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1. Introduction

A t — (v, k, X) design is a pair D = (X, B) , where X Iis
a set of v points, and B 1is a set of k-element subsets of X called
blocks, such that any t points are contained in exactly X blocks,
where A > 0 . Such a design is called trivial if B consists of all
the k—element subsets of X . An automorphism of a design D is a
permutation of the point set X which fixes B setwise (in its
induced action on k—element subsets of X). In this paper we discuss
some construction methods for block-transitive t—designs, that is for
t—designs D for which the group of automorphisms of D 1is transitive
on the block set B . Let D = (X, B) be a t— (v,k,\) design with
automorphism group G . By a result of R.E. Block [1l] the number of
G-orbits in B 1is greater than or equal to the number of G-orbits in
X . In particular if G is block-transitive then G 1is also
point-transitive, that is G 1is a transitive subgroup of the symmetric
group Sym (X) on X . Suppose now that D 1is block-transitive. It
was shown in [2, Proposition 1.1] that, for any over-group H of G
in Sym (X), the possibly larger family 3* = (Bh | Be B, heH) of
k—element subsets of X 1is also the block set of a t— (v,k,A*) design
D* = (X, fB*) for some A* = A . The design ﬁ is also

block-transitive with automorphism group containing H . If H is
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k-homogeneous on X , that is if H 1is transitive on the k-element

%
subsets of X , then D will be a trivial design, while if H is not
k-homogeneous on X then T will be nontrivial. Consider the

problem:

Problem. Given positive integers t, v, k , decide whether there
exists a nontrivial block-transitive t— (v,k,)) design for some

x>0

According to our discussion, one way of deciding this is to check, for
each maximal non-k-homogeneous subgroup H of Sym(X) and for each
H-orbit B on k-element subsets, whether (X,B) 1is a t-design. This
decision can be made by examining a single k-subset B of B as
follows: Let Ql,“l, Qm be the H-orbits on t-element subsets of X ,
and for each 1 =1,..., m Ilet 45 be the number of t-element subsets
of B which belong to Qi . Then, by [2, Proposition 1.3], (X,B) is

a t-design if and only if

44 4y q

- - ... = : 1
o = 19, Q] W

According to the O'Nan-Scott Theorem (see [5]) the maximal

transitive subgroups G of SV are of one of the following types:

1. imprimitive: G = SC WY Sd , where v =1c¢d , c>1,d>1;

2. affine: G = AGL(d,p) , where Vv = pd , p is a prime
and d =2 1 ;

3. product: G = SC wr Sd , where v = cd ,c=5 ,d>1;

4. simple diagonal: G = Td(Out T x Sd) , where v = |Tid—‘1 ,

T is a nonabelian simple group and d > 1 ;

5. almost simple: T < G < Aut T , where T is a nonabelian
simple group
The imprimitive case has been studied at length in [2].  In this
paper we examine the other cases in the hope of discovering interesting
families of t-designs. First we note that if G 1s t-homogeneous on

X , then, for every subset B of X of size at least ¢t , the pair
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(X,BG) will be a block transitive t-design, and will be a nontrivial
design as long as G 1is not IB[-homogeneous. Thus we shall always
assume that G is not t-homogeneous. The paper [3] investigates
block-transitive and flag-transitive t-designs with large t . (Recall
that a flag in a design is an incident point-block pair.) It follows
from a theorem of Ray—Chaudhuri and Wilson [6] that a block-transitive
automorphism group of a t-design is |t/2]-homogeneous on points, and a
flag-transitive automorphism group of a t-design is
L(t+1)/2j-homogeneous on points. It is shown in [3] that there are mno
nontrivial block-transitive 8-designs and no nontrivial flag-transitive
7-designs. In this paper we shall concentrate on t-designs for small
t (usually t =2 or ¢t = 3) and shall examine the possible
automorphism groups type by type.

Further if (X, BG) is a block-transitive t-design then also
(X, (X-B)G) is a block-transitive t-design, so we may assume that

t <k =<v/2

2. The affine case.

Let G = AGL(d,p) < Sym (X) where v = !X| = pd, p is prime and
d>=1. Then G 1is 2-transitive, and, if p =2, G 1is 3-transitive.
Thus we shall look for 3-designs when p 1is odd and for 4-designs when
P =2 . A search for block-transitive and flag-transitive 5-designs
admitting AGL(d,2) 1is described in [3].

Now let p be an odd prime and consider the case d = 2 . Then
G has 2 orbits on 3-element subsets of X, namely the sets Q1 and
Q2 of collinear triples and non-collinear triples respectively. By
[2, Proposition 1.3], for a k-element subset B of X , (X,BC) is a
3-design if and only if ql/[Qll = q2/|Q2| where q,,9, are the
numbers of collinear and non-collinear triples in B respectively.

Moreover qq + 4y = [g ] so we have the following result.

Lemma 2.1. If G = AGL(d,p) < Sym (X) with d= 2 and p an odd
prime, and if B 1is a k-element subset of X , where k = 3 , then the

pair (X,BG) is a block-transitive 3-design if and only if the number
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9 of collinear triples in B is

K (k1) (k-2) (p-2)
6 % -2

It seems unlikely that a large family of 3-designs of this type
will be found as the divisibility condition seems so difficult to
satisfy. If u 1is a prime dividing pd — 2 then u 1is odd and so u
divides at most one of k,k -1 and k - 2 . If, in particular,
pd — 2 = u? then, when k = pd/Z , u must be a divisor of p-2
From these observations it follows for example that when p = 3 we
must have d = 7 and 37 — 2 =5.19.23 . 1Is there a block-transitive
3 - (37,k,A) design of this type?

If G = AGL(d,2) with d =3 then G has 2 orbits on 4-element
subsets of X , namely affine planes, and non-coplanar 4-sets.

Applying [2, Proposition 1.3] we have

Egmma 2;2. If G = AGL(4,2) with d =3 and if B C X with
]B] = k = 4 then the pair (X, BG) is a block-transitive 4-design if

and only if the number q of affine planes in B 1is

k (k=1) (k=2) (k-3)
2 (2% — 3y

This situation has been studied in more detail in [3] which looks
at the problem of classifying all flag-transitive 5-designs. It is
shown there that, for G = AGL(4d,2) , (X, BG) is a 4-design if and
only if (X, BG) is a 5-design, a very surprising result. From the
divisibility condition above it follows that d > 8 , and if d = 8
then the only integers k satisfying the divisibility condition are
23, 24, 25, 46, 47, 69, 209, 210, 232, 233. If the design is assumed
to be flag-transitive then k must divide !G[ and so k is 24, 25,
or 210. Moreover it is shown in [3] that there is indeed a
24 32 52 7 31)

related to the extended Golay code, and there are no flag-transitive

flag-transitive S-(28, 24, X)) design (where X = 2

designs with k = 25 or k = 210 .
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3. The product action case.

Consider the wreath product G = Sc wr S, in product action on

d
X , that is v = |X]| = d and X is identified with Y where Y is

a set of size ¢ . Since we want G to be maximal in Sym(X) we have
c25 and d=2 . Now G has d orbits on unordered pairs of
points of X , namely Ql’ e, Qd , where (x, y) € Qi if and only if

x and y differ at exactly i entries, for i = 1, ., d . The
following criterion for a 2-design follows immediately from

[2, Proposition 1.3].

Lemma 3.1. Let G = SC Wwr Sd < Sym(X) , where X = Yd , |Y] = ¢, and
let B C X be such that, for 1 <i=<d , q; unordered pairs of

poeints of B Dbelong to Qi , where ]BI =k and = q; = [;] . Then

(X, BG) is a 2-design if and only if,
9 9 94

[f](c—l) ) [;‘](c—l)z ]giwmd'

In the case d = 2 this lemma leads to a simple construction

principle. When d = 2 , the points of X are ordered pairs of
elements from the set Y of size ¢ , and the k-set B can be
interpreted as the edge set of a directed graph with vertex set Y .
Note that loops are allowed. For an edge e = (y, y') the first entry
y will be called the tail and the second entry y' the head of e.

The conditions given by Lemma 3.1 under which (X, BG) is a 2-design
reduce to just one equation:

_k (k1)
1 c+l :

Thus we have the following:

Theorem 3.2. Let D = (Y, B) be a directed graph with vertex set Y
of size ¢ and edge set B C Y XY of size k . Then the set of all

images of B under the group G = Sym(Y) wr S, 1is the set of blocks

2
of a 2-design if and only if the number of unordered pairs of edges of
B with a common head or a common tail is exactly k(k‘l)/(c+l)
Moreover the design will be flag-transitive if and only if the

automorphism group of the directed graph D 1is edge-transitive.
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Construction 3.3. Let DO = (XO, B) be a directed graph with vertex

no isolated vertices and with k edges such

set XO of size Cq

that the number q of unordered pairs of edges of D, having a common

0
head or a common tail is a divisor of k(k-1) . Then, provided

- E%—"il ~1=>c, , the digraph D = (X, B) obtained from Dj by
adding c¢ — cq isolated vertices gives rise to a 2-design as described

in Theorem 3.2.

Example 3.4, Let k = 2s 2 6 and let DO = (Zs, B) be an
"undirected" cycle of length s , that is

B = ((i, i#1) | 1 €Z ) u ((i+l, 1) | 1 € Z) . Then the number of
pairs of edges sharing a head or a tail is s which divides ’

k (k=1) = 2s (2s — 1) . Then adding 3(s — 1) 1isolated vertices

yields a flag-transitive 2-((2k - 3)2 , k, X) design for some X

It is difficult to obtain a general construction for large d as
the number of restrictions on the parameters increases. However one

necessary condition is the following.
Corollary 3.5. With the notation of Lemma 3.1, a necessary condition
for (X, BG) to be a 2-design is that d[g) is divisible by

(%1)/(e-1) . (In fact q = d [];}/((cd ~ 1)/ —1)) )

Proof. By Lemma 3.1,

- [f] (c - 1)i“1ql / d and

a3
. d d . a
[2]=2q1 [Z[](c——l)l]/(C*l)dnql(c—1)/(c—1)d.
i=1 =1

Thus d [12‘] is divisible by (c® - 1) / (c = 1)

It may be helpful to use .the language of coding theory to describe
the situation here. If the set Y 1is taken as the set ZC of
integers modulo ¢ theg (x, y} € Qi if and only if x — y has )
weight 1 , that is has exactly i nonzero entries. Thus B contains
9, unordered pairs (x, y)} with x —y of weight 1 for

=1, ..., d . Since G 1is transitive on X we may assume that

(0,..., 0) € B . Then, if (¥, BG) is a flag-transipive 2-design,
198
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there are Zqi/k pairs (0, y} in Bwith y =y — 0 of weight i ,
that is there are 2qi/k elements of B — {0} of weight i .

Theorem 3.6. Let G = Sc wY Sd < Sym(X) where X = Zi , and let B
be a k-element subset of X containing 0= (0, ..., 0) . Then
(X, BG) is a flag-transitive 2-design if and only if

(i) the setwise stabilizer GB of B is transitive on B , and

(ii) for each 1 =i < d there are Zqi/k elements of B — {0}

i-1
f] -1q, /a

of weight i , where q; = {
- {1;] [‘1‘] -t/ -n

Proof. If (X, BG) is a flag-transitive 2-design then CB is
transitive on B , and, by Lemma 3.1 and Corollary 3.5, the parameters
43 are as in (ii). So, by the discussion above (ii) is true.
Conversely if (i) and (ii) are true then B contains q; pairs in Qi
with q; as in Lemma 3.1. Hence (X, BG) is a 2-design, and, as G

B
is transitive on B , (X, BG) is a flag-transitive design.

The conditions for a flag-transitive 2-design in this case are

29 do1) 1
very restrictive: by Corollary 3.5, k — 1 = [ . ] . [ p— ] -3

> (cd - 1)/ d (¢ = 1) , that is the block size is very large.

Question 3.7. Are there any flag-transitive (or even block-transitive)

2— (cd, k, X) designs admitting SC wr Sd with d = 3?

4. The simple diagonal case

Let G = Tg,(Out T x SZ) < Sym(X) act on X in its diagonal

action, where T 1is a nonabelian simple group and £ > 2 . Let
N = TE <G, and let D= {t=(t, ..., t) | t €T} be the natural
diagonal subgroup of N . Then X can be identified with the set of

right cosets of D in N with N acting by right multiplication. 1If
a =D 1is the trivial coset thenGa = Aut T X S, and G = NGQ .
Elements of Aut T act on X by conjugation and elements of SZ act

by permuting the entries of coset representatives x of cosets D x .
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It is very unlikely that there will be any interesting 2-designs
arising from this family of groups as G acting on pairs of points has
many orbits in general. Perhaps it is worth saying a little about the
simplest case, namely the case £ = 2 . Here each coset of D in N
has a unique representative with first entry 1T and so we may
identify X with T . With this identification, o = 1T , and for
x € X =T , elements (tl’ t2) €N, o€ Aut T = Ga , and
r = (12) € §, = Ga act as follows.

2
(t t)*x-——>t“1xt
1 727 1 2
o
o DX —> X
-1
7 ! X —3* X .

The orbits of G on unordered pairs from X correspond to "fusion"
classes of elements of T , where the fusion class F(x) of x 1is

F(x) = ((x)eal cgEeAut T, e =+ 1) : {x, y} and (x', y’'} are in the
same orbit on pairs if and only if x—ly and (x')_l y' are in the
same fusion class. Let the fusion classes be F1 = (1T), ey Fs , let
B be a k-element subset of T and let fi be the number of unordered
pairs of elements of B lying in Fi , for i =1,..., s. Then by [2,
Proposition 1.3], (X, BG) is a 2-design if and only if fi/ | Fi l = E
is independent of i (for i =1, ..., s). Note that

[g] =3 fi =E X lFil = E (|T| — 1), so that k cannot be much smaller

than !TI
x,8%) . Then k divides |G| , and hence (|T| —1) /y divides

1/2 s
” Suppose now that G acts flag-transitively on

k — 1 where y is the greatest common division of |T] -1 and

|c| . since k <v = |T| it follows that y >1 . Now

y = (|T| =1, |out T|) and it follows that T is a group of Lie type
over a field of order pa for some prime p and positive integer a ,

and y divides the odd part a’' of a . Thus we have k=1+z

(lTl - 1)/& for some 1 < z <y . This means, on the one hand, that
k > |T|/a’ , and on the other hand that (k, |T]) divides

(z -y, |T]) , whence (k,|6]) divides 2(z - y)2 [Out T| . Since
k divides |G| it follows that |T|/a' < k< 2(a’)2|0ut T| . Thus

lTl < 2(a’)3l0ut T| , and the only group satisfying this inequality is
T = PSL(2,8) , but for this group y =1 . Thus G is never
flag-transitive on (X, BG)
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Theorem 4.1. If G = TZ (Out T % Sz) < Sym(T) in simple diagonal
action, where T 1is a nonabelian simple group, then G does not act

flag-transitively on any nontrivial 2-design with point set T .

Question 4.2. Can G = T2 (Out T X SZ) act block-transitively on a

nontrivial 2-design with point set T ?

5. The almost simple Case.

This case is the most difficult to discuss as the maximal almost
simple subgroups of Sym (X) are only very loosely classified in [4].
There may be interesting classes of block-transitive 2-designs
admitting primitive almost simple groups of small rank ¢ 2 3 . For

example in the rank 3 case we have:

Lemma 5.1. Let G < Sym (X) be a primitive rank 3 group of degree v
such that, for x € X , GX has a self-paired orbit TI'(x) in X — {x)
of length m . Let B be a k-element subset of X and let g be the
number of unordered pairs {x,y} of points of B such that y € I'(x)
(or equivalently x € I'(y)). Then (X, BG) is a block-transitive
2-design if and only if q = [;] m / (v - 1)

In [2, Example 1.4] a construction of 2-designs was given based on
the rank 3 groups G = Sn acting on v = [g] unordered pairs from a
set Y of size n . In this case the set B can be interpreted as
the edge set of a graph with vertex set Y having k edges. A
2-design was obtained if and only if the number of (unordered) pairs of
edges of (Y, B) sharing a common vertex was 2k (k - 1) / (n+1) ,
and the design was flag-transitive if and only if the automorphism
group of (Y, B) was edge-transitive.

Other classes of rank 3 groups may give similar constructions.
For example the groups G = PI'L(n, q) , n = 4 , induce a primitive rank

3 action on the set of lines of the projective geometry PG(n — 1, q)

Theorem 5.2. Let G = PIL(n, q) , n = 4 , act on the set X of lines
of PG(n — 1, q) , and let B be a k-element subset of X . Then
(X, BG) is a block-transitive 2-design if and only if the number of
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unordered pairs of intersecting lines in B is (;) (q + 1)2 (q - 1) /
2

(@ +qd —qa-1
Proof. Now v - |X| - (-1 (@ -1 /@ -1) (g-1) so
vo1=q (@21 @ +a°-q-1 /@ -1 (@-1) . Also the
number of lines intersecting a given line is
m= q (qn~2 - 1) (q+ 1) / (q — 1) . The result now follows from Lemma
5.1.

When considering primitive groups of rank greater than 3 the
number of conditions to be satisfied increases and the problem of

finding 2-designs becomes more difficult. We give just one example.

Theorem 5.3. Let G = Sn , the symmetric group on a set Y of size n

and consider the primitive rank s + 1 action of G on the set X of

v o= [Z]S-element subsets of Y where 3 s <n/2 . Let B be a
k-element subset of X . Then (X, BG) is a block-transitive 2-design
if and only if, for each i =1, ..., s =1 , the number qi of

unordered pairs of elements of B which intersect in exactly i

con [ (273
q., = .
1 2([2]—1>

Proof The group G has s orbits QO""’QS~1 on unordered pairs of

elements of Y is

s—subsets of Y , namely Qi consists of pairs which intersect in

exactly i points of Y , for 0<i=<s-1. By [2, Proposition
1.37, (X,BG) is a block—transitive 2-design if and only if

k v
qO/IQOI = ... = qs—l/|Qs—l} = x say. Then {2] = Eqi = X ZIQil =X [2)
and so these equations are equivalent to the equations
q; = XIQiI = {g] ‘Qil / [;} for each i =’1,...,:5 — 1, (since g is

determined by (g = Zqi). This yields the result since

lo;| = v [i] [::i /2 for i=0,1,...,s -1

Example 5.4 Taking s = 3 , we may interpret X as the set of

triangles (cycles of length 3) of the complete graph with vertex set
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Y , and we may interpret B as the set of triangles of a graph with

vertex set Y having k triangles. Then, by Theorem 5.3, (X,BG) is
a 2-design if and only if the number q, of points of triangles in B
sharing an edge is 3k(k — 1)(n — 3)/2(v — 1) = 9k(k —~l)/(n2 + 2)  and
the number 4 of pairs of triangles in B with a single vertex in
common is 3k(k - 1)[n;3)/2(v - 1) = 9%(k - 1)(n ~ 4)/2(n2 + 2)

On the other hand if G is 2-transitive then we should be looking
for t-designs with t > 3 . We do this for the projective linear

groups below.

Theorem 5.5 Consider G = PI'L(n,q) , n > 3 , acting on the set X of
v o= (qn -~ 1)/(q - 1) points of the projective geometry PG(n — 1,q) ,
and let B be a k—elelment subset of X . Then (X,BG) is a

block-transitive 3-design if and only if the number of (unordered)
collinear triples of points in B 1is

2
k(k ~ 1)(k ~ 2)(q = 1)7/6(a" - 2q + 1)

= k(k = 1)(k = 2)(q - 1)/6(v - 2)

Proof The group G has two orbits on unordered triples of distinct
points, namely on collinear triples and non-collinear triples and there
arem = v(v — 1)(q — 1)/6 collinear triples. By [2, Proposition 1.3]

the condition for a 3-design is that the number of collinear triples in
: k v

o o)

Example 5.6 If G = PGL(3,7) then the number of collinear triples in

B is ¢ =k(k - 1)(k - 2)/55 and so k 1is 11,12,22,35,45, or 46

An example with k = 11 can be constructed as follows: Note that B

must contain ¢ = 18 collinear triples in this case. Let 0 be an

oval in PG(2,7) , that is a set of 8 points with no three collinear.

Let a,,a, € 0, let ¢ be the line through a, and o and let

172 1 2
ay,a 00,0, be four distinct points on £ - (al,az) . Set
B = {a3,a4,a5,a6) U (0 — {al)) . Then fB[ = 11 . The only collinear

triples in B containing at least two points of B — 0 are triples
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from {a2'a3’04’05'a6) € ¢ and there are 10 of these. The only
other collinear triples in B contain one point of B — 0 and two
points of 0 (that is they are on secant lines to 0  different from

¢ and passing through one of a3,a&,a5,a6) , and there are 8 of

these, two containing each of a0, and ag - Thus v(X,BG) is a

block-transitive 3-—(57,11,)) design, for some A , admitting G

Similarly there is an example with k = 12 and ¢ = 24
constructed as follows. Let pB be a point not on 0 or £ such that

the lines through B and ay and through B and @, are both secant

lines to 0 (see Figure 1). Choose ay and o, on ¢ such that the
lines through S and oy and through A and @, are both tangent

lines to 0 . Finally choose a, such that the line through g and

5

ag is a secant line to 0 and choose o such that the line through

A and o is an external line to 0

Figure 1
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Let B = (o, a,f) U (0 - (a})) . Then |B| = 12 . There are

2O, 0,
10 collinear tiipies in B containing 3 points of ¢ . There are 7
collinear triples in B containing B , namely each of ay,0q,0, lies
in one such triple and there are 4 triples in B on the line through
B and ag The remaining triples lie on secant lines to 0 not on
B , and contain two points of 0 — £ and one pointof & — 0 : each of
aq,9, and ag lie on two such triples, and ag lies on one Zuch
triple. Thus B contains 24 collinear triples and so (X,B7) 1is a

block—transitive 3 — (57,12,)) design, for some X , admitting G .
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