




known. Given the feedback coefficients and L consecutive terms the entire sequence can 
be derived by substitution into (1). 

In [6] there are three different properties to measure the noiselike characteristics of a 
binary sequence. A sequence which satisfies these three properties is said to be G
random. In this paper only the first of these properties will be used to measure the 
randomness of a binary sequence. This property states that in period of the sequence 
approximately one half of the terms should be a one. 

A polynomial f(x) over GF(2) of L is said to be a primitive polynomial if f(x) 
divides x2L.1 + 1 but does not divide xk + 1 for k < 2L-1. By using an LFSR whose 
characteristic polynomial is primitive of degree L one can create a binary sequence of 
period2L L Such a is called a maximal length or an m-sequence, For 
example, the polynomial + x + x2 + x5 + x6 is primitive, so that the LFSR in Fig. 1 
generates an m-sequence of period 63. 

An m-sequence is known to be G-random [6]. However, one would not use an m
sequence by itself in a stream cipher to encrypt binary plaintext since the linear complexity 
is small in comparison to the period length. 

One method of fonning a sequence (Zu) of large linear complexity is to use a nonlinear 
Boolean function f to combine the. stages of a maximal length LFSR whose length is L. 
Let z be the binary vector of length 2L_l corresponding to the first 2L 1 terms of (Zu). 
Let sl be the binary vector of length 2L-l corresponding to the first 2L_l tenns of the 
m-sequence used to define (zn)' Let .. " sL be cyclic shifts of SI where S2 
corresponds to a shift of one place to the and so forth. In [2] it was explained why 
the set, T, of 2L 1 binary vectors of length 2L-l defined by 

(4) 

is a basis of the vector space of all binary 2L_l tuples. Since T is a basis, we can write 
z as 

The expression for z in (5) is called the algebraic normal form of (zn)' The algebraic 
order of (Zu) is the largest value of j such that there exists a non zero coefficient ail 
i2 ... if For example the sequence defined by z = 81 S2 + SI S2 s4 has an algebraic 
order of three. 
There are two theorems from [2] to define the cryptographic properties of the sequence 
(Zu) as given by (5). 

Theorem 1. The period p of (Zu) is 2L_l or a divisor of 2Ll. 

Theorem 2. The linear complexity of (Zu) is less than or equal to ! ( �~�)� 
i=l 

where r is the algebraic order of the Boolean function defining the sequence. 
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A sequence (zn) defined by (5) with algebraic order r is said to be degenerate if its 

~ (Li) linear complexity is less than ..t...J 
i=l 

3 . GROTH SEQUENCES 

The Langford problem [7] is to arrange numbers 1, 1,2,2, 3, 3, ... g, g in a sequence 
in such a way that for h = 1, 2, 3, ... g the two h's are separated by exactly h places; 
for example 41312432 (g = 4). We will call such a sequence a Langford arrangement. 
The number of Langford arrangements has an exponential-like increase with the size of 
g. The number of Langford arrangements has been found for all values of g less than or 
equal to 12. This is listed in Table 1, from [1] where arrangements that arise from 
reversals are omitted. 

Table 1 

Register Multipliers Langford 
length Arrangments 

L 

6 3 1 
8 4 1 

14 7 26 
16 8 150 
22 11 17792 
24 12 108144 

A Groth sequence is produced by summing second-order products of the L stages of a 
maximal-length LFSR. If L 2g then these products are defined by a Langford 
arrangement on the numbers 1, 1, 2, 2, 3, 3, g. The numbers in the Langford 
arran:gerne][}t are sequentially to the stages and the two inputs of a 
HIUUliJ'Hvl are to the two stages with the same number. For example let L = 6. 
A arrangement with three multipliers is 231213. 2 indicates the Groth 
sequence which results if this arrangement is applied to the stages of the LFSR from Fig. 
l. 
The algebraic normal form for this sequence as defined by (5) is 
s1 Ss + 82 S4 + 83 86' 

A more complicated Groth sequence can be formed by using multilayers where second 
order products as defined by a Langford arrangement are summed at each layer as 
indicated in Figure 3. 

The Langford type arrangement can be found for cases which are similar to the true 
Langford problem. For example in the case of L = 12 and g = 6 the 0, 0 pair can be 
included by excluding the 1, 1 pair. A Langford type arrangement that results is 
005623425364. In the case where L is odd we can also create a Langford type 
arrangement. For example for L = 7 a Langford type arrangement would be a231213. 
In this case the non-linear function to create the Groth sequence would contain one first 
order term in the summation (as indicated by the letter a above) along with three second 
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order products. Hence, we can use such arrangements to build Groth sequences in the 
case where L is such that no true Langford arrangement exists. 

101100111100101111000000110111110001000110100100001010010000001 
Figure 2. 

Groth sequence which results if Langford arrangement is applied 
to the stages of the LFSR from Fig. 1. 
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LAYER 3 

LAYER 2 

LAYER 1 

LAYER 0 

Figure 3. 
Three layer multiplier arrangement of a Groth sequence 

4. PROPERTIES OF GROTH SEQUENCES 

4.1 Period 

By using Theorem 1 a Groth sequence formed by an LFSR of length L has a period of 
length 2L_1 or a divisor of 2L_1. In order to guarantee that a Groth sequence has a 
period of length 2L-l one needs to use a Mersenne prime. If 2L_1 is a prime number 
then 2L_1 is classified as a Mersenne prime. The values of L less than 100 which 
produce Mersenne primes are 2, 3, 5, 7, 13, 19,31,61,87 [8]. 
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4.2 Linear Complexity 

Let a Groth sequence be formed by an LFSR of length L. In [1] it was claimed that at 
each layer the linear complexity of the resulting Groth sequence can be expressed by a 
formula. 
According to this claim the linear complexity at layer q will be 

f (tl 
i==1 

provided 2 q < L. If L ~ 2 q < 2L the linear complexity claimed in [1] is the maximum 
value possible which is 

L (L) L :L i ::: 2 -1. 
i=1 

For L == 6 the value of q to satisfy the above inequality is q == 3. Figure 3 displays the 
three layer multiplier arrangement of the Groth sequence which results from applying this 
configuration to the LFSR in Fig. 1. Using Groth's claim the linear complexity at each 
layer in Fig. 3 is listed in Table 2. 

Table 2 

Layer Linear Complexity 

1 21 

2 56 

3 63 

In Section 5 the actual value of the linear complexity at each layer will be computed. 

In order to state that the linear complexity of a Groth sequence is 

! (:) 
i=l 

the algebraic order of the Boolean function as defined by (5) must be at least r. As will 
be shown in Section 5 both the algebraic order and the linear complexity can vary for 
different Groth sequences at the same level with the same length of LFSR depending on 
the choice of the primitive polynomial defining the tap settings and the Langford 
arrangement used at each level. 
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4 3 Noiselike Characteristics 

ones for a Groth sequence can be determined applying some results The 
from 
the 

nrr,uuipn However as discussed in [3] 

the of 
the number ones in a Groth sequence at the 

the first layer (where 
Theorems 3 and 4 give 

for an LFSR of length L 
delJendlflg on whether or not L 

Theorem 13], The number of ones in 
L =2r. 
Theorem [10]. If L is odd 

will 
Groth sequcn,ces 

4.4 

For 
small 
formation 
from 

mt~nt!oned above 
of the 

in the formation 

4.5 

L is used to 

POSSl,Dle nonzero 

n. 

There -'---- from 

when 

consecutive can vary for 

reasonable amount of time a 
""""""","".", must be used in 

in 3 is secure 
deJtlmmg m-sequence are used 

Groth SeqUe11Ce there are three different soucres 

for an LFSR of L. 

less than n which are • ,.,'uuv vL to 

primitive polynomials of degree L. 

Table 3 indicates the exponetiallike increase in A,(L). 
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Table 3. 

L A(L) L A(L) L A(L) 

1 1 9 48 17 7710 
2 1 10 60 18 8064 
3 2 11 176 19 27594 
4 2 12 144 20 24000 
5 6 13 630 21 84672 
6 6 14 756 22 120032 
7 18 15 1800 23 356960 
8 16 16 2048 24 276480 

Source Langford Arrangments. 
As shown by Table 1 there is an expoential like increase in possible Langford 
arrangements to use at each In [1] there is an algorithm for generating Langford 
arrangements. 

As an of the key let L 24 and suppose that a Groth sequence is formed 
using five layers of products. For this sequence there are: 
approximately 1.6 x 107 initial state vectors, 
approximately 2.8 x 105 primitive polynomials, 
approximately 2.2 x lOS Langford arrangements. 

Hence the total number of pOSSlb.Le keys is: 
(1.6 x 107) (2.8 x 105) X 105)5 z 1.8 x 1038 . 

In comparison the DES has approximately 6.5 x 1016 

5. EXAMPLES OF GROTH SEQUENCES 

For an LFSR of length six there are six possible primitive polynomials. There are two 
Langford arrangements of six, 312132 and 231213. Let 0 and 1 stand for the 
Langford arrangements and 231213 respectively. For a given primitive 
polynomial one can generate 
(a) two Groth sequences at one by using Langford arrangements denoted by 0 or 

1; 
(b) four Groth sequences two by using Langford arrangements denoted by 00, 

01, 10, 11; 
(c) eight Groth sequences at layer three by using Langford arrangements denoted by 

000,001,010,011, 100, 101, 110, 111. 

All together one can generate 84 Groth sequences by using an LFSR of length six. 
Tables 4 to 6 contain a list of properties of these sequences together with the Langford 
arrangements that were used. The linear complexity was derived by applying the 
Berlekamp-Massey algorithm~ As mentioned previously, according to Groth's claim the 
linear complexities of these sequences at layers 1, 2, 3 would be 21, 56, 63 
respectively from Table 2. By inspection of Table 6 there is an increase in linear 
complexity at each layer although many of the sequences are degenerate. As shown by 
Table 6 the algebraic order varies for the Groth sequences at the third level varies between 
five and six. 
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Let LFSRI have a primitive polynomial f(x) of degree L as a characteristic polynomiaL 
Let LFSR2 have f*(x) as characteristics polynomial where f*(x) = xLf(l/x) is 
called the reciprocal polynomial of f(x). It can be shown that f*(x) is also a primitive 
polynomiaL Let (Zn) be a sequence produced by applying non-linear filter function f 
to LFSRI. Let (Yn) be a sequence produced by applying the function (which 
corresponds to symmetrically changing the function taps) to In [3] it is shown 
that (Yn) is a reversal sequence of (zn) (if the first period vector of (Zn) is [zl' ... , zpJ 
then the first period vector of (Yn) is [~, and it is shown that Zn and Yn have 
the same linear complexities. For example the polynomial 1 +x+x6 is the reciprocal 
polynomial of 1 +x5+x6. Hence the Groth 1 +x+x6 are reversal 
sequences of the Groth sequences 4 to 6 we omitted 
the properties of the reversal sequences polynomials. 

Table 4 

L<U.jq;'~'lHU arrangements 

Primitive Langford 
arrange~ 

ment 

o 
1 
o 
1 
o 
1 

21 
21 
21 
21 
21 
18 

Table 5 

Properties for Groth ~e(luenC(~s 
primitive polynomials 

(Layer 2) 

Primitive Langford Linear 
polynomial arrange- complex 

ment 

l+x5+x6 00 56 
01 56 
10 53 
11 53 
00 56 
01 56 
10 56 
11 56 

..,..;(2..,.. ;(L1..,..;('i T ;(h 00 56 
01 56 
10 54 
11 48 

No. 
zeros 

35 
35 

arrangements 

order 

2 
2 
2 
2 
2 
2 

No. Algebraic 
zeros order 

39 4 
37 4 
37 4 
35 4 
35 4 
41 4 
41 4 
41 4 
39 4 
41 4 
41 4 
39 4 



Table 6 

Properties for Groth Sequences for different 
primitive polynomials and Langford arrangements 

(Layer 3) 

Primitive Langford Linear No. 
polynomial complex zeros order 

1+x5+x6 000 60 45 5 
001 60 45 5 
010 56 51 5 
011 62 49 
100 61 40 6 
101 61 40 6 
110 62 33 5 
111 59 33 5 

1 +x2+x3+x5+x6 000 56 
001 62 5 
010 59 39 5 
011 62 41 
100 61 44 6 
101 61 44 6 
110 62 47 5 
1 1 62 45 5 

1+x2+x4+x5+x6 000 57 6 
001 63 42 6 
010 62 43 5 
011 56 43 5 
100 62 49 5 
101 62 51 5 
110 60 46 6 
111 60 50 6 

A Groth sequence at each layer for shift register of length 7 to 13 was generated and 
analysed. A list of the properties of these sequences together with· the Langford 
arrangements that were implemented are included in Table 7. 

This table includes the actual linear complexity and the linear complexity which was 
claimed by Groth. By inspection the linear complexities are.close to the value claimed 
although several of the sequences are degenerate. The period length for each sequence is 
included. As indicated by the number of zeros in relation to the period length the 
noiselike characteristics of each sequence are reasonable. 
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Primitive 
polynomial 

ment 

x7+x6+1 

x 8+x 7 +x3+x2+ 1 

x9+x5+1 

xlO+x7+1 

xll+x9+1 

x 12+x9+x8+x5+ 1 

x 13+x 12+x lO+x9+ 

Table 7 

Property of Groth Sequences with LFSR length 
7 to 13 with various Langford arrangements 

Langford Layer Actual Claimed 
arrange- Linear Linear 

"omplex Complex 

312132a 1 28 28 
213213a 2 98 105 
312132a 3 126 127 

41312432 1 36 36 
23421314 2 162 162 
41312432 3 255 255 

41312432a 1 45 45 
23421314a 2 255 255 
41312432a 3 501 510 
23421314a 4 511 511 

5004235243 1 55 55 
3425324005 2 385 385 
5004235243 3 1007 1012 
3425324005 4 1018 1023 

5004235243a 1 66 66 
3425324005a 2 561 561 
5004235243a 3 1980 1980 
3425324005a 4 2047 2047 

640053462352 1 78 78 
500463524326 2 793 793 
004635243265 3 3792 3796 
004562342536 4 4092 4095 

005623425304a 1 91 91 
005623425364a 2 1092 1092 
005623425364a 3 7098 7098 
005623425364a 4 8190 8191 
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Period No. 
zeros 

127 63 
127 55 
127 63 

255 135 
255 147 
255 160 

511 255 
511 263 
511 247 
511 248 

1023 527 
1023 543 
1023 585 
1023 616 

2047 1023 
2047 1047 
2047 1053 
2047 1018 

4095 2079 
4095 2103 
4095 2105 
4095 2156 

8191 4095 
8191 4143 
8191 4125 
8191 4053 



CONCLUSION 

As was demonstrated in Section 5 by counter-example the claim from [1] for the linear 
complexity of a Groth sequence is false. However, these examples showed that after 
increasing the length of the defining LFSR the linear complexity was close to Groth's 
original claim. This supports the argument from [2] that if the algebraic order of the 
Boolean function is r for a sequence formed as in (5) from an LFSR of length Lone 
can state with a probability close to one that the linear complexity is approximately 

(H 
provided L is sufficiently Furthermore a large value of L will provide a large key 
size for a Groth sequence as was demonstrated in Section 4 and the noiselike 
characteristics for such a sequence should be good in terms of the number of ones in a 
period as was shown by the examples in Section 5. 
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