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A t (v, k, A) design a pair 'D = (X, 'B) , where X is 

a set of v points, and 'B is a set of k-element subsets of X called 

blocks, such that any t points are contained in exactly A blocks, 

where A o Such a design is called trivial if 'B consists of all 

the k-element subsets of An automorphism of a design 'D is a 

permutation of the point set X which fixes 'B setwise (in its 

induced action on k-element subsets of In this paper we discuss 

some construction methods for block-transitive t-designs, that is for 

t-designs 'D for which the group of automorphisms of 'D is transitive 

on the block set 'B Let 'D = (X, 'B) be t- (V,k,A) design with 

automorphism group G By a result of E. Block [1] the number of 

G-orbits in 'B is greater than or equal to the number of G-orbits in 

X. In particular if G is block-transitive then G is also 

point-transitive, that is G is a transitive subgroup of the symmetric 

group Sym (X) on X Suppose now that 'D is block-transitive. It 

was shown in [2, Proposition 1.1] that, for any over-group H of G 

in Sym (X) , the possibly larger family :8* = {B
h 

B E :8, h E H} of 

k-element subsets of X is also the block set of a * t- (v,k,A ) design 

* * 'D = (X, :8) for some * ..:l< A ~ A . The design V is also 

block-transitive with automorphism group containing H. If H is 
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k-homogeneous on X , that is if H is transitive on the k-element 

subsets of X , then V* will be a trivial design, while if H is not 

k-homogeneous on X then 

problem: 

will be nontrivial. Consider the 

Problem. Given positive integers t, v, k , decide whether there 

exists a nontrivial block-transitive t- (v,k,A) design for some 

A > 0 . 

According to our discussion, one way of deciding this is to check, for 

each maximal non-k-homogeneous subgroup H of Sym(X) and for each 

H-orbit 'B on k-element subsets, whether (X,'B) is a t-design. This 

decision can be made by examining a single k-subset B of 'B as 

follows: Let Ql"'" Q
m 

be the H-orbits on t-element subsets of X , 

and for each = 1, ... , m let be the number of t-element subsets 

of B which belong to Then, by [2, Proposition 1.3], (X,'B) is 

a t-design if and only if 

(1) 

According to the O/Nan-Scott Theorem (see [5]) the maximal 

transitive subgroups G of Sv are of one of the following types: 

l. 

2. 

3. 

4. 

imprimitive: 

affine: 

G 

G 

Sc wr Sd 

AGL(d,p) 

and d ;0: 1 

product: G S Sd wr 
c 

simple diagonal: G 
d 

T (Out 

where v 

where v 

where v 

T x S d) , 

cd 
d 

P 

d 
c 

where 

c > 1 d > 1 

p is a prime 

, c ;0: 5 , d > 1 

v = I TI d--l , 

T is a nonabelian simple group and d > 1 

5. almost simple: T ~ G ~ Aut T ,where T is a nonabelian 

simple group . 

The imprimitive case has been studied at length in [2]. In this 

paper we examine the other cases in the hope of discovering interesting 

families of t-designs. First we note that if G is t-homogeneous on 

X , then, for every subset B of X of size at least t, the pair 
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<X,BG) will be a block transitive t-design, and will be a nontrivial 

design as long as G is not IBI-homogeneous. Thus we shall always 

assume that G is not t-homogeneous. The paper [3] investigates 

block-transitive and flag-transitive t-designs with large t. (Recall 

that a flag in a design is an incident point-block pair.) It follows 

from a theorem of Ray-Chaudhuri and Wilson [6] that a block-transitive 

automorphism group of a t-design is Lt/2J-homogeneous on points, and a 

flag-transitive automorphism group of a t-design is 

L<t+I)/2J-homogeneous on points. It shown in [3] that there are no 

nontrivial block-transitive 8-designs and no nontrivial flag-transitive 

7-designs. In this paper we shall concentrate on t-designs for small 

t (usually t 2 or t 3) and shall examine the possible 

automorphism groups type by type. 

Further if (X, BG) is block-transitive t-design then also 

(X, (X_B)G) is a block-transitive t-design, so we may assume that 

t < k ~ v/2 

2. The affine 

Let G = AGL(d,p) <Sym eX) where IXI 
d 

is prime and v = = p P 

d ~ 1 Then G is 2-transitive, and, if p = 2, G is 3-transitive. 

Thus we shall look for 3-designs when p is odd and for 4-designs when 

p 2 A search for block-transitive and flag-transitive 5-designs 

admitting AGL(d,2) is described in [3]. 

Now let p be an odd prime and consider the case d ~ 2 Then 

G has 2 orbits on 3-element subsets of namely the sets Q
l 

and 

Q
2 

of collinear triples and non-collinear triples respectively. By 

[2, Proposition 1.3], for a k-element subset B of X, (X,B
G

) is a 

where are the 

numbers of collinear and non-collinear triples in B respectively. 

Moreover (k3 ) so we have the following result. 

Lemma 2.1. If G = AGL(d,p) ~ Sym (X) with d ~ 2 and p an odd 

prime, and if 

pair (X,B
G

) 

B i.s a k-element subset of X where k ~ 3 , then the 

is a block-transitive 3-design if and only if the number 
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ql of collinear triples in is 

It seems unlikely that a large family of 3-designs of this type 

will be found as the divisibility condition seems so difficult to 
d 

satisfy. If u is a prime dividing p 2 then u is odd and so u 

divides at most one of k,k - 1 and k 2 If, in particular, 
dad 

p 2 = u then, when k ~ p /2 , u must be a divisor of p-2 

From these observations it follows for example that when p = 3 we 

must have d ~ 7 and 3
7 - 5.19.23 Is there a block-transitive 

7 
3 (3 ,k,A) design of this type? 

If G AGL(d,2) with d ~ 3 then G has 2 orbits on 4-element 

subsets of X , namely affine planes, and non-coplanar 4-sets. 

Applying [2, Proposition 1.3) we have 

Lemma 2~. If G AGL(d,2) with d ~ 3 and if B ~ X with 

IBI = k ~ 4 then the pair (X, B
G

) is a block-transitive 4-design if 

and only if the number q of affine planes in B is 

k 

This situation has been studied in more detail in [3) which looks 

at the problem of classifying flag-transitive 5-designs. It is 

shown there that, for G = AGL(d,2) , (X, B
G

) is a 4-design if and 

only if (X, B
G

) is a 5-design, a very surprising result. From the 

divisibility condition above it follows that d ~ 8 , and if d 8 

then the only integers k satisfying the condition are 

23, 24, 25, 46, 47, 69, 209, 210, 232, 233. If the design is assumed 

to be flag-transitive then k must divide IGI and so k is 24, 25, 

or 210. Moreover it is shown in [3) that there is indeed a 
8 24 2 2 

flag-transitive 5-(2 , 24, A) design (where A = 2 .3.5 .7.31) 

related to the extended Golay code, and there are no flag-transitive 

designs with k = 25 or k 210 
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3. The action case 

Consider the wreath product 

x that is v IXI = cd and x 

G = wr Sd in product action on 

is identified with yd where Y is 

a set of size c Since we want G to be maximal in Sym(X) we have 

c ~ 5 and d ~ 2 . Now G has d orbits on unordered pairs of 

points of X , namely Ql' ... , Qd ,where {x, y} E Q
i 

if and only if 

x and y differ at exactly i entries, for i 1, ... , d 

following criterion for a 2-design follows immediately from 

[2, Proposition 1.3]. 

The 

Lemma 3.1 Let G = wr Sd ~ Sym(X) ,where X = yd , Iyl = c , and 

let B ~ X 

B 

be such that, for 1 ~ i ~ d , qi 

belong to Q
i 

,where /BI k points of 

(X, B
G

) is a 2-design if and only if, 

unordered pairs of 

and L qi = (~) . Then 

In the case d 

principle. When d 

2 this lemma leads to a simple construction 

2 the points of X are ordered pairs of 

elements from the set Y of size c , and the k-set B can be 

interpreted as the edge set of a directed graph with vertex set y. 

Note that loops are allowed. For an edge e = (y, y') the first entry 

y will be called the tail and the second entry y' the head of e. 

The conditions given by Lemma 3.1 under which (X, BG) is a 2-design 

reduce to just one equation: 

Thus we have the following: 

k (k-l) 
c+l 

Theorem 3.2. Let D = (Y, B) be a directed graph with vertex set Y 

of size c and edge set B k Y x Y of size k Then the set of all 

images of B under the group G = Sym(Y) wr S2 is the set of blocks 

of a 2-design if and only if the number of unordered pairs of edges of 

B with a common head or a common tail is exactly k(k-l)/(c+l) 

Moreover the design will be flag-transitive if and only if the 

automorphism group of the directed graph D is edge-transitive. 
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Construction 3.3. Let D = 
0 (XO' B) be a directed graph with vertex 

set Xo of size Co , no isolated vertices and with k edges such 

that the number q of unordered pairs of edges of DO having a common 

head or a common tail is a divisor of k(k-l) Then, provided 

c = q 1 ~ Co ' the digraph D = (X, B) obtained from DO by 

adding c Co isolated vertices gives rise to a 2-design as described 

in Theorem 3.2. 

____ ~ ___ 3_._4. Let k = 2s ~ 6 and let DO = (2s' B) be an 

"undirected" cycle of length s , that is 

B= lei, i+l) I iE2} u {(i+l, i) I iE2} 
s s 

Then the number of 

pairs of edges sharing a head or a tail is s which divides 

k (k-l) = 2s (2s 1). Then adding 3(s - 1) 

2-«2k - 3)2 , k, ,\) 

isolated vertices 

yields a flag-transitive design for some ,\ 

It is difficult to obtain a general construction for large d as 

the number of restrictions on the parameters increases. However one 

necessary condition is the following. 

________ ~_3_._5. With the notation of Lemma 3.1, a necessary condition 

for eX, B
G

) 

(c d -1)/< c-l) 

to be a 2-design is that d(~) is divisible by 

(In fact ql = d (~)/«Cd - l)/(c -1».) 

Proof. By Lemma 3.1, (d) i-l / qi = i (c - 1) ql d and 

(~) (c - l)i) / (c - l)d 
d 

ql (c - 1)/ (c - 1) d. 

Thus is divisible by 
d 

(c - 1) / (c 1) . 

It may be helpful to use the language of coding theory to describe 

the situation here. If the set Y is taken as the set 2 of 
c 

integers modulo c then {x, y} E Q
i 

if and only if x y has 

weight i, that is has exactly i nonzero entries. Thus B contains 

qi unordered pairs {x, y} with x - Y of weight i for 

i 1, ... , d Since G is transitive on X we may assume that 

o (0, ... , 0) E B. Then, if (X, B
G

) is a flag-transitive 2-design, 
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there are 2qi/k pairs {Q, y} in B with .y = Y - Q of weight i 

that is there are 2q./k elements of B - {Q} of weight i . 
1. 

Theorem 3.6. Let G = Sc wr Sd ~ Sym(X) where X = l~ , and let B 

be a k-element subset of X containing Q = (0, 0) . Then 

(X, BG
) is a flag-transitive 2-design if and only if 

(i) the setwise stabilizer GB of B is transitive on B , and 

(ii) for each 1 ~ i ~ d there are 2q/k elements of B - {Q} 

of weight i where qi (~) (c l)i-l /d ql 

(~) (~) (c - l)i / (cd 1) 

Proof. If (X, BG) is a flag-transitive 2-design then GB is 

transitive on B , and, by Lemma 3.1 and Corollary 3 5, the parameters 

ql are as in (fi). So, by the discussion above (ii) is true. 

Conversely if (i) and (ii ) are true then B contains qi pairs in Qi 
with qi as in Lemma 3.1 Hence (X, BG) is a 2-design, and, as GB 

BG) is transitive on B , (X, is a flag-transitive design. 

The conditions for a flag-transitive 2-design in this case are 

very restrictive: by Corollary 3.5, k - 1 

~ (cd - 1)/ d (c - 1) , that is the block 

( 2:1) (~ d _-11 ) . ~ 
size is very large. 

Question 3.7. Are there any flag-transitive (or even block-transitive) 
d 

2- (c , k, A) designs admitting Sc wr Sd with d ~ 3? 

4. The 

Let 

action, where T is 

N = Tt < G , and let 

case 

St) ~ Sym(X) act on X in its diagonal 

a nonabelian simple group and i ~ 2. Let 

D = Ct (t, ... , t) I t E T} be the natural 

diagonal subgroup of N Then X can be identified with the set of 

right cosets of D in N with N acting by right multiplication. If 

a = D is the trivial coset thenG
a 

= Aut T X St and G = NG
a 

Elements of Aut act on X by conjugation and elements of St act 

by permuting the entries of coset representatives li of cosets D li 
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It is very unlikely that there will be any interesting 2-designs 

arising from this family of groups as G acting on pairs of points has 

many orbits in general. Perhaps it is worth saying a little about the 

simplest case, namely the case £ 2. Here each coset of D in N 

has a unique representative with first entry IT and so we may 

identify X with T With this identification, a 

x E X = T 

r = (12) E S2 ~ G
a 

act as follows. 

(t
l

, t
2

) 
-1 

x ----) tl x t2 

(J 
(J x ----) x 

-1 
r x ----) 

IT ' and for 

and 

The orbits of G on unordered pairs from X correspond to "fusion" 

classes of elements of T where the fusion class ~(x) of x is 

~(x) = {(x)€(J1 (J E Aut T, I} . {x, y} 
-1 

same orbit on pairs if and only if x y and 

and {x' y'} are in the 

(x,)-l y' are in the 

same fusion class. Let the fusion classes be 

B be a k-element subset of T and let f. 
1 

F 1 = {1T }, ... , F s ' Ie t 

be the number of unordered 

pairs of elements of B lying in Fi ' for i 1, ... , s. 

Proposition 1.3], (X, B
G

) is a 2-design if and only if 

Then by (2, 

fil I Fi I ~ E 

is independent of i (for i 1, ... , s). Note that 

(~) = L fi = E L 1Fil = E <ITI - I), so that k cannot be much smaller 

than ITI1/2. 

(X,B
G

) Then 

k 1 where y 

Suppose now that G acts flag-transitively on 

k divides IGI ' and hence (ITI - 1) I y divides 

is the greatest common division of ITI 1 and 

IGI Since k < v ITI it follows that y > 1 . Now 

y = (ITI - 1 , lOut TI) and it follows that T is group of Lie type 

over a field of order 
a 

p for some prime p and positive integer 

and y divides the odd part a' of a. Thus we have k = 1 + z 

(ITI l)/y for some 1 ~ z < y This means, on the one hand, that 

k > ITl/a', and on the other hand that (k, ITI) divides 

a , 

2 
(z - y , ITI) ,whence (k,IGI) divides 2(z - y) lOut TI Since 

k divides IGI it follows that ITl/a' < k < 2(a,)2 Iout TI Thus 

ITI < 2(a,)3 Iout TI ' and the only group satisfying this inequality is 

T = PSL(2,8) , but for this group y = 1 

flag-transitive on (X, B
G

) 
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Theorem 4.1 If G (Out T x S2) ~ Sym(T) in simple diagonal 

action, where T is a nonabelian simple group, then G does not act 

flag-transitively on any nontrivial 2-design with point set T . 

4.2. Can 
2 

G = T (Out T x S2) act block-transitively on a 

nontrivial 2-design with point set T? 

5. The almost Case 

This case is the most difficult to discuss as the maximal almost 

simple subgroups of Sym (X) are only very loosely classified in [4]. 

There may be interesting classes of block-transitive 2-designs 

admitting primitive almost simple groups of small rank l ~ 3. For 

example in the rank 3 case we have: 

Lemma 5 1 Let G Sym (X) be a primitive rank 3 group of degree v 

such that, for x EX, has a self-paired orbit rex) in X {x} 

of length m. Let B be a k-element subset of X and let q be the 

number of unordered pairs {x,y} of points of B such that y E rex) 
G 

(or equivalently x E r(y») Then (X, B) is a block-transitive 

2-design if and only if q = (~) m / (v - 1) . 

In [2, Example 1.4] a construction of 2-designs was given based on 

the rank 3 groups G Sn acting on v = (~) unordered pairs from a 

set Y of size n In this case the set B can be interpreted 

the edge set of a graph with vertex set Y having k edges. A 

2-design was obtained if and only if the number of (unordered) pairs of 

edges of (Y, B) sharing a common vertex was 2k (k - 1) / (n + 1) , 

and the design was flag-transitive if and only if the automorphism 

group of (Y, B) was edge-transitive. 

Other classes of rank 3 groups may give similar constructions. 

For example the groups G = PrL(n, q) , n ~ 4 , induce a primitive rank 

3 action on the set of lines of the projective geometry PG(n - 1, q) . 

Theorem 5.2. Let G = prL(n, q) , n ~ 4 , act on the set X of lines 

of PG(n - 1, q) , and let B be a k-element subset of X . Then 

(X, B
G

) is a block-transitive 2-design if and only if the number of 
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un~rder~d pairs of intersecting lines in B is (~) (q + 1)2 (q - 1) / 

(q + q - q 1). 

n n-l / 2 Proof. Now v = IXI (q - 1) (q - 1) (q - 1) (q - 1) so 

v - 1 q (qn-2 _ 1) (qn + q2 _ q 1) / (q2 1) (q - 1) . Also the 

number of lines intersecting a given line is 

m = q (qn-2 - 1) (q + 1) / (q - 1) . The result now follows from Lemma 

5.1. 

When considering primitive groups of rank greater than 3 the 

number of conditions to be satisfied increases and the problem of 

finding 2-designs becomes more difficult. We give just one example. 

Theorem 5.3. Let G = S , the symmetric group on a set Y of size 
n 

and consider the primitive rank s + 1 action of G on the set X 

v (~) s-element subsets of y where 3 :$ :$ n/2 Let B be a 

n 

of 

k-element subset of X Then (X, B
G) is a block-transitive 2-design 

if and only if, for each i = 1, ... , s - 1 the number of 

unordered pairs of elements of B which intersect in exactly i 

elements of Y is 

k 

Proof The group G has s orbits QO"" ,Qs-l on unordered pairs of 

s-subsets of Y, namely Q
i 

consists of pairs which intersect in 

exactly i points of Y , for 0 
G 

i :$ s - 1 . By [2, Proposition 

1.3], (X,B) is a block-transitive 2-design if and only if 

qo/lQol = ... = qs-l /IQs-1 1 = x say. Then (~) = 2:q i x 2:IQ.1 
~ 

= x 

and so these equations are equivalent to the equations 

(~) IQil 1 (;) for each i = 1, ... ,s - 1, (since 

determined by (~l = 2:q i)' 

I Q.\ v (:) (n-~ 12 for 
~ ~ s-~ 

This yields the result since 

i = 0,1, ... ,s 1. 

____ ~ ___ 5_._4 Taking s = 3 , we may interpret X as the set of 

triangles (cycles of length 3) of the complete graph with vertex set 
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y , and we may interpret B as the set of triangles of a graph with 

vertex set Y having k triangles. Then, by Theorem 5.3, (X,B
G

) is 

a 2-design if and only if the number q2 of points of triangles in B 

sharing an edge is 3k(k - l)(n - 3)/2(v - 1) = 9k(k l)/(n 
2 + 2) and 

the number ql of pairs of triangles in 

(
n-3) common is 3k(k - 1) 2 /2(v - 1) = 9k(k 

B with a single vertex in 

l)(n - 4)/2(n
2 

+ 2) . 

On the other hand if G is 2-transitive then we should be looking 

for t-designs with t ~ 3 

groups below. 

We do this for the projective linear 

Theorem 5.5 Consider G = prL(n,q) , n ~ 3 , acting on the set X of 

v (qn - l)/(q 1) points of the projective geometry PG(n - l,q) , 

and let B be a k-elelment subset of X. Then (X,B
G

) is a 

block-transitive 3-design if and only if the number of (unordered) 

collinear triples of points in B is 

k(k - l)(k - 2)(q 

= k(k - l)(k 2)(q - 1)/6(v - 2) 

Proof The group G has two orbits on unordered triples of distinct 

points, namely on collinear triples and non-collinear triples and there 

are m = v(v l)(q - 1)/6 collinear triples. By [2 Proposition 1~31 

the condition for a 3-design is that the number of collinear triples in 

~~~~~5~.~6 If G = PGL(3,7) then the number of collinear triples in 

B is c = k(k l)(k - 2)/55 and so k is 11,12,22,35,45, or 46 

An example with k 11 can be constructed as follows: Note that B 

must contain c = 18 collinear triples in this case. Let 0 be an 

oval in PG(2,7) , that is a set of 8 points with no three collinear. 

Let 01'02 EO, let t be the line through 01 and 02 ' and let 

03'04'05'06 be four distinct points on t {01,02} Set 

B = {03,04,05,06} u (0 - (al') . Then IBI 11 The only collinear 

triples in B containing at least two points of B - 0 are triples 

203 



other collinear triples in B contain one point of B o and two 

points of 0 (that is they are on secant lines to 0 different from 

e and passing through one of 

these, two containing each of 

,a
6

) , and there are 8 of 

and a
6

. Thus (X,B
G

) is a 

block-transitive 3-(S7,11,A) design, for some A , admitting G 

Similarly there is an example with k = 12 and c = 24 

constructed as follows. Let ~ be a point not on 0 or e such that 

the lines through ~ and a
l 

and through ~ and are both secant 

lines to 0 (see Figure 1). Choose a
3 

and on e such that the 

lines through ~ and a
3 

and through ~ and a
4 

are both tangent 

lines to O. Finally choose as such that the line through ~ and 

is a secant line to 0 and choose such that the line through 

and is an external line to o . 

Figure 1 
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Let B {a
3

,a
4

,a
S

,a
6

,,B} U ( 0 - (a
l

}) Then IBI = 12 There are 

10 collinear triples in B containing 3 points of e There are 7 

collinear triples in B containing ,B , namely each of a
2

,a
3

,a
4 

lies 

in one such triple and there are 4 triples in B on the line through 

,B and The remaining triples lie on secant lines to o not on 

,B , and contain two points of o and one pointof e - 0 : each of 

Thus 

lie on two such triples, and as lies on one such 

B contains 24 collinear triples and so (X,B
G

) is a 

and 

block-transitive 3 - (S7,12,A) design, for some A , admitting G . 
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