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Let F be a forest of order » and G a graph of order ». Suppose that
A(G)(A(F) + 1) < n. Then, except for three pairs of graphs (G, F'), there
is a packing of G and F.

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from
[1] except as indicated. For any graph G, we use V(@) and E(G) to denote the vertex
set and the edge set of G, respectively. We denote the complement of G by G°. Let
G and H be two graphs of order n. We say that there is a packing of G and H
if the complement G¢ contains a subgraph isomorphic to H. In this case, we also
say that G and H are packable. There are many papers concerning the packing of
two graphs which have a small number of edges. For example, Sauer and Spencer
[6] proved that if |E(G)] < n —2 and |E(H)| < n — 2, then there is a packing of
G and H. Bollobis and Eldridge [2] found all the forbidden pairs (G, H) of graphs
with A(G) <n—1, A(H) <n—1, |E(G)]+ |E(H)| < 2n — 3 for which there are no
packings of G and H. Slater, Teo and Yap [7] proved that if n > 5, G is a tree, H
has n — 1 edges and neither G nor H is a star, then there is a packing of G and H.
Sauer and Spencer [6] also proved that if 2A(G)A(H) < n, then there is a packing
of G and H. For more results, see [1, Chapter 8] and [9]. Bollobds and Eldridge [2]
conjectured that if (A(G)+1)(A(H)+1) < n+1, then there is a packing of G and H.
This conjecture is still open. Hajnal and Szemerédi [4] proved that if n = sk(s > 3
and k& > 1) and G is the vertex-disjoint union of k copies of K, and A(H) < k —1,
ie, (A(G)+ 1)(A(H) + 1) < n, then there is a packing of G and H. The result in
the case s = 3 was first obtained by Corradi and Hajnal [3].

In this paper, we consider the case that one of G and H is a forest, i.e., a graph
with no cycles. To state our result, we define kG to be the vertex-disjoint union of
k copies of G for any positive integer k and graph G. For even positive integer n,
there is no packing of the two graphs in each of the following three pairs of graphs:
((n/2)K2, Kijn-1)s (K(nj2)41 Y H, (n/2)K;) where H is any graph of order n/2 —1 and
‘U’ means ‘vertex-disjoint union’, and (Knjan/2, (n/2)K2) with n/2 odd. To see this,
we observe that in each pair, the complement of the graph which is not (n/2)K, does
not have a perfect matching. We especially name these three pairs as three forbidden
pairs of graphs. We prove the following. ‘
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Theorem Let F be a forest of order n and G a graph of order n. Suppose that
A(GYA(F) +1) < n. Then there is a packing of G and F unless the pair (G, F) is
one of the three forbidden pairs of graphs.

‘ For the proof of the theorem, we recall some terminology and notation.

Let G be a graph, U a subset of V(&) and u a vertex of G. As usual, Ng(u) is
the set of neighbors of u, dg(u) is the degree of v in G and Ng(U) is the union of all
Ng(u) for u € U. We define Ng(u,U) to be Ne(u)NU and let de(u,U) = |Ng(y, U)].
If H is a subgraph of G, we define dg(u, H) to be dg(u, V(H)). Then dg(u,G) is just
the degree of u in G.

Let ¢ be a bijection on V(G). We define a graph G, with V(G,) = V(G) and
E(G,) = {o(u)o(v)luww € E(G)}. Clearly, G, is isomorphic to G under o. Let
T1,T2,. .., o, be distinct vertices of G. Then Gz, z,...0,) stands for G, where o(z;) =
201 <1<k =1), o(zg) = 2y and o(z) =z for all z € V(G) — {21, 29,..., Tk}

2 Proof of the Theorem

Let F be a forest of order n and G a graph of order n such that A(G)(A(F)+1) <n.
We use induction on | E(F)| to prove the theorem. The theorem is trivial if |[E(F)| = 0.
Assume that the theorem holds at |E(F)| = m — 1. We shall prove the theorem for
|E(F)| = m. We may assume that G and F are not packable and then prove that
(G, F) is one of the pairs mentioned in the theorem.

We distinguish three cases: A(F) =1, A(F) =2 or A(F) > 3.

Case 1. A(F)=1.

In this case, A(G) <n/2 and §(G°) > n~1—-n/2=n/2 1. As F consists of
independent edges and isolated vertices, G° doesn’t contain [(n — 1)/2] independent
edges. Let b be the edge independence number of G° and d = n—2b. Thend > 2if n
is even, and d > 3 if n is odd. By the well known standard proof of Tutte’s Theorem
[1, pp. 55-57], there exists a maximal subset S C V(G°) such that ofG° — Sp) =
|So] + d, where o(G® — Sp) is the number of odd components of G° — Sp. Furthermore,
o(G®— S5) < |S|+ d for all subsets § C V(G°). If G* -5 has an even component D,
let x € V(D). Then |SoU{z}|+d > o(G°— So—1z) > o G* —So)+ 1 = |SoU{z}| +d,
contradicting the maximality of Sp. Hence G° — Sy contains no even components. Let
Dy, Dy, ..., Dipq be alist of all odd components of G¢— Sy, where k = |So|. We may
assume that [V (Dy)] < |V(D;)] < -+ < |V(Dgsa)|- Let z € V(D;). Then

n/2 -1 S dgc((l)) S 150{ + lV(Dl)‘ -1 (1)
< S8l + VD) HIVD) 4+ V(D)) -1 (2)
= nf2-1 (3)

Hence equality holds in (1), (2) and (3). This implies that d = 2 and n is even.
Moreover, if So = @, then |V(Dy)| = |V(D2)| = n/2, n/2 is odd and G° is 2K,2.
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Hence F' is (n/2)K; and G is Knjpnp. If So # 0, then k = n/2 — 1, |V(Dy)| =
V(D)] = 1(1 <4 < n/2+1). Furthermore, V(G¢) — Sy is an independent set of
vertices of G° and yz € E(G°) for all y € Sy and all z € V(G°) — S;. Hence F is
(n/2)K,; and G is K(nj2)41 U H where H is a graph of order n/2 — 1.

Case 2. A(F) = 2.

In this case, A(G) < n/3 and §(G°) > n—1-n/3 > (n—1)/2. From this, we can
easily deduce that G¢ is connected. Let P = 2, ...2) be a longest path of G¢. Then
k > 3. Moreover, dg<(z1, P) + dge(zy, P) = dge(z1) +dge(zy) 2n—1. fk<n—1,
then by the well-known Ore’s condition [5], G° contains a cycle C with V(C) = V(P).
This implies that G° contains a longer path than P as G° is connected. Hence k = n
and therefore P contains F' as F' consists of vertex-disjoint paths.

Case 3. A(F) > 3.
Let zoyo be an edge of F' with dp(zo) = 1. By the induction hypothesis, we may
assume that F' — xoyo is a subgraph of G°. Then zoyo is an edge of G. Let

C = Ng(z0) N Ne(yo) ()
A = Ng(zo) = C U {yo} (5)
B = Ng(yo) — C U {zo} (6)
Yo = Np(yo) — {0} (7)
Wi=V(G)-AUBUCUY,U {zo,%0}. (8)

As there is no packing of G and F, we have the following four claims.
Claim 1. For every u € AUV}, there exists v € Ng(zo) such that uv is an edge of F,
ie., uv € E(F).

Suppose, for a contradiction, that there exists up € AU Vi such that ugv ¢ E(F)
for all v € Ng(zo). Then uoyo ¢ E(G) and zow ¢ E(G) for all w € Np(uo). Therefore
Flup,z0) 1s a subgraph of G°, a contradiction. This proves the claim.

By Claim 1, we have that

Vil < JAI(A(F) = 1) + |CIA(F). 9)
n = |{zo,yo}| + |A|+ |B|+|C| + |Yo| + |V (10)
< 2+ |A[+ Bl +[Cl+ A(F) = 1+ |A|(A(F) — 1) + [C|A(F) (1)
= 1+ (|Al+[C|+1)A(F) +|B|+]C| (12)
< 1+ AGAF)+ AG) -1 (13)
= AGA(F)+1) <n. (14)

Hence equality holds in (9) through (14). This implies the following.

da (o) = da(yo) = A(G); (15)
dr(yo) = A(F) = dp(u) for all u e AU C; (16)
dr(u, Vi) = A(F) =1 for all u € A; (17
dr(u, Vi) = A(F) for all u € C; (18)
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Ne(u, Vi) N Np(v, Vi) = 0 for all u,v € AUC with u # v; (19)
Ne(u,Vi)NYo =0 for all ue AUC. (20)

Claim 2. |A| = |B|=0.

From (15), we see that |A| = |B|. Suppose, for a contradiction, that A # 0.
Clicose an arbitrary vertex u € Np(A) N V4. By (19), Np(u,C) = 0. Suppose
that Np(u, B) = 0. Then it is clear that Ng(yo, Np(u)) = . It is also clear that
Ng(z0,Y0) = 0 and uzo ¢ E(G). This implies that Fiy,,u,,) has no edges in commeon
with G, a contradiction. Hence, for all u € Np(A) N Vi, there exists v € B such that
wv € E(F). Since A(F) > 3 and by (17), de(y, V1) = 2 for all y € A. This implies
that |B| > 1+|A} as F"doesn’t contain cycles, a contradiction. This proves the claim.

Claim 2 says that Ng(zo) — {yo} = No(yo) — {@o}. Let C' = {y1,¥2,. .., ¥s-1},
where k = A(G). If k = 1, then F is Ky ,-1 and therefore n must be even and G
must be (n/2)K; for otherwise G and F are packable. So we may assume that k > 2
in the following.

For every y; € C, it is easy to see that F(z,y) — %oy: is a subgraph of G¢ and
the degree of y; in Fgy, is one. Hence by the similarity, we may assume that
Ng(yo) — {y:} = Na(y:) — {yo}. This implies that the subgraph Gy of G induced
by Na(yoe) U {vo} is Ki41. Obviously, Gy is a component of G. Let Y¥; = Nr(y:) for
1<i<k—1 Sett= A(F). Then by (17) and (18), |Yo| =t —1 and |Vi| = ¢
for 1 < ¢ < k — 1. Note that Y; is an independent set of vertices of F' for all
i€ {0,1,...k — 1} since F contains no cycles.

Claim 3. Forall: € {0,1,...,k— 1}, da(z,Yi) > 2 for all z € Y.

Suppose, for a contradiction, that there exist z € {0,1,...,k — 1} and a vertex
zi € Y; such that dg(z:;,Y;) < 1. Choose a vertex w; € Y; such that w; # 2 and if
de(z;,Y;) = 1 then w;z; € E(G).

We assume first that i # 0. Without loss of generality, say ¢ = 1. It is clear that
Ng(y1, Np(z1)) = 0 and Ng(z1, Ne(y1)) € {w1}. Hence I’ = Fy, .,y has at most two
edges zoyo and wiz; in common with G. Obviously, wiy; ¢ E(F') as wyzy & E(F).
As above, it is easy to see that Ng(zo, Np/(w1)) = 0. Hence F(, ) has no edges in
common with G, a contradiction.

Next, we assume that 7 = 0. As in the above, it is easy to see that F'! = F{y, ., has
at most one edge wyzp in common with G. As G and F ‘are not packable, wpzo must
be an edge of G. As before, since woyo ¢ E(F*), we have that Ng(zo, Np (wo)) = §.
Then wpzo is still the only common edge of F? = F(lwo’zo) and G. But the degree
of wp in F? is one. By the argument of Claim 1 and Claim 2, we may assume that
G has a component (G5 which is K4 and contains wozo. As Claim 3 is true for all
i,1 <i<k—1and A(G) = k, we see that there exists 7 € {1,2,...,k — 1} such
that ¥; N V(Gy) = 0. This implies that F{, ) has no edges in common with G, a
contradiction. This proves the claim.

Since F' doesn’t contain cycles, we see that there is at most one edge of F' between
Y; and Y] for any 1,5 € {0,1,...,k — 1} with ¢ # j. Construct a graph H such
that V(H) = {¥5,Y1,...,Yso1} and Y}Y; € E(H) if and only if there is an edge
of F between Y; and Y;. Then H is a forest as F' is a forest. Hence there exist
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i,7 € {0,1,...,k — 1} with ¢ # j such that dg(¥;) <1 and du(Y;) < 1. We may
assume without loss of generality that dy(Yi—1) < 1. If dg(Yi-1) = 1, let ¥}, denote
the neighbor of Y;_; in H and z;z; denote the edge of F' with z; € Yj_; and 2, € Y},
Let

I={i]0<i<k—-2and ds(v,Y;) =0 for some u € Yi_y}. (21)

Set S = U;erY;. Clearly, |S| > ]t - 1.

Claim 4. There exist ¢ € [ and a vertex v € Y; such that dg(v, Ys-1) = 0. Further-
more, if ¥; = Y, then v # 2.

Suppose, for a contradiction, that for each ¢ € I, dg(v,Yr—1) > 1 for all v €
Vi — {z2}. Then ey, do(u,Ye1 US) 2 2|Yis| +|S] — 1 = (JI]| + 2)t — 2. Since
t > 3, we have that [((}7| + 2)t — 2)/t] = |I| + 2. Hence there exists u € Y;_;
such that dg(u,Yi-; US) > |I| + 2. On the other hand, dg(u,Y;) > 1 for all
7 €{0,1,...,k—2}~1I. Therefore dg(u,Us}Y:) > k+1, a contradiction as A(G) = k.
This proves the claim.

By Claim 4, let ig € I and u;, € Y;, be such that dg(us,, Yi—1) = 0. Furthermore,
if i = p, then u;, # z;. Let up_q € Yy be such that dg(ue—1, ¥;,) = 0. Note that
UjpUk-1 15 not an edge of F' by the choice of Y;_; and u;;. We conclude our proof of
the theorem as follows.

First, we assume that 7o = 0. Then it is easy to see that Ng(ux—1, Nr(yo)) = 0,
NG(yk_1,NF(uk_1)) = @, NG(UOsNF(yk-l)) = @ and NG(yo,Np(uo)) = 0 Hence
Flyo ux_s wi—1 u0) Das no edges in common with G unless yoye-1 is an edge of Fiyg wy_ ve; u0)-
But in that case, uqug—1 must be an edge of F, contradicting the choice of ug.

Next, we assume that ig % 0. Then as in the above, it is easy to see that F* =
Flyig un—yve_1,uiy) has only the edge zoyo in common with G. Since ¢t > 3 and by the
choice of Yi_;, we can choose a vertex vg_1 € Y1 — {ug-1} such that dr(ve_1) = 1.
Obviously, both u;,zg and vs_1y0 are not edges of G. Hence F| (ﬁjk”l,zo) has no edges in
common with G.

In summary, we have proved the theorem.
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