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Abstract 

A digraph D is called quasi-transitive if for any triple x, y, z of distinct 
vertices of D such that (x, y) and (y, z) are arcs of D there is at least one 
arc from x to z or from z to x. A minimum path factor of a digraph D 
is a collection of the minimum number of pairwise vertex disjoint paths 
covering the vertices of D. J. Bang-Jensen and J. Huang conjectured 
that there exist polynomial algorithms for the Hamiltonian path and 
cycle problems for quasi-transitive digraphs. We solve this conjecture by 
describing polynomial algorithms for finding a minimum path factor and 
a Hamiltonian cycle (if it exists) in a quasi-transitive digraph. 

1 Introduction 

A digraph D is called quasi-transitive if for any triple X, y, z of distinct vertices of D 
such that (x, y) and (y, z) are arcs of D there is at least one arc from X to z or from 
z to x. A digraph obtained by replacing each edge of a complete k-partite (k ~ 2) 
graph by an arc or a pair of mutually opposite arcs with the same end vertices is called 
a semicomplete k-partite digraph or semicomplete multipartite digraph (abbreviated 
to SMD). A SMD D is called ordinary if, for every (ordered) pair of the partite sets 
X, Y such that there is an arc from X to Y, for each x EX, Y E Y, (x, y) is an arc of 
D. A k-path factor of a digraph D is a collection of k pairwise vertex disjoint paths 
covering the vertices of D. The path-covering number of a digraph D (pc( D)) is the 
minimum integer k such that D has k-path factor. Obviously, D has a Hamiltonian 
path if and only if pc( D) = 1. 

Quasi-transitive digraphs were introduced by Ghouila-Houri [5] and have been 
studied in [1, 2, 9, 10]. Bang-Jensen and Huang [1] characterized those quasi­
transitive digraphs that have a Hamiltonian cycle (Hamiltonian path, respectively) 
using appropriate characterizations of ordinary SMD's [6, 7]. At the same time, 



Bang-Jensen and Huang note that their theorems do not seem to imply polynomial 
algorithms and conjecture that there exist such algorithms. 

In this paper, we describe O(n4 /logn)-time algorithms for finding a Hamiltonian 
cycle (if it exists) and a pc(D)-path factor in a quasi-transitive digraph D on n ver­
tices. To construct the algorithms we use a decomposition theorem that characterizes 
quasi-transitive digraphs in a recursive sense [1 J, characterizations of semicomplete 
multipartite digraphs containing Hamiltonian paths [6} and ordinary semi complete 
multipartite digraphs having Hamiltonian cycles [7], network flow algorithms [4}, and 
some other results. 

2 Terminology and notation 

The terminology is rather standard, generally following [3]. Digraphs are finite, have 
no loops or multiple arcs. If multiple arcs are allowed we use the term directed 
multigraph. V(D) and A(D) denote the vertex set and the arc set of a digraph D. 
A digraph D is called transitive if for any triple x, y, z of distinct vertices of D 
such that (x, y) and (y, z) are arcs of D there is an arc from x to z. A digraph 
obtained by replacing each edge of a complete graph by an arc or a pair of mutually 
opposite arcs with the same end vertices is called a semicomplete digraph. Obviously, 
a semicomplete digraph on k vertices is a semicomplete k-partite digraph. Bya cycle 
(path) we mean a simple directed cycle (path, respectively). A cycle (path) of a 
digraph D is called Hamiltonian if it includes all the vertices of D. A digraph D is 
strong if there exists a path from x to y and a path from y to x in D for any choice 
of distinct vertices x, y of D. A collection F of pairwise vertex disjoint paths and 
cycles of a digraph D is called a k-path-cycle factor of D if F covers V(D) and has 
exactly k paths. A O-path-cycle factor is called a cycle factor. A pc(D)-path factor 
is called a minimum path factor. 

Let D be a digraph on the n vertices VI, ... , Vn and let L 1 , ••. , Ln be a collection of 
digraphs. Then D' = D[Ll' ... , Ln] is the new digraph obtained from D by replacing 
each vertex Vi of D by Li and by adding an arc from any vertex of Li to any vertex 
of Lj if and only if (Vi,Vj) is an arc of D (1 ::; i::J j ::; n). 

As usual, n will denote the number of vertices in the digraph considered. 

3 Known results 

Our algorithms are based on the following decomposition theorem due to Bang­
Jensen and Huang [1]. 

Theorem 3.1 Let D be a quasi-transitive digraph on n vertices. 

(1) If D is not strong, then there are an integer h, a transitive digraph H on h ver­
tices, and strong quasi-transitive digraphs Sl, ... , Sh such that D = H[Sl, ... , ShJ. 

(2) If D is strong, then there exist an integer t, a semicomplete digraph T on t 
vertices, and non-strong quasi-transitive digraphs Ql, ... , Qt such that 
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D T[Ql, ... , Qt]. Furthermore, if T has a cycle of length two induced by 
vertices Vi, Vii then the corresponding digraphs Qi and Qj are trivial, i.e., each 
of them has only one vertex. 

One can find the decompositions above in time O( n 2 ) • 

In the next section we use also the following two theorems proved in [6, 7] (see, 
also, [8]). 

Theorem 3.2 Let D be a SMD. 

(1) D has a Hamiltonian path if and only if it contains a l-path-cycle. 

(2) Given a 1-path-cycle factor of D J a Hamiltonian path of D can be constructed 
in time O(n2

). 

Theorem 3.3 Let D be a strong ordinary SMD. 

(1) D has a Hamiltonian cycle if and only if it contains a cycle factor. 

(2) Suppose that D has a cycle factor. Given a cycle factor of D, a Hamiltonian 
cycle of D can be found in time O(n2

). 

4 New results 

Below we consider the following problem, more general than just the Hamiltonian 
path one. Given a digraph D, find a minimum path factor of D. We call this problem 
the MPF problem. 

Theorem 4.1 Suppose a digraph D = R[HI , ... , HTL r ~ 2, where R is either an 
acyclic digraph or a SMD on r vertices. Given a minimum path factor of Hi, for 
every i = 1, ... ,r, the MPF problem for D can be solved in time O(n3 j log n). 

Proof: Consider the following set of digraphs 

1, ... , r}, 

where Ep is a digraph of order p having no arcs. It is easy to see that every digraph of 
S is either an acyclic digraph or a SMD. Consider, also, the network NR containing 
the digraph R and two additional vertices (source and sink): sand t such that sand 
t are adjacent to every vertex of V(R) and the arcs between s (t, resp.) and Rare 
oriented from s to R (from R to t, resp.). Associate with a vertex Vi (corresponding 
to Hi) of R the lower and upper bounds pC(Hi) and IV(Hi)1 (i = 1, ... ,r). 

Suppose that N R admits a flow f of value k ~ 1. Then there is a collection 
Lk of k paths and a number of cycles covering V(R). Indeed, construct a directed 
multi graph M on the vertices VI, ... , VT) s, t as follows. The number of arcs from a 
vertex u of M to another one w is equal to the number of units of f in the arc (u, w) 
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of N R. Merging vertices sand t in M l we obtain an Eulerian directed multigraph 
M*. Since M* contains an Euler tour, M has the collection Lk above. 

Since a vertex Vi of R lies on ti of paths and cycles of Lk , for some ti such that 
pe(Hi) ~ ti IV(Hi)l, we can transform Lk into a k-path-cycle factor F(Lk) of a 
digraph Q = R[Et1 , .. ,Etrl E S by replacing the vertex Vi by ti. independent new 
vertices such that each new vertex corresponds to one of the occurrences of Vi in 
Lk. Since Q E S, one can transform, in polynomial time, F(Lk) into a k-path factor 
F'(Lk ) of Q. Indeed, if Q is acyclic this is trivial. If Q is semi complete multipartite, 
then this follows from Theorem 3.2: replace a path and all the cycles of F(Lk) by a 
path. Finally change F'(Lk) to a k-path factor F"(Lk) of D, by replacing the vertices 
of each Eti by ti paths that form a ti-path factor of Hi. 

Conversely, suppose Pk is a k-path factor of D. For each Hi) A(Hi)nA(Pk ) induce 
a collection of (Xi vertex disjoint paths in Hi. Clearly pe(Hi) ~ (Xi ~ IV(Hi)l. Let 
Q = R[Eall . .. ,Earl E S. Then Q(Pk ) has a k-path factor which can be obtained 
from by contracting, for all i, each of the (Xi subpaths in Hi to a vertex. It is easy 
to check that if a digraph from S has k-path factor, then NR admits a flow of value 
k. 

Hence, peeD) = max{l, m}, where m is the value of a minimum flow in NR . 

Now, given pe(Hr), ... ,pe(HT) and corresponding path factors, the MPF problem for 
D can be solved as follows. Construct NR and the following feasible flow 9 of it. For 
every ~ 1, ... , r, g(SVi) = g(Vit) = pC(Hi) and, for every pair i,j (1 i =1= j ~ r), 
g( ViVj) O. Find a minimum flow f from S to t a maximum flow from t to s). 
It is clear that f can be found in time O(n3 /logn) [4]. Using f, a minimum path 
factor F"(Lpc(D)) of D can be constructed as in the proof above. 

o 

Theorem 4.2 The MPF problem for a quasi-transitive digraph D can be solved in 
time O(n4 jlogn). 

Proof: To prove this theorem we just give the following recursive algorithm AP F 
for solving the MPF problem for a quasi-transitive digraph D. 

1. Find a decomposition D = R[Hl' ... , HT ], r :::::: 2 (see Theorem 3.1), where R is 
either transitive or semicomplete. 

2. For every i = 1, ... , r, if IV(Hi)1 = 1, then take Hi as a minimum path factor 
of itself, otherwise call AP F to construct a minimum path factor of Hi. 

3. Using the algorithm described in Theorem 4.1 find a minimum path factor of 
D. 

It is easy to see that the complexity of the algorithm above is O( n4 /log n). 0 

Theorem 4.3 The Hamiltonian cycle problems for a quasi-transitive digraph D can 
be solved in time O( n4 j log n). 

Proof: To prove this theorem we give the following algorithm for solving the Hamil­
tonian cycle problem for a strong quasi-transitive digraph D. 
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1. Find a decomposition D = R[Hll ... , HrJ (see Theorem 3.1), where R is either 
transitive or semicomplete. 

2. For every i = 1, ... , r, find a minimum path factor of Hi. by the algorithm from 
Theorem 4.2. 

3. Find a minimum flow f in the network NR (see the proof of Theorem 4.1). 
If the value of f is not 0, then D has no Hamiltonian cycle. Otherwise, using f 
construct a cycle factor F of some Q E S (see the proof of Theorem 4.1). Transform 
F into a Hamiltonian cycle H of Q using the algorithm from Theorem 3.3 (Q is an 
ordinary SMD). Transform H into a Hamiltonian cycle of D. 

It is not difficult to check that the complexity of the algorithm above IS 

O(n4 jlogn). 0 
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