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Abstract. Let D be a statistical design consisting of v varieties on b
blocks. We say it is binary if a variety occurs at most once on every
block. For varieties p and ¢ on blocks z and y respectively, we can obtain
a design D' from D by interchanging p and ¢ (so pison y and ¢ is on ).
We say that the exchange is binary if either ¢ = y, or p = ¢, or: ¢ not
on z and p not on y. If D is binary then D’ is also binary. We examine
the equivalence classes for binary designs under binary interchanges. This
work is relevant in the construction of certain classes of optimal or near-
optimal designs.

1 Introduction

In {5] Venables and Eccleston considered a family of techniques to construct “optimal”
or “near optimal” incomplete block designs. These designs may have extra prescribed
properties such as resolvability, or being a row-column design. The techniques employ
randomized search directions and at some stages allow the possibilities of taking
“steps” in a direction of decreasing efficiency in an effort to avoid local optima (as in
the simulated annealing algorithm of combinatorial optimization). These steps are
in general called interchanges and the aim of this note is to examine a special class
of interchanges (which we will call binary or b-interchanges) and determine which
designs can be obtained from others using b-interchanges. The two advantages of
using b-interchanges over interchanges (in an appropriate situation) is firstly, that
there are in general fewer b-interchanges than interchanges at any one step, and
secondly, that using b-interchanges preserves the property of the design being binary;
in general this is not true for interchanges. For a given parameter set, the subclass
of the designs which are binary is relatively small. A possible disadvantage of using

b-interchanges over interchanges is that it may take more b-interchanges to transform
one design into another.

2 Notation

For an introduction to the theory of statistical designs, see [4]. Let V be a set of v
varieties and B a set of b blocks. A design is an allocation of varieties to blocks, where
a variety may be allocated more than once to a block. Let ni; denote the number of

Australasian Journal of Combinatorics 10(1994), pp.187-191



uimes variety 1 occurs 1 block 7 (1 =1 5 v, 1 5 7 £ 0). Lhe v X b malrix [V = |n;;|
is called the incidence matriz of the design. If for all ¢, 7, n;; € {0,1} then the design
is said to be binary. This is the case when each variety occurs at most once in every
block, and a block can be considered to be a set of varieties. A design is proper if no
variety is on every block and no block contains every variety.

Let r; (1 €4 < v) be the number of times variety ¢ occurs in the design; similarly
let k; (1 < j < b) be the number of (not necessarily distinct) varieties in block j. If
r=(ry,...,r,)7 (where T denotes the transpose) and k = (ky,..., k)T, then

Nly=r and NT1, =k

where 1, is the all ones column vector of size u.

If r = r1, then the design is said to be equireplicate with replication number r. If
k = k1, then the design is sald to be a block design with block size k. If variety p
occurs in block z we write p € z, otherwise we write p & z.

For a design D, let p,q be varieties on blocks z and y respectively. We call
E =[(p,z),(q,y)] an interchange pair (see [2]). Let D(F) be the design which is the
same as D except that in D(F) variety p occurs in block y in place of that occurrence
of ¢, and variety q occurs in block z in place of that occurrence of p. If 2 = y or p = ¢
then D(E) = D and the interchange is called trivial. Note that interchanging does
not alter the number k; of varieties on block 7 or the number r; of blocks on variety j.
Hence if N and N’ are the incidence matrices for designs D and D(FE) respectively,
we have

N1,= N1, and N"1,=N71, . 1)

If D is binary then D(E) is binary if and only if E is trivial or both p ¢ y and ¢ ¢ .
An interchange pair with the latter property is called a binary-interchange pair (or
b-interchange pair, for short). So, after performing a b-interchange, a binary design is
again a binary design. Further, a binary equireplicate block design remains a binary
equireplicate block design under b-interchanges. If E = [(p, z), (¢, y)] is b-interchange
pair for such a design D then E’ = [(p,y), (¢, )] is a b-interchange pair for D(E) and
D(E)(E') = D. So, performing a b-interchange is a reversible operation.

Note that if Ey = [(p1, 1), (p2, 22)] and Ey = [(q1,¥2), (g2, ¥2)] are two b-inter-
change pairs for D with z1,2,y; and y, distinct blocks, then E, is a b-interchange
pair for D(Ey) (and vice versa) and also D(E1)(E,;) = D(E,)(Ey). If D' is obtained
from D by a sequence of b-interchanges, then D can also be obtained from D’ by a
sequence of b-interchanges. Thus the relation D ~ D’ when D’ is obtainable from D
by a sequence of b-interchanges is an equivalence relation. The aim of this paper is to
classify the equivalence classes of the collection of all binary designs with v varieties
and b blocks.

An m-resolvable design (m > 1) is an equireplicate block design D with replication
number r and whose blocks B are partitioned into sets By, . .. yBy/m such that each
B; (1 <i < r/m) is an equireplicate block design with replication number m.

Result 1 ([5]) 1. The collection of all proper equireplicate block designs with given
parameters v, k,r is an equivalence class under interchanging.

2. The collection of all I-resolvable designs with given parameters is an equivalence
class under interchanging using blocks of the same class only.
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The aim of this note is to prove the corresponding results for the binary designs
(not mecessarily block or equireplicate) using only b-interchanges.

3 Main result

For fixed v and b (v, b > 1), let C be the collection of all binary designs with v varieties
and b blocks.

For 0 < m < v, we say that binary designs agree on V,, = {1,2,...,m} if the
m > 1 varieties 1,...,m are in exactly the same blocks in both designs. If m = 0
then the condition is regarded as empty. Note that two designs agree on V, if and
only if they are identical.

Theorem 1 Designs C,D € C are in the same equivalence class if and only if their
incidence matrices No and Np satisfy: Ncly = Nply and N&¥ 1, = NE1,.

Proof. From (1) in Sect. 2, the condition is necessary. We show that it is sufficient.
Suppose C, D & C satisfy the conditions on their incidence matrices given in the
theorem. So each block z € B contains the same number k, of varieties in both C

and D; similarly each variety p € V is in the same number 7, blocks in both C and
D.

We will give an algorithm to show that C and D are equivalent. Suppose m
satisfies 0 < m < v. We show what to do at Step m below and by doing Step 0 to
Step v — 1 we will show that C' and D are equivalent.

At Step m:

Suppose that

Cm and D, agree on V,, . (2)
Suppose further
in Cp ¢ varlety m+1 € sq,.. ., Sy, Yus1y -« - Yrmats
in Dy, @ variety m+1.€ $1,..., Su, Zugt,. - -, Zrpins
where S1,. .., Su, Yutts -+, Urmpss Zutly - s %4, are all distinct blocks and possibly

some of the subsequences are empty. Consider y; and z; (u <1 < Tm1). In Dy,
variety m +1 € y;. If y\(2s U Vn) # 0 in D, then let ¢; € y\(z U V,). By (2)
YiVm = 2iNVn 50 ¢; € Vin. E; = [(m +1,z), (¢:, ¥:)] is a b-interchange pair for D,.,
and then in both €, and D,,(E;) we have variety m + 1 € y; and variety m + 1 € z;.

Suppose now that in D,, we have y;\(2:UV,) = 0. By (2) this holds if and only if
¥i € z;. Consider the situation in C,,. We have variety m + 1 ¢ z; by the definition
of z;. So variety m + 1 € y;\2z and as y; C z; we have k,, < k,, and so z\y: # 0. Let
% € zi\y;, and by (2) ¢i € Vin. Fi = [(m+1,4),(gi,2)] is a b-interchange pair for
Cr, and in both C,,(F;) and D,, we have variety m + 1 € z; and variety m + 1 & y;.

Calculate all the b-interchange pairs E; or F; obtained in this manner (u<i<
Tm+1). None of the varieties in the b-interchange pairs include any varieties from V,,,.
The b-interchange pairs are all on distinct blocks so we can perform them in any
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order: let Uy,41 De the design obtained irom C,, Dy the £;’s ana let U,y the design
obtained from D,, by the E;’s. So we have Cy, ~ Cryy1, Din ~ Dypyy and -

Crntr and Dinyq agree on Vo4

Thus we have the conditions to apply Step m + 1.

Let Cq = C, Do = D. Cy and Dy satisfy (2) for m = 0, since in this case the
condition is empty. Apply Step 0 as described above to obtain C;, Dy and then Step
1, Step 2 and so on until after Step v — 1, C, and D, agree on V, that is, C, = D,.
Sowehave C = Co~Cy~ -~ (Cy =D, ~+ -~ Dg= D, that is, C and D are in
the same equivalence class, as required. O

Corollary 1 There is a one to one correspondence between equivalence classes of C
and pairs (r,k) of vectors r = (ry,...,r,)" and k = (k1, ..., k)T with

v

dorio= 2k (3)

=1 =1

The correspondence is given by: (r,k) corresponds to collection of (binary) designs
D with incidence matriz Np satisfying

Nply=r and Nj1l,=k . (4)

Proof. By counting the varieties of a design D in two ways, if D satisfies (4) then
D also satisfies (3). The corollary now follows from Theorem 1. O

Corollary 2 For a fized v,k and r, the collection of all binary equireplicate block
designs is an equivalence class under b-interchanges,

Proof.  Such designs D are characterised by their incidence matrix Np satisfying
Npl, =rl, and NE1, = k1,. O

Corollary 3 The collection of all binary m-resolvable designs with given parameters
v, k,r is an equivalence class under b-interchanges involving blocks of the same class.

Proof.  The set of blocks in any given block class is a binary equireplicate block
design with block size k and replication number r/m. The collection of these designs
is an equivalence class under b-interchanges. O

Note that for a l-resolvable design, every interchange involving blocks from the
same class is a b-interchange.

4 Comments

For t =2, a t~(v, k,\) design D is a block design with v varieties, block size k such
that every ¢ distinct varieties is on A blocks. Such a design has
b_)\v(v* o (v—t+1)
Tk —=1) - (k—t+1)
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blocks [3, Corollary 1.4, p7]. Also from [3, Theorem 1.2, p6] D is equireplicate
with replication number r = bk/v. Thus D belongs to the equivalence class with v
varieties, b blocks and with k = k1, and r = r1,.

A further comment. By Corollary 2, the equivalence class containing an equirepli-
cate block design with v varieties, b blocks, replication number r and block size k
includes all designs with these parameters. In particular, if D and D’ are isomor-
phic such designs (by isomorphic we mean there exist permutations a on V, 8 on
B with P € z in D if and only if P* € 2f in D') then D’ can be obtained from D
by b-interchanges. This does not necessarily hold for other equivalence classes. In
other words, isomorphic designs are not necessarily in the same equivalence class. For
example, consider the designs C' and D whose incidence matrices are:

101 110
Ne=|111 Np=|111
011 011

They are isomorphic with a being the identity on V and f:1 + 1 and 2 < 3,

where B = {1,2,3}. As NZ1, # N}1, they are not in the same equivalence class
(Theorem 1).
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