S S* n V. We claim that Sis. 
an independent set of G. If u,V E Sand uv E E, then da.(u,v) = 21' n, so u is 
within distance n from at least k vertices of S"', namely the k vertices in Su U {v}, 
which contradicts the (n, k )-independence of S"'. Hence S is an independent set of 
C, so (3(G) ::::: lSI = IS*I - I U (Su U Sv U Sw)1 = (3n,k(G"') - (k - l)p - kq. This, 

uvEE 
together with the earlier observation that (3(G) :::; (3n,k(G*) - (k - l)p - kq, implies 
that (3n,k(G*) = (3(G) + (k - l)p + kq. This completes the proof of the theorem. 0 

3 Results concerning (n, k )-domin~tion 
and (n, k )-independence. 

It is well-known that any maximal independent set is a dominating set; therefore 
11,1 :::; (31,1' Fink and Jacobson [15] proved that 11,2 ::::; (31,2 and conjectured that for 
any graph G and for all positive integers k, 11,k :::; (31,k' This conjecture was proven by 
Favaron [13]. Here we prove that, for any graph G, and for all positive integers nand 
k"n,k :::; (3n,k' To do this, we shall prove the following stronger property: In every 
graph, and for all positive integers nand k, there exist some subsets of vertices which 
are both (n, k)-independent and (n, k)-dominating. This result generalizes that of 
Favaron [13]. 

Theorem 6 For any graph G and positive integers nand k, every (n, k)-independent 
set V such that klVI- mn(V) is a maximum is an (n, k)-dominating set of G. 

Proof. Let V be an (n, k)-independent set such that klVI - mnCD) is maximum. 
We show that V is an (n, k )-dominating set of C. If this is not the case, then there 
exists a vertex v of V(G) - V which is not (n, k)-dominated by V. Let B be the set 
of vertices of V within distance n from v, so Nn(v) n V = B. Then 0 :::; IBI < k. 
Further, let A be the set of all vertices a in B such that degn( a, V) = k - 1, and 
let S be a maximal (n, 1 )-independent set of A. The set C = (V - S) U {v} is 
still (n,k)-independent. Indeed degn(v, C) = IBI-ISI::::; IBI < k; degn(x,C)::::; 
degn(x, V) < k for any x in V - B; degn(b, C)::::; degn(b, V) + 1 < (k - 1) + 1 = k 
for any b in B - Ai degn(a, C):::; degn(a, V) = k - 1 for any a in A - S because 
every vertex of A S is within distance n from at least one vertex in S (the (n, 1)­
independent set S being maximal in A). Furthermore, ICI = IVI - lSI + 1 and 
mn(C) = mn(V) (k -l)ISI + IBI-ISI = mn(V) - klSI + IBI. Thus klCI- mn(C) = 
klVI- klSI + k - mn(V) + kISI-IBI = klVI- mn(V) + k - IBI > klVI- mn(V), in 
contradiction with the hypothesis on V. Therefore V is an (n, k )-dominating set of 
C.D 
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Gorollary 1 l"or any grapn (i, ana Jor all posztwe mtegers n ana Ie, In,k\ (i) S: 
f3n,k( G). 

Proof. Let V be an (n, k )-independent set and an (n, k )-dominating set of G (such 
a set exists by Theorem 6). Then In,k(G) ~ IVI f3n,k(G).D 

4 Bounds on In,k 

The following result yields a lower bound on the difference between In,k and In,1 for 
k 2:: 2. The idea of the proof is the same as that of Fink and Jacobson's theorem [16], 
which follows from our theorem by replacing n by 1. 

Theorem 7 If G is a graph with 6.(G) ~ k ~ 2, then In,k(G) In,I(G) + k 2. 

Proof. Let V be a minimum (n, k)-dominating set of G. Since 6.(G) 2:: k, we note 
that V(G) - V i- 0. Let u E V(G) V, and let VI, V2, ..• , Vk be distinct members of 
V that are within distance n from u. Since V is an (n, k )-dominating set of each 
vertex in V(G)-V is within distance n from at least one member of V-{ V2, V3, ••. , Vk}' 

It follows that the set V* = (V - {V2' V3, "'j vd) u {u} is an (n, 1 )-dominating set in 
G. Hence In,l (G) ~ IV* I = In,k( G) (k 1) + 1, so that In,k( G) 2:: In,l (G) + k - 2.0 

The following lower bound on In,k generalizes the well-known bound I 2: 

Theorem 8 If G is a graph with p vertices and maximum n-degree 6.n, then In,k (G) 2:: 
kpJ(6.n + k). 

Proof. Let V be a minimum (n, k)-dominating set of G. Let S = V(G) D and let 
N denote the number of pairs (u, v) with u E V, V E Sand d( u, v) ::; n. Then, since 
the n-degree of each vertex in D is at most 6.n, we have N ~ ~n ·IVI = 6.n ·In,k(G). 
Also, since each vertex in S is within distance n from at least k vertices of V, we have 
N 2: k ·ISI = k· (p -'n,k(G)). It follows that k· [p -,n,k(G)] ~ 6.n 'In,k(G) whence 
In,k(G) 2: kpJ(6.n + k).D 

That the bound given in Theorem 8 is sharp may be seen by considering the graph 
G obtained from a complete bipartite graph Kk,k by subdividing each edge n - 1 
times. Then 6.n = nk,p = (n + l)k and In,k(G) = k = kpJ(D. n + k). 

We close with the following: 

Conjecture 1 IfG is a graph with p vertices and minimum n-degree at least n+k-l, 
then In,k (G) S -!.f:r. 

The conjecture is true for k = 1 and all integers n 2:: 1 as proven by Oellermann, 
Henning and Swart [20]. The conjecture is also true for n = 1 and all integers k 2: 1 
as proven by Cockayne, Gamble and Shepherd [12]. 
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