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Abstract.  The edge-neighbor-integrity of a graph G, ENI(G), is defined to be
ENI(G) = sémn {|S] + w(G/S)}, where S is any edge subversion strategy of G, and

w(G/ S) is the maximum order of the components of G/S. In this paper, we find
the minimum and maximum edge-neighbor-integrity among all trees with any fixed
order, and also show that for any integer ! between the extreme values there is a
tree with the edge-neighbor-integrity [.

I. Introduction

In 1987 Barefoot, Entringer, and Swart introduced the integrity of a graph
to measure the “vulnerability” of the graph. [1,2] In 1994 [4] we developed a
graph parameter, called “vertex-neighbor-integrity”, incorporating the concept of
the integrity [1,2] and the idea of the vertex-neighbor-connectivity [5]. Here we
consider the edge- analogue of vertex-neighbor-integrity, incorporating the concept
of the integrity and the idea of the edge-neighbor-connectivity [3].

Let G = (V,E) be a graph. An edge e = [u,v] in G is said to be subverted
when the incident vertices, u, v, of the edge e are deleted from G. A set of edges
S = {e1,€e2,..,em} is called an edge subversion strategy of G if each of the edges
in S has been subverted from G. Let G/S be the survival-subgraph left when S has

been an edge subversion strategy of G. The edge-neighbor-integrity of a graph G,
ENI(G), is defined to be

ENI(G) = mm {]S[ +w(G/S)},

where S is any edge subversion strategy of G, and w(G/S) is the maximum order of
the components of G/S.

Example: K, ., where n > 1 and m > 1, is a complete bipartite graph with a
bipartition (X,Y), where |X| = n and |Y| =
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ENI(K,, )= _ _min {[S|+w(K, ./S)}

m SCE(K,, )

= S*| + w(K, ,./S")s where S* is a set of matching
saturating each vertex of X if |X| < |Y| (or Y if |Y| < [X]),

m+1, ifm<n;
morn, ifm=n.

{n+1, if n < m;

In this paper, we find the minimum and maximum edge-neighbor-integrity
among all trees with any fixed order, and also show that for any integer [ between
the extreme values there is a tree whose edge-neighbor-integrity is I. [z] is the
smallest integer greater than or equal to . |z] is the greatest integer less than or
equal to z.

II. The Minimum and Maximum Edge-Neighbor-Integrity of Trees

For any connected graph G of order at least 3, the edge-neighbor-integrity,
ENI(G) > 2, since there is no edge e in G such that G/{e} = 0. Trees are connected
graphs, and therefore ENI(T) > 2, for any tree T of order at least 3. If we can find
a tree of order at least 3 whose edge-neighbor-integrity is 2, then the minimum
edge-neighbor-integrity among all trees is 2.

Lemma 1: Let G be a connected graph of order at least 3. If ENI(G) = 2, then
the diameter of G is < 3.

Proof: Assume that the diameter of G is > 4, then G contains a path P;. Hence
for any edge e in G, w(G/{e}) > 2, and for any two edges e; and e; in G,

w(G /{e1,ea}) > 1. Therefore ENI(G) > 3, a contradiction. Hence the diameter of
Gis <3. QED.

Let K1, be a complete bipartite graph with a vertex bipartition (X,Y), where
|X] =1 and |Y| = n. We also call K , a star with n+1 vertices. Let DS(n1,ns) be
a double star with {ni,ns} end-vertices, where n; > 0 and ny > 0, and a common
edge [u,v], as shown in Figure 1. Note that if either ny or n, is 0, then the double
star DS(nq,n2) is a star.
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DS(ny,nq): ny vertices 14 vertices

Figure 1

Then we have the following theorem.

Theorem 2: Let T be a tree of order n > 3. Then ENI(T) = 2 if and only if
T is either a star K; ,—1 or a double star DS(ny,na), where ny > 1, ng > 1, and
ny+nyg=n-— 2.

Proof: If T is a tree of order at least 3 and ENI(T) = 2, then by Lemma 1, the
diameter of T is either 2 or 3. If the diameter of T is 2, then T is a star Ky n—1. If
the diameter of T is 3, then T is a double star DS(n1,n2), where ny > 1, ng 2 1,
and ny +ng =n —2.

Conversely, let T be either a star K; - with the order n >3 or a double star
DS(ny,ny), where ny > 1, ny > 1, and the order n = n; + ng + 2 > 4. Then the
subversion of any one edge € from Ki -1 produces n — 2 isolated vertices. Hence

ENI(K, ) = min {1S]+(G/S)

= e} +w(G/{eh)=1+1=2.

The subversion of the common edge e from DS(n;,ny) produces ny + ny isolated
vertices; the subversion of any another edge from DS(ny,nz ) produces a subgraph
with the maximum order of the components > 2. Hence

ENI(DS(n1,n2)) = min {|S[+ w(G/S)}

= e} +w(G/{e}) =1+1=2.
QED.
Since DS(0,n — 2) (=K1 n—1), DS(1,n — 3), DS(2,n — 4), ..., and
DS(|n/2] — 1,n — [n/2] — 1) are all of the trees with the order n, where n > 3,

and the edge-neighbor-integrity is 2, there are |n/2] non-isomorphic trees of order
n with the minimum edge-neighbor-integrity.

Next, we find the maximum edge-neighbor-integrity among all trees of order
n > 1. .
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Lemma 3: For positive integers, n-and m, if n is fixed, then the function g(m) =

m + [n/m] has the minimum value [2y/n] at m = [/n]. [2]

Theorem 4: Let P, be a path of order n > 1. Then

ENI(P,) = [2v/n 1 2] - 3.

Proof: Let V(P,)={v1,v2,vs,...,0,} and S be any subset of E(P,). The subversion
of an edge e = [vi,vi11] from P, is the removal of the vertices v; and v;y; from P,,,
so

(n-2|8))
w(Pn/S) 2[ (S| +1) ]
Let |S| = m.

BNI(P,) = _min  {IS| +w(P,/S))

> mig {me [T} O

= ~3+n1£1§3 {m+1+[:;i21-|}

=-3+4+[2vn +2]. (By Lemma 3.)

Setting [S| = m = [+/n + 2] —1 gives the minimum value of {m+ [(n—2m)/(m+1)]}
and the equality of (1) holds by taking S to be a set of m edges with equal distance
in P,. m= [y/n+2[~1and n—2m > 0if and only if n > 2 and n # 3. Therefore,
if n > 2and n # 3, then the set S is taken to be a set of [v/n + 2] — 1 edges with
equal distance in P,. If n =1, then ENI(P,)=1 and [2y/n +2] -3 =1. If n = 3,
then ENI(P,)=2 and [2v/n + 2] — 3 = 2. Hence we obtain the result. QED.

To show that a path P, has the maximum edge-neighbor-integrity among all
trees of order n, we first show the following theorem.

Theorem 5: If T is a tree of order n and 0 < m < n — 1, then there is a subset S
C E(T) such that |S|=m and w(T/S) < [(n — 2m)/(m + 1)].

Proof: Assume that the result is not true for some n, and let T be a tree of order
n with largest diameter, say d, satisfying
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(n - 21SI)}
(IS|+1) I”

for any subset S C E(T). From the proof of Theorem 4, we know that T % P, i.e.,
d < n—2. Let P=(v1,vs,...,v4+1) be a longest path in T. Then there is a vertex
v in the path P such that the degree of v is greater than 2; let the least index of
such vertices be k. Then 1 < k < d + 1. Now construct the tree T' which is T
—[vk, vi41] + [v1, vk41] (as shown in Figure 2).

T: G © 0 e 0o eo e oo o oo @ < Pz 00 & @ ©
L Vt, Vk—2 Vk—1 [V Vk+1

"
T 4?: ...... @ oo @ ‘\ .....

v U2 Vi, V-2 Vk-1 k Vk+1
ﬁv_.....

Uy uy ...

w(T/S) >[

Figure 2

Since the order of T is n and diameter d' > d, by the assumption on T, there
is an edge-subset §' C E(T') such that |S'| = m and

W(T'/S") < {%215%1 .

Obviously, T/{e} = T'/{e} if the edge e is incident with vg4; in T' and e #
[v1,ve41], and T/{f} C T'/{f} if the edge f is incident with vg in T'. Tt follows
that e, f € S, for all edges e incident with vy in T/ and e # [vq, vk41], and for
all edges f incident with vy in T’, since otherwise taking S = §' gives w(T/S) <
w(T'/S") < [(n —2m)/(m + 1)], a contradiction.

Next, we show that [v1,ve+1] € S

Assume that [vy,vi41] € S'. If the edge [vi,v2] € S', then let S be 8’ with
[v1,vk+1] replaced by [vg,vk41]. Then T/S € T'/S" and w(T/S) < w(T'/S") <
[(n —2m)/(m + 1)], a contradiction. If there are edges [ve, ,ve, 41 -y V4,501, 41],
where 2 <t; <ty < .. <t, < k-2 in§, then let S be §' with [v;,, vs,41] replaced
by [ve,—1,v¢,], for all #1, s, ..., t,, and [v1,v441] replaced by [vg, vg1], then T/S and
T'/S' have different components as follows:
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T/S has the components :
path Py = (v1,...,v4,2), onlyift; >3,
path Pj = (v¢;41,-..,v4;,,-2), where 1 <j <p -1,
path Pr = (vg, 41, .., Vk-1),
. Cg: the component containing u; (z = 1,2,...)
(as shown in Figure 2).

T'/S" has the components
path P = (va,...,v4,-1), onlyift; >3,
path P} = (vs; 19,y 4;,,-1), where 1 <j <r —1,
C;: the component containing a (k — t, — 1)-path — (v¢, 42, ..., vk),
and containing u; (1 = 1,2,...)
(as shown in Figure 2).

Other than the above, T/S and T'/S' have the same components. The order of
Py = the order of Py, the order of P; = the order of Plforall 1 <j<r-1,
the order of P, < the order of C}, and the order of C; < the order of C!, hence
all of the components of T/S have sizes smaller than or equal to w(T'/S'), and
w(T/8) <w(T'/8") < [(n—2m)/(m + 1)], a contradiction.

Therefore [vy,vk41] € §'.

It has been shown that e, f ¢ S', where e is incident with vgy; in T, and
f is incident with vy in T, hence v; and vg4q must be in T'/S'. It follows that
there must exist v;,,vi,,...,vi, (r > 1), where 1 < 4; < i3 < ... < i, < k— 2, such
that e;, = [vi,vi,41], €5, = [viy,i341], -y €, = [05,,9;,41] € S', since otherwise
vk and vk are in the same component of T'/S’, thus taking S=S' gives w(T/S) =
w(T'/S") < [(n — 2m)/(m + 1)], a contradiction.

Let 5* be ' with [v;;,vy; 1] replaced by [vi; 4 k—i, ,vi; 4 ki, +1], forall 1 < j < 7.
Since i, <k~2,3 <i1+k—i, <ipg+k—i, <izt+k—i, <..<i,+k—i, =k By
the assumption on T, w(T/S") > [(n —2m)/(m +1)], and all of the components of
T/8*, except the path P* = (v1,vs,...,0i,4k-i,~1), have the sizes smaller than or
equal to w(T'/S'), which is < [(n — 2m)/(m + 1)], hence the order of P* must be

n —2m
m+1

n+k—n-1z[ ]+L

Let A} and A}, be two different components of T'/S' containing vy and vj1,
respectively, and kh be the number of the vertices in A, 41 that are not in the set

V1,32, ..., Vi;~1 ). Since the order of A!_ , is less than or equal to [(n—2m)/(m+1
1 k+1

b
we have

n—2m

m+1

1ghg[ L%h_ngk—u—L
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Now, let S be the set §' with [v;;,v;;+1] replaced by [vi; 4 a,vi;4h41], for all 1 <
j < r, and consider the sizes of the components of T/S. By the constructions of
S and §', all of the components of T/S, except those containing v; and v, have
at most [(n — 2m)/(m + 1)] vertices. The vertex set of the component of T/S
containing v; is obtained from the vertex set of A}, by deleting the h vertices
Ajyq — {v1,%2,...,%;, -1} and appending the vertices v;,,vi; 41, .., Vi, +h—1 With no
change in number of vertices. Similarly, the vertex set of the component of T/S
containing v; is obtained from the vertex set of A} by deleting the h vertices
Vi, 425 Vi, +35 -0y Vip+hsy Vi, +h+1 and appending the h vertices, A}, —{v1,va, ..., v5, -1}
with no change in number of vertices. Hence w(T/S) < [(n — 2m)/(m + 1)], a
contradiction.

Therefore we obtain the result of the theorem. QED.

Using Theorem 5, we now show that the path P, has the maximum edge-
neighbor-integrity among all trees of order n.

Theorem 6: The path P,, has the maximum edge-neighbor-integrity among all
trees of order n > 1.

Proof: It is trivial for n = 1.

Let T be a tree of order n > 2. Then by Theorem 5, for any integer m,
0 <m < n-1, there is an edge-subset S' C E(T) such that |S'| = m and w(T/S') <
[(n —2m)/(m+1)].

ENK(T) = min_ {IS|+w(T/S)}

< min m+ [n — 2m'|
~ 0<m<n—1 m+11f"

By the proof of Theorem 4, ENI(P,,) = m+[(n—2m)/(m+1)] with m = [/n + 2] —
1. 0< [v/n+2] —1<n—1if and only if n > 2. Therefore

ENI(T) < | _min {m+{n - 2m]}

m<n—1 m+1

< {n—2m*
sm T

m* +1

", where m* = [vn+2] —1

= ENI(P,,).
QED.

We have shown that the path P, has the maximum edge-neighbor-integrity
among all trees of order n. However, P, is not the only tree that has the maximum
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edge-neighbor-integrity. We evaluate the edge-neighbor-integrity of T, x (as shown
in Figure 3), where 1 < k < n — 2, in Theorem 8, stating that there are at least
[v/n+2—(9/4)] non-isomorphic trees of order n having the same edge-neighbor-
integrity as P,.

Tk L &= eecece ® & k vertices
Wp—k—1 Wn—k—2 w2 w1
Figure 3

Lemma 7: There is a unique path P,, satisfying the following condition (A) ——
for any subset S of E(P,,), if ENI(P,,) = |S| + w(P,/S) then w(P,/S) = 0. Moreover,
n = 2.

Proof: Let P, satisfy the condition (A). By the proof of Theorem 4, if n > 2 and
n # 3, then there is an edge subset S* of E(P,,) such that ENI(P,,) = |S*|4+w(P,/S*),

where

w(Pn/S") = HS—}I?}E—P]

and

IS*| = [V +3] - 1.

Since P, satisfies the condition (A),

ENI(P,) = |5 + w(Pn/S")
— [
= f\/n +2] -1
By Theorem 4,
ENI(P,) = [2vn+2] —3.

Therefore
[Vn+2] -1=[2Vn+2] -3,

and hence n = 2 or 4.
Let P4 = (‘Ul, U2,’U3,U4). Then Sl = {[Ul, ”Uz], ['U;;,U4]} and Sz = {[’02, Ug]} satisfy
ENI(P,) = [S1] +w(P4/S:)

= [Sz| + w(Py/S2)
= 2.
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w(P4/S1) = 0, but w(P4/S;) = 1 # 0. Therefore the path P, does not satisfy the
condition (A).

Let Py = (v1,v2). S = {[v1,v2]} is the only edge subset of E(P;) satisfying
ENI(P,) = |S| + w(P2/S) = 1, and w(P,/S) = 0.

The remaining case is that n = 3: Let P3 = (v1,v2,v3). Then
S1 = {[v1,v2], [v2,vs]} and Sy = {[v1,v2]} satisfy

ENI(P,) = [S1] + w(P3/S1)
= [Sa| + w(P3/S5)
= 2.

w(P3/S1) = 0, but w(P3/S;) = 1 # 0. Therefore the path P3 does not satisfy the
condition (A).

Hence P; is the only path satisfying the condition (A). QED.

Theorem 8: The edge-neighbor-integrity of Tn x (as shown in Figure 3), where
n>3and 1< k<n-—2,is as follows:

[2vn+2] -3, f1<k<+vn+t2-2

2vn—k] -2, fVn+t2-2<k<n-5;
EN(T,,) =

3, fk=mn-—4;
2, fk=n-3n—2.

Proof: If k = n — 2, Tpx is a star. Then ENI(T, %) = 2.
If k =n—3, Tp is a double star. Then ENI(T, ) = 2.

Now we consider the case of k < n—4. Let S* be a subset of E(T, ) for which
ENIT,, ) = S| + w(Tas/S*).

If [v,v;] € §*, for some 4, 1 <4 < k, we may let ' be S* with [v,v;] replaced
by [w1,v]. Then

IS + w(Tn e /S8") < 87| + w(Tn/S")

= ENI(T,, )

SCE(T ) {‘SI “"“’( n,k/S)}.

Therefore
ENI(Tn,k) = |§'| +w(Tpi/S").
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Hence without loss of generality we may assume that [v,v;] ¢ S*, forall 1 <7 < k.
Now we consider two cases:

Case 1. If [wy,v] € 5%, then

BNI(P,,_4yp) + 1, ifn—(k+2)#2

' { ENI(P, ,0)+2, ifn—(k+2)=2.

(By Lemma 7.)

{(Zx/n—k]—% if k#n—4;

3, ifk=mn-—4.
(By Theorem 4.)

Case 2. If [wy1,v] & S*, then v,v1,vs,..., and v} are in the same component of

Tp,x/S*, and

ENI(T, ,) = ENI(P,) = [2/n + 2] - 3.

Hence,

min ([2vn —k] -2,[2¢vn+ 2] —3)

k#n—4
ENI(Tn,k) = or

mln ( [2v/n + 2] —3).

Inthe caseof k =n—4, [2¢/m +2] -3 <3Handonlyif n <7. Un <7,k >1,
and k = n—4, then n can only be 7, 6,or 5. Whenn =17, 6, or 5, [2¢/n + 2] -3 = 3.
Hence, in the case of k =n — 4, ENI(T, ;) = 3.

Inthe caseof k £ n—4, [2¢/n+2] -3 < [2y/n—k| -2if k < /n+2-—(9/4),
and [2vn — k] —2<[2¢/n+2] —3if k> +v/n+2 - (9/4).

Therefore,
[2v/n+2] -3, H1<k<Vnt2-%
[2vn—Fk| -2, ifv/nt2—2<k<n-—5
ENI(T,, ,) = a b
2, if k=n—3,n—2.

QED.
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Among all trees of order n > 3, the maximum edge-neighbor-integrity is
[24/n +2] — 3, and the minimum is 2. We can find a tree whose edge-neighbor-
integrity is [, for any integer [ between the extreme values, as shown below.

Theorem 9: If [ is any integer, where 2 <[ < [24/n + 2] — 3, then there is a tree
T of order n such that ENI(T) = L.

Proof: If | =2, T = Ky n—y or T = DS(i,n — i — 2), where 1 <i < |(n —2)/2]; if
l=12y/n+2]-3,T=P,or T =T, wherel <k <+n +2— (9/4). Therefore
we assume that 2 <1 < [24/n + 2] — 3. Since

1< [2vn+2] -3,

we have
I+3<2vn+2,
and PR
n> ot glt g 2)
Let r be the largest integer such that [2y/7 + 2] -3 =[—1,s0 [24/(r +1) + 2] -3 =
I. Since
14+3>2/r 13,
we have
? 3 1
<= +i04-.
r+1“4+2l+4 3)
Hence combining (2) and (3),
n>r+2.

Welet k =n —r —12> 1, so that T, & contains a path P, ;. Then

ENI(T, ,) > ENI(P,, )= [2y/(r + 1) + 2] —3=1.

The subversion of the edge [v,w;] from T+, ; produces k isolated vertices and a path
P,_;. Hence

EN(T, ,) <1+ENI(P,_,), ifr—1#2
=1+[2y/(r-1)+2] -3
= [2vr +1] -2

<[2vr+2]-2=1L
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Therefore if » — 1 # 2, ENI(T, ) =1.

The remaining part is to show that » = 3 is impossible. r is the largest
integer such that [2¢y/r +2] —83 =1 —1. If r = 3 then | = [2¢/5] — 2 = 3. Thus

24/(r+1)+2] -3 = ]'2\/6] —3=2=1[-1, a contradiction to the assumption on
r. Hence r £ 3.

Therefore we have found a tree, T, ;, whose edge-neighbor-integrity is [. QED.
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