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Abstract

For any integers n, m, 2n > m > n we construct a set of boolean func-

tions on Vi, say {fi(z),..., fa(2)}, which has the following important
cryptographic properties:

(i) any nonzero linear combination of the functions is balanced;

ii) the nonlinearity of any nonzero linear combination of the functions
y
is at least 2™~ — 2n—1

(iii) any nonzero linear combination of the functions satisfies the strict
avalanche criterion;

(iv) the algebraic degree of any nonzero linear combination of the func-
tions is m —n + 1;

(v) F(z) = (fi(2),..., fa(2)) runs through each vector in V, precisely
2™~ times while z runs through V,,.

1 Basic Definitions

Let V,, be the vector space of n tuples of elements from GF(2). Let «, § € V;,. Write
a = (a1,...,an), B = (b1,...,bn), where a;,b; € GF(2). Write (c, 8) = ¥7.; a;b;.
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Also write a = (a1,...,a,) < = (b1,...,b,) if there exists &k, 1 £ k £ n, such that
a; =by, ..., ar1 = by_; and ax = 0, b = 1. Hence we can order all vectors in V,
by the relation <

ag<a1<"'<ﬂi2n_17
where
ao=(0,...,0,0), ..., agm-ry = (0,1,...,1),
Qgn—-1 =(1,0,...,0), ceay Qon_g :(1,1,,1)

Definition 1 Let f(z) be a function from V, to GF(2) (or simply, a function on
Vo). The (1 -1)-sequence n = ((—l)f(“") (=1)ftea) (-—1)“"‘"“1)) is called the
sequence of f(z). Similarly, the (0, 1)-sequence (f(ao) f(c) ... f(agn_1)) is called
the truth table of f(z). In particular, if the truth table of f(z) has 2"~ zeros {ones)
f(=) is said to be 0-1 balanced (or simply, balanced).

Definition 2 We call i(z) = ayz1+- - - +anz.+c, aj,c € GF(2), an affine function.
In particular, we will call h(z) a linear function if ¢ = 0. The sequence of an affine
function (a linear function) will be called an affine sequence (a linear sequence).

Definition 3 Let f and g be functions on V,, whose sequences are ¢ and 7 respec-
tively. The Hamming distance between f and g, denoted by d(f,g), is the number
of components where ¢ and 7 differ. Let ¢y,...,0m, @ant1, ..., 0o+t be all affine

ey

The nonlinearity is a crucial criterion for a good cryptographic design. It prevents
a cryptosystem from being attacked by solving a set of linear equations.

Definition 4 Let f(z) be a function on V,,.. If f(z)+ f(z+a) is 0-1 balanced for every
a € V, with W(a) = 1, where W{a) denotes the number of nonzero components
(the Hamming weight) of a, we say that f(z) satisfies the strict avalanche criterion

the (SAC).

The strict avalanche criterion was originally defined in [16], [17], and was gen-
eralized in two different directions [2], [5], [8], [9], [10], [14]. The 0-1 balance,
the nonlinearity and the avalanche criterion are important criteria for cryptographic

functions [1], [5], [7], [10].

Definition 5 A (1, -1)-matrix of order n will be called a Hadamard matriz if
HHAT =nl,.
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special kind of Hadamard matrix defined below will be relevant:

Definition 6 A Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order
2", denoted by H,, is generated by the recursive relation

. Hn«l Hn——l . .
H, = { i } n=1,2,..., Ho=1.
Notation 1 For a vector § = (i1,...,1,) € V,, we define a function on Vy:

where 1= 1+ 1.

Notation 2 Define a matriz of order s +t, denoted by Q(s, t), whose entries come
from GF(2), such that
. Is Os)(t
Q(‘%O‘“{D It }7

where I; is the identity matriz of order 1, O,4; 1s the zero-matriz of order s X t,

10 -0
D= _
10 -0

Obviously Q(s,t) is a nonsingular matrix.

2 The Properties of Balance, Nonlinearity and
SAC

In this section we review a number of results on balance, nonlinearity and the SAC.
These results will be employed in the later part of the paper.

Lemma 1
Dl TS ooy - . ! 1 IP . ’ ) P !
1 ,p(f‘ll yp) { 0 ’Lf(y1,.u,yp)75(11,-..,Zp)-
Proof. The verification is straightforward. O
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Lemma 2 Let §;,, ., be the sequence of a function f; ip(Z1,...,3q) on V,. Set

&= (bo...00, €0,.01, -+, &1,.11). Then £ is the sequence of the function
f(y1,~--,yp;$1,~--,$q) = Z Di;..-.,ip(yl)'-')yp)fil ..... ip(ml)"':mII)y (1)
(1,.1p)EV,

that 1s a function on Vyyp.
(See Lemma 1 of [11].)

Lemma 3 f(y1,...,9,1,...,%,), defined in (1) is the zero function on Virp of and

only if each firip(Z1, - -, Tq) is the zero function on Vy.

Proof.  f(y1,...,Yp,1,...,2,) is the zero function on V,y, if and only if

(i1, 135,21, ..., 2g) is the zero function on V for any fixed (31,.--,1p) € V. From
Lemma 1, f(i1,...,0p, %1, .., 24) = fiy, . ip(Z1,. .-, Tg)- O

From the proof of Lemma 3, any function can be uniquely presented by (1).

Lemma 4 Ds(y + 8) = Dsip(y) where y, § € V.

Proof.  Since Ds(y + B) = 1 if and only if y + 8 = 6. Dsyp(y) = 1 if and only if

y = 6 + B. This proves the lemma. O
N
4 :
Lemma 5 Write H, = . where £; 1s a row of H,. Then each {; is the
12"——1

sequence of the linear function hi(z) = (o, z) where a;, 0 <4 < 2" — 1, is a vector
n V,, zeV,.

(See Lemma 2 of [11].)

From Lemma 5, the rows of H, comprise all the sequences of linear functions on
Va and hence the rows of + H,, comprise all the sequences of affine functions on V.

Lemma 6 Let f and g be functions on V,, whose sequences arens and 1 Tespectively.
Then d(f,g) = 277" = 3(ng, 7).

(See Lemma 3 of [11].)



wemma ( or any Junciion j On Vn, iNf = 4 42 .
(See Lemma 4 of [11].)

Lemma 8 Let f(z) be a function on V,,, A be a nonsingular matriz of order n, with

entries from GF(2). Set f(zA) = (z). Then

(1) f is balanced if and only if 1 is balanced,
(i) N = Ny.

Proof. (i) ¥(@o) = 0 if and only if f(ze4) = 0.

(i) Let h(z) be an affine function on V,. Set ha(z) = h(zA). ¥(z0) # ha(zo)
if and only if f(zoA) # h(zoA). Thus d(f,h) = d(v,hs). Note that while h runs
through all affine functions on V,, hy runs through all affine functions on V, since A
is nonsingular. O

Theorem 1 Let f(z) be a function on V,, A be a nonsingular matriz of order n,
with entries from GF(2). Set f(zA) = v(z). Let y; denote the ith row of A. If
f(z) + f(z + %) is balanced for i =1,...,n then ¥(z) satisfies the SAC.

Proof. Let 6; denote the vector V,,, whose the ith entry is 1 and others 0. Note that
TA=A. Thus A=, i=1,...,n. Note that $(z) + $(z + &) = f(zA) + f((z +
6:)A) = f(u) + f(u + ), where u = zA. Since A is nonsingular uA™" = z will go
through V,, while u runs through V.. Thus ¥(z)+¥(z + &) is balanced, i = 1,...,n,
that is to say, ¥(z) satisfles the SAC. 0

Lemma 9 Let g(y1,...,Ys) be a function on V,. Set f(yi,...,¥s,@1,...,%e) =
9(y1,- ., Ys), @ function on Vo,

(1) If g is balanced then f is balanced,
(ii) Ny 2 2N,
Proof. (i) g(y1,-..,ys) takes the value 0 and the value 1 both 2°7! times while

(y1,...,Ys) runs through V, once. Hence f(y1,...,¥s, %1, .., %) takes the value 0
and the value 1 both 2¢*°~! times while (y1, ..., ¥s, 1, . . ., &¢) Tuns through V., once.

135



(it) Let fi(ze, . s 2691, %) = F(y1, -, ¥, 1, -, @) = (Y1, -+, Ys)-

Let ¢ be the sequence of g hence n = (¢,..., ) is the sequence of f;, where 7 is
the concatenation of 2¢ ¢,.

Let L be an affine sequence of length 2***. By Lemma 5, L is a row of £H,,, =
+H;, x Hy,. Thus L = +£' x £ where £’ is a linear sequence of length 2¢, a row of H,
and £" is a linear sequence of length 2°, a row of H,. Write £' = (a4,...,as:) thus
L =(a1?",...,a2:8"). Note that (n,L) = 5;1 a;(£,2"). Let £" be the sequence of a
linear function on V;, say h. Since d(g,h) 2 Ny, by Lemma 6, (£,£") £ 2* — 2N,,.
Note that Z?;l aj < 2% thus (n, L) < 2%(2° —2N,). Let L be the sequence of an affine
function on Vi4,, say h*. Hence by Lemma 6, d(f1, h*) Z 2!N,. Since h* is arbitrary
Ny, 2 2'Ng. By (ii) of Lemma 8, Ny = Ny, 2 2¢N,. ul

Corollary 1 Let g(y1,...,9.) be a function on V,. Set f(y1,...,Ys,T1,...,2¢) =
9(y1,-. 1Y), o function on V4. Let A = Q(s,t) where Q(s,t) is defined in Nota-

tion 2. Set f(zA) = 4(z) where z = (y, z), y = (y1,---,¥s), T = (T1,...,z). Ifg
satisfies the SAC then 1 satisfies the SAC.

Proof. Let v; denote the ith row of A. Write ; = (0y, 7;) where o, € V,, 7; € V4.

Fori=1,...,s, f(z)+f(z+'y,-)=g(y)+g(y+ag).

Since g satisfies the SAC g(y) + g(y + ;) is balanced on V,, by (i) of Lemma 9,
f(2)+ f(z + ) is balanced on V, .

Fori=s+1,...,s+t, f(2)+ f(z+7%) = 9(y) +9(y + o:). By the same reasoning,
f(2) + f(z+ ) is balanced on V4.
Note that A is nonsingular. By Theorem 1, 4, as a function on V¢, satisfies the
SAC. O

3 Basic Construction

Fory € V,,z € V;, write y = (y1,...,%), = (@1, .., %)

f(yh ey Yy Ty ey z5‘5) = E Dj1,...,j,(y)fjh--.,j.(m) + T(y) (2)

(d11e3s)EVs

where Dj, ;, is defined as in Notation 1, each f;, . j,(z) is a function on V;, r(y) is
a function on V.

Lemma 10 If each fj, . ;. (z) in (2) is balanced then f is balanced.
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D515 -3 36) fis s (2) + (51, 13s) = fiis(2) + (51, - ,Js), that is bal-
anced. Thus f is balanced. O

Theorem 2 Let f be defined in (2) and each f;
on V, then

5.(2) is a nonzero linear function

.....

(i) f is balanced,
(i) Ny = 2°%81 — 2801 if oll 5 .(z) are distinct linear functions on Vi,

(i) f(z) + f(z + ) is balanced whenever B # 0, where z = (y, z), v = (B, a),
y,BEV,, z,a € Vi, if f; .;.(x) are distinct linear functions on V,.

Proof. (i) Since any nonzero linear function is balanced, by Lemma 10, f is balanced.

(i) Let &, ...;, be the sequenceof f(j1,..., 75 @1,.. ., 2) = fi,. 5. (@)+r(1, -, Js)-
Thus §;,,...;, is anonzero affine sequence. By Lemma 2,1 = (&, .0, fo,..01,- - J,11)
is the sequence of f(y1,...,¥s, T1,. .., Z¢).

Let L be an affine sequence of length 2°*. By Lemma 5, L is a row of +H,,; =
+H, x H. Thus L = 4£ x £" where £ is a linear sequence of length 2°, a
row of H, and £" is a linear sequence of length 2¢, a row of H,. Write ¢ =
(&o ..... 0, Qo,..., 0,1,-<-,a1,...,1,1)- Thus L = (ao,...,cf", ao,‘.l,o,leu,-- ~>041,..‘,1,1l")- (77, L) =
it de Ui enis (€t vninr £), Wwhere the subscript (j1,...,7,) € V,. Note that each
&7, 1s a nonzero afline sequence. Thus

L ey
<£]1 yyyyy Jsiel,> —_ { :i:z 1f £Jl """ Js ie !

0 otherwise.

Since all the &, . ;, are distinct there exists at most one £, _;, such that &,
+£". Thus (n,L) = +2* or 0. Let L be the sequence of an affine function, say A*.
By Lemma 6, d(f, h*) 2 2°%*=1 — 2871, Since h* is arbitrary Ny = 2s+t-1 — 2t=1

(iii) Let 8 = (b1,...,bs). By Lemma 4,

D5y + b1, e + 00) = Dyt ots, (Y15 -5 Ya)-

Hence

f(z+7) Y Diris¥ 4 B) fir,i(@ + @) +7(y + B)

Jiyeenrds
= 2 Divtbriitt () fisyis (& + @) + 7y + B)
Jiyeens Js

= > Ditbgein(¥) i (z 4+ @) + 7y + B). (3)

Jitbr,dstbs
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Set (jl)--‘;js) = (?,1 +bl,...,‘i,—|'b.,).

z +7) = Z D;,,.. y)fn+bx. Sietb, (T + @) + T(y +B).

.....

F@+f(z47) = 30 Diis(0)(finrn (@) + Fictty vt (2 + ) +7(y) +7(y + B).
13 4eents

Note that B = (b1,...,8:) # 0, fii,.su(2) + fiiaby,gerea(z + @) = fi_;.(z) +

Sis4bt,enietbs () + fiitby,.i 45, () is a non-constant affine function since all fj, 5. ()

are distinct linear functions on V;. By Lemma 10 f(z) + f(z + B) is balanced.

4 A Group Generalised Hadamard Matrix

Let G be a group, p = (p1,.--,Pa), ¢ = (g1, .- -, qn) be two vectors of length n, whose

entries p;, g; come from G. Deﬁne the operatlon o such that pog = (p141,...,Pndn)
and the inverse of ¢ such that ¢~ =(g7% .., a0 )

p and g are s-orthogonalif pog™! = (p1giY, ..., Pnq;}) comprise s times of all the
elements of G.

A generalised Hadamard matriz ( [3], [4]) of type s for group G is a square
matrix with entries from G whose rows are mutually s-orthogonal.

A group Hadamard matriz [6] is a generalised Hadamard matrix whose rows
form a group and whose columns form a group under the operation o. Note that in a
group Hadamard matrix of type s for G there exists a row acting the role of identity.
By the definition of generalised Hadamard matrix, each of other rows contains each
element of G s times.

Let £ be a primitive element of GF(2*), G be the additive group of GF(2*). Set
0 -.- 0
X = (e7-HHimed 1)) where s,j = 1,2,...,2 — 1, and D; = X . Hence
0

D; is a generalised Hadamard matrix of order 2¥, type 1 (1-orthogonal) for G also a
group Hadamard matrix (3], [4], [6].

It is easy to find out that Dy = | : y , where Y = (ej+i“1(m°d2k“1)), is
0

also a generalised Hadamard matrix of order 2%, type 1 (1-orthogonal) for G also a
group Hadamard matrix.
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ANOLe Lliab all Clitly oL I, all CICINENL of Lr, 18 a polynomial 1n €, whose degree 1s
no more than k — 1, say ag + aje + -+ + az_1e* 1.

ke

We now change ao + a1 + - - + ag_1£57 into agzy + a3y + - - - + ag_1zp, a linear

function on V4.
Note that all linear functions on Vj, form an additive group, denoted by T.

Correspondingly D, becomes a matrix E with entries from I'y. Obviously E is
also a group Hadamard matrix of order 2*, type 1 (1-orthogonal) but for group I'.

Write E = (e; ;), where 1,5 = 0,1,...,2% — 1,
Lety = (y1,.. ., ¥k), © = (%1,..., ). Set

fi(yl; ey Yk T,y - ,ﬂ:k) = DO,.‘.,O(y)ei,O(m) + DO,...,O,I(y )ei,l(x) Ao
+D1,...,1("J)ei,2'¢—1($) (4)

where 1 =0,1,...,2% — 1.

Lemma 11 For any fized s, 1 £ s <2 1, e;,,...,ex, are linearly independent.

Proof.  Consider E;?:l cjfi where (c1,...,c) # (0,...,0). Note that e;; = z,
€1 = @2, ..., €1 = Tk. It is obvious that

k
ZC,’E,‘,I # 0. (5)

Since E is a group Hadamard matrix of type 1 (1-orthogonal) for I’y there exists
a row in E, say the ioth row, such that &, = % | ¢, where each ¢; denotes the
ith row of E and hence Y% | cie;; = e, ;, for every j = 1,...,2% — 1. From (5), the
1oth row of E is not a zero row (i.e. iy # 0) and thus contains every linear function
on Vi since E is a group Hadamard matrix of type 1 (1-orthogonal) for I'y. Thus

Yk L cieis = €, is a nonzero linear function for every s = 1,...,2% — 1. This proves
that for any 5, 1 S s < 2F —1, %, cie;, = 0 if and only if (¢,...,c) = (0,...,0)
thus ey, ..., €k are linearly independent. a

5 A Set of Functions with Cryptographic Prop-
erties

Let P be a permutationon 1, 2,...,25~1. Let E' be the matrix obtained from E by
putting P on the nonzero columns of E. Set E' = (e} ;), wheres,5 =0,1,...,2F — 1.
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Let k < n < 2k. Writey = (y1,...,¥Yn-k), T = (acl,... ,Zk), 2 = (y, z). Note
that €] ; is nonzero linear function on Vi forz = 1,2,...,2% — 1. Set

9i(y, @) = Do,.o(y)eia(z) + Do,.01(y)eia(2) + - + D1,..a(y)e] yur(2) + 7i(y) (6)

where 1 = 1,...,2% — 1, each subscript (31, ,tn—k) € Vo and each r; is a function
on Vn-k~

Let A= Q(n — k, k). Set
Yi(z) = gi(z4), i =1,...,25 — 1. (7

Theorem 3 For any nonzero linear combination of v1,... vy, defined as in (7),
say P = ):;?:1 c;p;, where (ci,...,c0) # (0,...,0):

(i) ¥ is balanced,

(1) Ny 2 2m=1 — 2k-1

(i11) ¢ satisfies the SAC,

(iv) the algebraic degree of ¢ can ben — k + 1.

Proof. From (6),
k

9=2_¢9;= Do, oy ZCJ €;1(z) + Do, 01(?/)201 eja(z)+ - +
=1

7=1

1,. »1 ZCJ _12"—"(:5)‘

By Lemma 11, each of %_, ¢; Jl(m), ; ciei(x), .. LYk ¢;€} yn4(2) is a nonzero
linear funct1on on Vi. Since E' is a group Hadamard matrix of type 1 for T,
E;?:I cjes (), E§=1 cieiq(z), .t ZJ__ cje 2"_,,(ac) are distinct linear functions.

By Theorem 2, g is balanced and N 2ot 2’c !. By Lemma 8, % is balanced and
Nl/l g 211-—-1 . 2k—l.

Let v = (Bi, ai) be the ith row of A = Q(n — k, k), where f§; € Vi, o; € W,
i =1,...,n. Since all §; # 0, by (iii) of Theorem 2, g(z) + g(z + ) is balanced,
1 =1,...,n. Note that 1(z) = g(zA). By Theorem 1, 1 satisfies the SAC.

n—k . . .
We can choose E' such that 3337," €] . is a nonzero linear function on Vi. Other-

wise if 22 1 €1, is zero, we exchange the 2" Fth and the (2"~* + 1)th columns of E'.

Il
€15

is a nonzero linear function on V;. Hence it is reasonable to suppose E?_l erjisa
- ’.

Correspondingly, E’ is changed into E” = (ef,). Since €l ank 7 €] amky1s Ezn -
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term y1 - Ynok and Y1 Yok X"’-:_;k e ; cannot be deleted in

91(y, @) = Do,.o(y)el(2) + Do, o1(y)e1a(z) + -+ + Di,.2(y)el gn-n(2) + r1(y)-
This proves that the degree of g, is m — k -+ 1.

Since D, (E) is symmetric the columns of D, (E) also form a group thus the

columns of E' form a group. Recall .27 "

‘., € :1s a nonzero linear function on V.
i=1 ©1,j k

n—lk . . . .
Thus Ele e; ; is also a nonzero linear function on V4,1 =2,...,2F — 1.

To show this, note that the columns of E' form a group thus the sum of the first,
the second, ..., the 2" *th columns of E' is equal to a column of E’, say the soth
column. Since Z?:k €1 = €1,,, 18 a nonzero linear function on V4 the soth column
of E' is a nonzero column (i.e. so # 0). Thus the soth column contains all the linear

functions on Vj since the columns of E’ form a group.

. n—k . . .
This proves that 25:1 €;; = €i,. is a nonzero function if 7 # 0.

By the same reasoning, the degree of g; isn —k+1,1=2,...,2%F — 1.

Since the rows of E' form a group there exists ¢ such that the 7gth row is equal to
the linear combination of g1, ..., gi corresponding the coefficients ¢;,...,c;. Thus
Sk cigi = gi,. Since the first, the second, ..., the 2" *th rows of E' are linearly
independent (see Lemma 11) g;, is a nonzero function (i.e. 35 # 0). Thus the degree

of E?:;k Cigi = giy s —k+ 1.

Corollary 2 ¥(z) = (¥1(2),...,¥x(2)), a mapping from V. to Vi, where each v; is
defined in Theorem 8, runs through all the 2F vectors in V,, each 2" times while 2
runs through V.

Proof. By Theorem 1 of [12], this corollary is equivalent to (i) of Theorem 3. O

Since any matrix obtained by permuting the columns of a group Hadamard ma-
trix is still a group Hadamard matrix, we can obtain an extremely large number
of boolean function sets with the cryptographic properties mentioned in Theorem 3
and Corollary 2. These functions can be used in many cryptographic designs. In
particular, results shown in this section have been successfully employed by the
authors in systematically constructing cryptographically robust substitution boxes

(S-boxes) [13].
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6 Example

Example 1 By using Theorem 3, we now construct 4 functions of 6 variables. Let
k =4 and n = 6 in Theorem 3. Choose z* + z + 1 as the primitive polynomial. Let

ebearoot of 4+ 2 +1=0.¢ 7=0,1,...,2* — 1 form a sequence:
1, €, g% &3, 1+ €, €+ €2,
€%+ €3, 14+e+ed, 1+e€? e+ed, 14+e46? e+e+6°
14+e+e?+ed, 142+ 1465,
0 --- 0
that is the first row of ¥ , where D, = | | vy of order 2* (see Section 4). We
0

change €' into z;.1, 3 = 0,1,2,3. The above sequence becomes
+1» y 4y 4y

z, T3, z3, T4, zy + 3,
Ty + Z3, Z3 + g4, z3 + @y + 24, z; + z3, T3 + T4,
zy+ 2+ 23, Ta+Tz3+2zg, T1+ T2+ T3+ Te, T+ Tzt Th, Tyt Ta,

0 --- 0
that is the first row of W ,where E= | | W (see Section 4).
0

We choose the submatrix of order k x 252, that is the conjunction of the first four
rows and the 4th, the 9th, the 12th, the 15th columns of W:

T4 z1 + 23 Tz + T3 + T4 T1 + T4
1 + 23 T3+ T4 T1+ Z2 + 23+ 4 T
Tz + 23 Ty +x2+ 23 3+ z3 + 24 73
T3+ T4 Tzt T3+ 24 T+ 24 z3

Using the above array we define (see (6))

91(Y1, Y2, T1, %2, T3, 24) = (1 +y1)(1 + y2)zs + (1 + y1)y2(z + z3)+
y1(1 + v2)(z2 + 23 + 24) + y1y2(z1 + z4),

92(Y1, Y2, 1, T2y 23, 4) = (1 +41)(1 + y2)(z1 + 2) + (1 + y1)y2(z2 + z4)+
y1(1 +y2)(z1 + 22 + T3 + T4) + Y1921,

93(y1, Y2, T1, T2, 23, 24) = (L +y1) (L + y2)(z2 + z3) + (1 + y1)ya(z1 + 22 + z3)+
y1(1 + y2)(z1 + T3 + z4) + Y1922,

9a(Y1, Y2, @1, T2, T3, 24) = (1 4+ y1)(1 + y2) (@3 + ) + (1 + y1)ya(z2 + 3 + z4)+
y1(1 +y2)(z1 + 23) + y1y223,
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Ulllly}.lly Vil AW LLL LWLICVIVLLY
91(Y1, Y2, 1, Ta, T3, Ta) = T4 + Y2Za + Y221 + Y223 + Y172 + Y1 T3 + Y1Y2T2 + Y1Y2Ta,

92(Y1, Y2, T1, T2, T3, 4) = Ty + Tz + Y2T1 + Y2Ta + Y173 + Y1Z4 + Y1y +
Y1Y2Z2 + Y1Y2Ta,

93(y1, Y2, 1, T2, T3, T4) = Tz + T3 + Y132 + Y221 + Y171 + Y174 + YiYazat
Y1Y2%3 + Y1Y2Za,

94(y1, Y2, T1, T3, T3, T4) = T3 + T4 + Y191 + Y2T2 + Y1Ta + Y1Y2T1 + Y1YaTa.

Let
100000
01 0000D0
101000
A=0Q(24) = 100100
100010
100001

and g;(zA) = ¢¥(z), where z = (y1,¥2, %1, 22, 23,%4), J = 1,2,3,4. Hence

Pi(y1, Y2, T1, T2, T3, Ty) = gz(yl+m1+$2+$3+$4y3/2,5317552,9337334) 1=1,2,3,4. Let ¢
be a nonzero linear combination of 1, ¥,, 3, Y4 1.e. ¥ = 37 ¢;9;, (cl, ¢, Cs, Ca) F
(0, 0, 0, 0). By Theorem 3 and Corollary 2

(i) ¢ is balanced,
(i) Ny =25 — 23 = 24,
(ii1) 9 satisfies the SAC,
(iv) the degree of 9 is 3,
(v) ¥(z) = (Y1(2),¥2(2),¥3(2),¥4(2)), 2 mapping from Vs to V4, runs through all

the 2* vectors in Vy each 2? times while z runs through Vs once.

Note that the upper bound of nonlinearities of a balanced function on V; is 26
(see Corollary 3 of [11}). Thus the nonlinearity 24 of any nonzero linear combination
of the these functions in this S-box is very high.
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