




Lemma 1 Let l' U( U, X) be a locally jinde Uayley graph and p be an odd prime. 
Then the number of closed oriented walks of length PI based at any fixed vertex ofr, 
is congruent (mod p) to the n1.tmber of elements in X of order p . 0 

We note that Lemma 1 was proved in for finite only, but the same 
proof valid for the locally finite case as welL 

The central of this paper is the one of a coset Such graphs have 
apparently been known as "folklore" for decades (see [9] or [5] for a more recent 

happen to be special of the two-sided coset graphs introduced 
m ). Let G be group, H a subgroup of G and X subset of elements 
of such that H n X = 0. The vertex set of the coset graph C os( G, is the 
set of all left cosets of H in G; two vertices (cosets) aH and bH are m 

if and only if a-1b HXH {hxhf
• x X and h, h' H}. easy 

to check that this definition correct, it does not depend on the choice of coset 
relJre:sellltC:Ltrves and it produces graphs without and parallel 

An alternate way to define the incidence relation on Cos ( G, is by refer-
to the associated Cayley graph C( G, X): Two cosets bH are in 

C os( G, provided that there exist h, hI E H such that ah and bhl are adjacent 
vertices in associated Cayley graph C(G,X). The coset graph Cos(G,H, can 
therefore be viewed as a obtained by "factoring" the associated Cayley graph 

the subgroup H. It is an exercise to show that the coset 
. connected if and only if the set H X H is a generating set for the 

Observe that in the special case when H {I}, the coset graph reduces 
For more information on coset we refer the reader to [5]. 

m the case of Cayley graphs, the group G acts transitively as a group of 
au·tornorplllsms of the coset graph C os( G, H, X) by left multiplication, and therefore 
every coset graph is vertex-transitive. (However, the action is no longer regular in 

The converse has been proved in [5, 7, 9] for finite graphs, but the same 
also to infinite graphs (possibly of infinite valency): Given a vertex­

transitive r, take a transitive subgroup of its automorphisms for G, the G­
stabilizer of a fixed vertex for H, and define X to be the subset of automorphisms 
of G that are sending the fixed vertex to its neighbours. Then r is isomorphic to 
Cos(G, X). 

Lemma 2 A graph r is vertex-transitive if and only if it is isomorphic to some coset 
graph Cos( G, X). 0 

In some cases we can guarantee even a higher degree of symmetry of the coset 
graphs, namely, their arc-transitivity. The following simple observation shows how 
the existence of suitable group automorphisms can be used in this context. For 
notational convenience, if C os( G, H, X) is a coset graph, let AutH;X( G) be the group 
of all the automorphisms of G which fix both X and the subgroup H setwise. 

Lemma 3 Let r = C os( G, H, X) be a coset graph. Assume that the group AutH;X( G) 
contains a subgroup that acts transitively on X. Then r is an arc-transitive graph. 
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Proof. Since r C os( G, H, is vertex-transitive, it is sufficient to show that 
for any two neighbors aH and bH of the vertex H there is an automorphism of the 
graph r that fixes H and sends aH onto bH. According to the definition of a coset 
graph, the fact that aH and bH are neighbors of H means that there exist x, y E X 
such that, say, a E HxH and b E HyH. (Note: It may happen that x = y and yet 
aH =1= bH.) Since we are interested in cosets aH and bH, we may without loss of 
generality assume that a E H x and b E H y. Thus, a hI x and b = h2y for suitable 
hI,h2 E H. 

By our assumption, there exists a subgroup K AutH;X( G) and an automor-
phism ¢ E K such that ¢(x) y (in the case when x = y we simply take the 
identity automorphism). The properties of ¢ (an automorphism of G, leaving Hand 
X invariant as sets) imply that the mapping </>* cH f-+ ¢( c)H is a well defined au­
tomorphism of the graph r Cos( G, H, X). Clearly, ¢;* maps the arc (H, aH) onto 
the arc (H, ¢;(a)H). Further, from a h1x we have ¢;(a) ¢(h1)¢(X) ¢(hdy, 
where ¢( hd E H. Combining this with b h2y, we see that b h¢( a) for 
h h2 ¢( hI 1 

) E H. Consider now the mapping 1/Jh' cH I---t hcH. It is easy to 
see that 1/Jh is again an automorphism of the coset graph r Cos( G, H, X). Note 
that 1/Jh fixes H and sends ¢( a)H onto bH. Hence, the composition 'ljJh¢* is an 
automorphism of r that fixes H and maps aH onto bH, as desired. 0 

As a consequence, we see that the graph Cos( G, H, X) is arc-transitive if IXI = 1; 
this was also shown in [5, Theorem 3]. 

3 Main results 

The coset graph construction is general enough to yield all vertex-transitive graphs. 
In order to obtain VTNCG's, we need to impose certain restrictions on the triple 
(G, H, X). Applying Lemma 1, we will then be able to prove that the resulting 
graphs are not Cayley. 

Theorem 1 Let G be a group, let H be a finite subgroup of G, and let X be a finite 
symmetric unit-free subset of G such thai X H X n H = {l}. Further, suppose that 
there are at least I X I + 1 distinct ordered pairs (x, h) E X x H such that (x h)P = 1 
for some fixed prime p > IXIIHI2. Then the coset graph r = Cos(G,H,X) is a 
vertex-transitive non-Cayley graph. 

Proof. Observe that the condition XHX n H = {l} implies H n X = 0, and 
so our coset graph is well defined. Let us begin by showing that the valency of r is 
IHIIXI. This could be done using [5, Theorem 2] but we prefer here a different way 
in order to obtain more information about our coset graph. 

Let aH be an arbitrary vertex of r and let bH be a neighbor of aH, that is, 
a-I b E H X H (or, b E aH X H). We claim that there exists a unique x E X such that 
b E aHxH, and that x is independent of the coset representatives (we shall later 
refer to this x as the color of the edge emanating from aH and terminating at bH). 
Indeed, let a' H = aH, b' H = bH, and assume that there are two elements x, x' E X 
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lLLI. .L11 a.l1U U iJlllLC U U 11 a.l1U lL u, t:: 11, we l1a.ve 

n H 0, which that X-I H X' n H ::f 0. From our ""''''"rT1nt,r.Tl 

{I} we now have X-I Hx' n H {I}, that x-1hx' 1 for some 
h E H. But then, h XX,-I X HX. Invoking our again, we see that 
h = 1 , and x' x, claimed. 

Now we show that for each X X there are IHI of color x LoU.LCLJ.JLG",Ll.J.!". 

from aH. For any endvertex bH of such an we have b aHxH. Therefore the 
number of cosets bH such that b aH xH equal to the number of elements in the 
set aH X, which is IHI (here we also use the fact that X H X n H = {I}). Hence the 
valency of r is IHI stated above. 

As the next the closed oriented walks of length p r, based 
at a fixed vertex aoH. Since the does not have multiple edges, every such 
walk is by a sequence W (aoH, a1H, ... 1 apH aoH), where ai-lH is 
adjacent to aiH for 1 ::; i ::; p. Let X be the (uniquely determined) color of the 
edge emanating from ai-lH and at aiH, 1 p. This means that 
there exist elements Ti Hand Si H such that 

::; p . (1) 

This recursion yields ap = ao TiXiSi. Moreover, apH implies that ap = aot 
for some t E and so I1;=:1 TiXiSi t. Letting hi SiT.:+! for 1 ::; i p - 1 and 
hp spt-1Tl, the last product equation reduces to 

(2) 

N ow let bo = aoTI and bi bi - I Xihi for 1 ::; i p. It is easy to show (by induction) 
that bi = aiT.:+! for ° ::; i p - 1. (This is obvious for i 0, and the induction 
step uses (1): bi bi-1Xihi at-lTiXtSiTi+l aiTi+l') Consider the oriented closed 
walk (baH, bIH, .. . , bpH). We claim that this walk is identical with our walk W 
(aoH, a1H, ... ,apH). To see it, we again apply induction. Clearly, baH = aaTIH 
aoH. For 1 ::; i ::; p the induction step yields (recall that bi - 1 ai-ITi and observe 
that hiH = SiH): 

We call this walk (boH, bIH, . .. , bpH) the canonical fOTm of Wi we point out that 
the corresponding parameters bi, 0 ::; i ::; p and hi) 1 p satisfy the conditions 

1 . (3) 

In what follows we show that every closed walk in r has a unique canonical form, 
that is, the elements Xi, hi and bi are uniquely determined by Wand the conditions 
(3). To see this, let (b~H, b~ H, ... ,b~H) be another canonical form for the same 
walk W as above. That is, the associated parameters bi, 0 ::; i ::; p and hi, 1 ::s; i ::s; p 
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satisfy (3): h~ E H, b~ E aoH, b~ b~~lXih~ (1 i::; p) and TIf=l x~h~ 1. (Note 
that we already know that the colors X, are uniquely determined.) In addition, from 
the fact that both canonical forms represent the same W we know that b~H = biH 
(or) bi l b~ E H) for 0 p. the recursions for bi. and bi we obtain for 
1 ::; ~ ::; p: 

This is equivalent to 

By our assumption X H X n H = {I} we have 

(4) 

The left-hand side of (4) implies immediately that bLI bi.-l for 1 S; i ::; Pi but 
then it follows from the right-hand side of (4) that also h~ = hi. for 1 i::; p - 1. 
Now, from the fact that Ilf=l Xihi TIf=1 xih~ we see that h~ = hp as well; invoking 
the right-hand side of (4) again we at last have b~ = bp • 

We thus have established a 1-1 correspondence between the set Wp of all oriented 
closed walks of length p in r 1 based at aoH, and the set I of all ordered (p + 1)­
tuples (boi (Xl, hI)' (X21 h2), ... , (XPl hp)) consisting of bo and pairs of elements of the 
group G such that bo E aoH, Xi E X, hi E H for 1 ::; i S; p, and Ilf=l xihi. 1. 
N amely, if W E W p is such a walk, then Xi are the edge colors, and bo and the hi's 
are determined by the unique canonical form for W. Conversely, any (p + 1 )-tuple 
(bo; (Xl) hd, (X21 h2), ... , (xp, hp)) with the above properties determines (already in 
canonical form) the closed walk (boH, blH, ... ,bpH) E Wp where bi = bi-IXihi for 
1 S; i S; p. Therefore the number IW pi of all oriented aoH -based closed walks of 
length pin r is equal to III, the number of (p + I)-tuples in 1. 

Note that Ilf=l Xihi = 1 implies (TIf=2 Xihi)xlh1 = 1. This innocently looking ob­
servation leads to the following basic property of the set I: If (boi (Xl, hI), (X21 h2 ), . .• , 

(xp, hp)) belongs to I then also the (p + I)-tuple (boi (X2' h2), ... 1 (Xp, hp), (Xl, hd) is 
in I. We thus have an action tl> of the cyclic group Zp generated 'by the permuta­
tion 7[' = (12 ... p) on the set I. If e is any power of 7[', then tl>6 sends a (p+ I)-tuple 
(boi (Xl, hI), (X21 h2), ... , (xp, hp)) to the (p+l)-tuple (boi (X8(1), h8(1)), (X8(2)l h8(2)),"" 
(X8(p), h8(p))). Note that <1> leaves bo invariant. Since p is a prime, each orbit of <1> 

on I has length 1 or p. Moreover, if a (p + I)-tuple (boi (Xl, hd, (X2' h2), ... , (xp, hp)) 
constitutes a length 1 orbit of <1>, then Xl Xp = X, hI = ... = hp = h, and 
(xh)P = 1. Conversely, if X E X and h E H are such that (xh)P = 1, then these 
elements (together with an arbitrary bo E aoH) determine a length 1 orbit. 

Let m denote the number of length 1 orbits of tl>. According to the above analysis, 
III m (mod p), and since IWpl = III, also IWpl == m (mod p). Moreover, as we 
have seen, m is equal to the number of ordered pairs (bo, (x, h)), where bo E aoH and 
X EX, h E H are such that (xh)P = 1. Therefore, 

(IXI + 1)IHI m IXIIHI2. (5) 
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Indeed, while the upper bound is obvious (laoH I 
from our assumption that there are at least 
(xh)P = L 

I), the lower bound tollows 
1 pairs (x, h) E X x H for which 

All the information about the structure of our graph r = Cos(G, H,X) that we 
have obtained above to be combined with Lemma 1 to show that r is 
a non-Cayley if the p IS large. Indeed, assume the contrary 
and let the coset graph r Cos(G, H,X) be Cayley graph C(G',X') for some 
group G' and a symmetric unit-free subset X' c GI

• Let 9 denote the number of 
elements of prime order p in X'. Recalling the set Wp of all oriented aoH-based 
closed walks of length p and invoking Lemma 1, we see that \Wpi 9 (mod p). On 
the other hand, as we have in the paragraph, we also have IW pi Tn 

(mod p). This yields 

g m (mod p) . (6) 

Further, the number 9 cannot exceed the valency of r, and so 

IXIIHI (7) 

However, an easy inspection shows that the relations (5), (6) and (7) are contradic-
tory if p IHI2, and so r cannot be Cayley graph. Hence (cf. Lemma 2), r is 
a VTNCG, claimed. 0 

Combining Theorem 1 with Lemma 3 we obtain a means of constructing not only 
vertex-transitive, but even arc-transitive non-Cayley graphs: 

Theorem 2 Let a group a subgroup H < G, and a subset X C G satisfy all 
assumptions of Theorem 1. Moreover, suppose that the group AutH;X( G) contains a 
subgroup that acts transitively on X. Then the coset graphT = C os( G, H, X) is an 
arc-transitive non-Cayley graph. 0 

4 Examples 

This section is devoted to showing that the above theorems are suitable for con­
structing a variety of vertex-transitive as well as arc-transitive non-Cayley graphs. 
It should be said that our methods are generally producing VTNCG's and ATNCG's 
of large order but comparatively small valency. Also, it is not clear whether one can, 
in this way, obtain VTNCG's whose orders would have only a small number of prime 
factors. Nevertheless, we believe that our sample of constructions will be interesting 
from the point of view of a further study of VTNCG's and ATNCG's. 

We start with the simplest case when the set X contains only one element (which 
is necessarily an involution). Note that the coset graphs built with a one-element set 
X are automatically arc-transitive (see Lemma 3). 

Example 1. Let G be a (finite or infinite) quotient of the triangle group (2, r, p), 
that is, G = <x,ylx2 = yT = (xy)P = ... = 1>. Assume that the presentation of 
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G contains no relation of type xy~x yJ. Further 1 let r 3 and let p be a prime 
greater than r2. Then, Theorem 2 implies that the graph Cos(G,<y>,{x}) is a 
(connected) arc-transitive non-Cayley graph. Indeed, let H <y> and X {x}. 
It is easy to see that the set H X H generates G. The absence of relations of the 
above type guarantees that XHX II H {I}. Now, since x 2 1, (xy)P 1 implies 
that also (xy-l)p 1. Hence if r 3 then there are at least 2 (= IX I + 1) pairs 
(x, h) X x H such that (xh)P 1 for the prime p r2 (= IXIIHI2). The rest 
follows from Theorem 2. 0 

Note that any graph constructed in this way is an underlying graph of a (finite 
or infinite) regular map. We thus obtained a special case of a more general result of 
[2] where it is shown that the underlying graph of any r-valent p-covalent regular 
map is an ATNCG provided that r 3 and p is a prime greater than r(r - 1). (The 
argument in [2] is finer in that it uses some facts from the theory of regular maps, 
and applies also to graphs with loops and multiple edges.) 

Example 2. Let r 2: 2 and s 2 be such that r + s is odd. Let Sp be the full 
symmetric group acting on the set {I, 2, ... , p} where p r + s + 2 is a prime. Let 
H <y, z> be the subgroup of Sp generated by the permutations y (1 2 .. r) 
and z (r + 1 r + 2 .,. r + s). Obviously, H x and so IHI rs. Further, 
let x (1 2 ... p) be a cyclic permutation of the entire underlying set and let 
X {x, X-I}. Let us consider the coset graph fp COS(SPl X). 

It is easy to see that if r + 8 is odd then <x, y, z> Sp. For instance, if r is 
even, then the permutation w (xy-1x-1yxy-l )p-r is just a transposition of the 
elements 1 and r (the composition is to be read from the right to the left). Since p 
is a prime, the p-cycle x together with the transposition ware sufficient to generate 
Sp. Consequently, the coset graph is connected. 

A routine checking shows that X H X n Hid, the identity permutation. More­
over, if r is odd then the permutation xy is a p-cycle; the same is true for xz if s 
is odd. But r + s is odd, and so there are at least three pairs in X X H such that 
the p-th power of their product is idj namely, x, X-I, and one of xy and xz. By 
Theorem 1, if p > 2r2 8 2

, then the coset graph f p = C os( Sp, H, X) is a VTNCG (of 
order p!j(rs) and valency 2rs). 0 

An inspection of the above construction shows that we could have enlarged the set 
X by adjoining any number of new p-cycles Xl to X (together with their inverses) such 
that x'( i) x( i) for 1 ~ i ~ r + sand = p. Also, one can modify the construction 
to obtain infinite locally finite VTNCG's (details will be clear from Example 4). Still 
another modification of Example 2 yields ATNCG's as coset graphs of symmetric 
groups, as shown below. 

Example 3. Again, let Sp be the symmetric group on the set {I, 2, ... ,p} where 
p 2:: 2(r + s) + 1 is a prime and r + s is odd (r, s 2:: 2). We consider the same 
X = {x, X-I} where x = (1,2, ... ,p). However, this time we pick a larger subgroup 
of Sp: Let H' <y,yl,z,ZI> where y = (1 2 ... r), yl = (p - 1 p - 2 ... p - r), 
z=(r+1r+2 '" r+s),andfinally,zl=(p-r-1p-r 2 ... p-r-s). Now, 
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H' ::: X X X and IH'I (rs):t. 
The arguments used in the preceding example imply readily that the coset graph 

r~ Cos(Sp,H',X) is a (connected) VTNCG if p > IXIIH'I2 = 2(rs)4. But we can 
show more. Let p 2k+l and let u E Sp be the involution (1 p-l)(2 p-2) ... (k k+ 
1). Denote by err the inner automorphism of S1' defined by u, that is, eu( w) uwu 
for every w ESp. It is easy to verify that the subgroup K = {id, eu} c Aut( S1') fixes 
both H' and X and (obviously) acts transitively on X. It follows from Theorem 2 
that r~ is an ATNCG if p 2(rs)\ it has order p!j(rs)2 and valency 2(rs)2. 0 

We have seen how to construct coset graphs that are VTNCG's (and also AT­
NCG's) using a cyclic group or some products of cyclic groups in place of H. Our 
last example presents sufficiently general principle that can be adopted to construct 
finite as well as infinite VTNCG's by means of fairly arbitrary (abstract) groups H, 
and with arbitrarily large sets X. 

Example 4. Let m 2:: 1 and let Mi (-m ism) be a system of pairwise 
disjoint sets of equal cardinality IMil q where q 3 is an odd number. Let 
p ~ (2m + l)q be a prime number. Take a finite set M' disjoint from all Mt such 
that IM'I p - (2m + l)q. Let L (U-m<i<m Mi ) U M'; clearly, ILl = p. Further, 
let Mil be an arbitrary (finite or infinite) iet disjoint from L and let n L u Mil. 
Denote by So the (full) symmetric group on the set n. For 1 i m let Xi E So 
be a permutation of order p (i.e., xf id) such that its restriction to the set L is 
a cyclic permutation of L with the property that xi(M_i ) Mo and xi(Mo) = Mi 
(that is, the images of the set Mo under Xi and are Mi and M_i, respectively). 

Consider next the action of the permutation Xl on the set Mo. Let Mo = 
{aI, a2 . . , ,aq } and let the restriction of Xl on L be the cyclic permutation (ajl ... aj2 
... '" ajq ... ), where the dots represent the remaining p - q elements of the set L. 
This way, Xl defines a unique permutation Xo E So whose restriction to Mo is the 
cyclic permutation Xo (ajl aj2 ... ajq) of M o, and such that Xo fixes every element 
in n \ Mo. The important fact to observe is that (XIXO)1' = id (this is the place where 
we use the fact that q is odd). 

Now, let X = {Xi, xiI; 1 SiS m}; note that IXI = 2m. Let H be an arbitrary 
subgroup of So fixing the set n \ Mo pointwise and such that Xo E H. Let GH,x be 
the subgroup of So generated by the elements in H U X. Since X-I = X, the coset 
graph r H,X = C os( G H,X, H, X) is well defined and connected. Moreover, if the set 
Mil (and hence n) is infinite, the group GH,x may be infinite as well (observe that 
we did not restrict the action of the permutations in X on the set n \ L in any other 
way except for the requirement that xf = id). But in any case, the group H and the 
set X are finite, and so our coset graph is always locally finite. 

The properties of permutations in X imply that for any y, z EX, Y =I- z we 
have y(Mo) n z(Mo) = 0 and y(Mo) n Mo = 0. Using these facts, it is easy to 
show that XHX n H = {id}. (Briefly, if h E H is such that h = z-lh'y for some 
h' E Hand y, z E X and if h( a) = a' for a, a' E Mo then, recalling that y( a) ~ Mo 
and that h' fixes n \ Mo pointwise, we have z( a') = zh( a) = h'y( a) = y( a). The 
above intersection facts now imply that z = y, and so a = a' and h = id.) We 
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also know that yP id for every y X and that (XIXO)P id, having thus IXI + 1 
pairs (y,h) E X x H such that (yh)P id. Applying Theorem 1, we conclude that 
the coset graph fH,x Gos(GH,x) H, is a (possibly infinite but locally finite) 
VTNCG whenever p 2m1H12. 0 

The above construction clearly has a large degree of freedom; the restrictions on 
the subgroup H and on the set X are localized just in a "small" subset of n. It can 
also be adapted to produce ATNCG's using the same trick as in Example 3, that is, 
by choosing X in such way that both X and H are fixed by a subgroup (transitive 
on X) of inner automorphisms of So. 
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