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In previous work generalized Bhaskar Rao 

designs whose underlying design is a b~lanced incomplete 

block design have been considered. In the first section 

of this paper generalized Bhaskar Rao designs (with 2 

association classes) whose underlying design is a group 

divisible design are defin~d. Some methods for the 

construction of these designs are developed in the second 

section. It is shown that the necessary conditions: 

A - 0 (mod g) 

v - 0 (mod 2 ) 

v ~ 6 

Av(v-2) - 0 (mod 3 ) 

are sufficient for the exi~tence of a GBRD(v,3,A,2:EA(g}) 

where EA(g) is an elementary abelian group of order g. 

Finally. the design GBRD(v,b,r,3,Al = O,A2 = A.2;EA(g) 

is used to construct a group divisible design with v/2 

groups each of siz~ 2g and with the-parameters 

v ... = v g, b ... = b g, r ... = r,k'" = 3, AlII' = 0, A 2 * A/g. 

°1. Introduction 

A design is a pair (X,R) where x is a finite set of 

elements and R is a collection of (not necessarily 

distinct) subsets Ri (called blocks) of X. 
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A balanced incomplete block design. BIBD(v.b.r.k.~). is 

an arrangement of v elements into b blocks such that: 

(i) each element appears in exactly r blocks; 

(ii) each block contains exactly k«v) elements; and 

(iii) each,pair of distinct elements appear together 

in exactly ). blocks. 

As r(k-I) = ).(v-I) and vr = bk are well-known necessary 

conditions for the existence of a BIBD(v,b,r,k,).) we 

denote this design by BIBD(v,k,).). 

Let v and A be positive integers and K a set of 

pos~tive integers. An arrangement of the element of a set 

x into blocks is a pairwise balanced design, PBD(v;K;).I, 

if: 

( i) X can tains exactly v elements; 

(ii) if a block contains 'k elements then k belongs 

to K; 

(iii) each pair of distinct elements appear together 

in exactly). blocks. 

A pairwise balanced design PBD(v;{k}:A). where K {k} 

consists of exactly one integer, is a BIBD(v,k,A). 

A group divisible design. GOD, on v points is a triple 

(X,S,A) where: 

(i) x is a set (of points); 

(ii) S is a class of non-empty subsets of x 

(called groups) which partition X; 

(iii) A is a class of subsets of x (ca~led blocks), 

each containing at least two points; 

(iv) each pair {x,y} of points contained in a group 

is contained in exactly Al blocks; 

(v) each pair {XtY} of points not contained in a 

group is contained in exactly A2 biocks. 
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We say that GDD ( v I b I r, A l' 1..2 (m (n ) is a GDD with m 

groups each of size n I where all b blocks have size k 

and each point lies in r blocks. In this paper we are 

concerned with the class of GDD's with Al = 0 and 

1..2 = A; and a GDD in this class will be denoted in terms 

of the independent parameters v,k,A,n by GDD(v,k,A,n). 

Suppose that x and yare distinct points in the 

GDD(v,k,A,n). We say that x and yare first associates 

if {x,y} is contained in a group. If {x,y} is not 

contained in a group then x and yare said to be second 

associates. We define the association ~atrices 

R i = (b! t ), 1 < i < 2, and 1 < s, t: < v 

of a GDD(v,k,A,n) as vxv (0,1) matrices given by 

i 
b st I, if sand tare ith associates, 

0, otherwise. 

Let G = {hi = e, h2' ... ,h g } be a finite group (with 

identity e) of order g. 

Form the matrix w, 

where AI' ••• tA g are vxb (0,1) - matrices such that the 

Hadamard product Ak'*Aj = 0 for any k~j. Let 

w+ (h1-1A 1 + . .. +hg-1Ag)T 

and N Al + A2 + A3 + ... + Ag 

Then we say that w is a partial generalized Bhaskar Rao design 

with two association classes over G denoted by 

PGBRD(v,b,r,k,A,n;G), or in abbreviated form 

PGBRD(v,k,A,n;G), if N satisfies 
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that is, N is the incidence matrix of the 

GDD(v,k,A,n), and 

( 1.1) 

(1. 2) 

A generalized Bhaskar Rao design with one 

association class, denoted by GBRD(v,k,A;C), satisfies 

(r-A)I + AJ; (1. 3) 

tha t is, if k < v, N is the incidence matrix of the 

BIBD(v,b,r,k,A), and 

ww+ 

In both cases we say that the design W is based 

on the matrix N. 

We shall reserve the name generalized Bhaskar 

Rao design for a generalized Bhaskar Rao design with 

one association class. 

(1.4 ) 

A generalized Bhaskar Rao design with one association 

class and v = b is a symmetric GBRD or a generalized 

weighing matrix. A generalized weighing matrix which 

contains no zero entries is also known as a generalized 

Hadamard'matrix. Generalized Hadamard matrices have been 

studied by Brock (1988), Dawson (198~), and de Launey 

(1984, 1986, 1987, 1989A, 1989B), Jungnickel(1979), 

Seberry (1979), Street (1979). 

Generalized Bhaskar Rao designs with one association 

class over elementary abelian groups other than 'Z2 have 

been studied recently by Lam and Seberry (1984) and 

Seberry (1985). de Launey, Sarvate and Seberry (1985) 
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considered generalized Bhaskar Rao designs over z4 which 

is an abelian (but not elementary) group. Some 

generalized Bhaskar Rao designs over various groups 

(abelian and non-abelian) ~ave been studied by Gibbons 

and Mathon (l987A, 1987B). Palmer and Seberry (1988) 

have shown that the necessary conditions are sufficient 

for the existence of generalized Bhaskar Rao designs over 

the non-abelian groups S3' D4' Q4' D6 and over the abelian 

group z2 x 24- Seberry (1988) has considered generalized 

Bhaskar Rao designs over the cyclic group 28- Recently. 

Curran and Vanstone (1989) have used generalized Bhaskar 

Rao designs to construc~~oubly resolvable BIBDs. 

Generalized Bhaskar Rao designs and generalized Hadamard 

matrices have been used by Mackenzie and Seberry (1988) 

to obtain q-ary codes. 

In this paper we are concerned with the tence of 

the des igns PGBRD( v, 3 I A, 2; EA( g) ). The elementary abelian group 

EA(g) is defined to be the abelian group of order g so 

that every element of EA(g) has prime order. EA(g) is the 

direct product of the groups (Zp)i where p is the prime of 

multiplicity i in the primary decomposition of g. 

Example 1.1. The matrix W given by 

1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 ,1 

1 w w2 0 0 0 1 W w2 0 0 0 

0 0 0 1 W w2 0 0 0 .' 1 W w2 

i w2 W 0 0 0 0 0 0 1 w2 W 

0 0 0 1 w2 W 1 w2 W 0 0 0 

is a PGBRD(6,3,3,2,23) based on the 6x12 incidence matrix 

of a GDD(6,3,3,2) which is a 3-multiple of design SR18 
recorded by Clatworthy (1973, p.144). 
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2. Constructions 

In this section we establish some general 

constructions which will be used extensively in the 

remaining sections of the paper. 

Theorem 2.1 Suppose that there exists a GDD(v,k, A,n) 

and that there exists a GBRD(k,k,~iC). 

PGBRD(v,k,A~,n,G),exists. 

Then a 

Proof: Let N be the incidence matrix of a GDD(v,k, A/n) 

and suppose that ei, i = 1 , ••• ,k are distinct rows of 

a GBRD(k,k,~;G). We form a matrix w by replacing the lis 

of each column of N by the vectors ei. The zeros of N 

are replaced by (0,0, ... ,0). The matrix w is a 

PGBRD(v,k,A~,n;G). 

Example 2.2. 

e e 0 0 

0 0 e e 

£ 0 f 0 

0 f 0 f 

h 0 0 h 

0 h h 0 

is a PGBRD(6,3,g,2;C) where e, £, and h are three distinct 

rows of a GH(g,C). This PGBRD(6,3 , g,2;c) is obtained by 

replacing the l's of the incidence matrix of a GDD(6,3,l,2) 

bye, f. and h in the manner described In the proof of 

Theorem 2.1. 

Example 1.1 was constructed by application of 

Theorem 2.1. 
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Corollary 2.3. Suppose that v>6 and v _ 0 or 2 (mod 6). 

Then: 

(i) a PGBRD(v,3,g,2;EA(g» exists if 9 _ 0 or lor 3 

(mod 4) 

(ii) a PGBRD(v,3,g,2;G) exists if G is an abelian group 

of odd order, g. 

Proof: Hanani (1975, p. 355) has shown that a 

GDD(v,3,1,2) exists if and,only if v > 6 and v = 0 or 

2 (mod 6). A GBRD(3,3,g;EA(g») exists if and only if 

9 = 0, 1 or 3 (mod 4) (Seberry (1985». Likewise, if G 

is an abelian group of odd order, 9 then a GBRD(3,3,giG) 

exists (Lam and Seberry (1984». The results follow on 

application of Theorem 2.1. 

Theorem 2.4. Suppose that G is a group of order 9 such 

that a GBRD(v,k,2gjGXZ2) exists. 

exists. 

Then a PGBRD(2v,k,g,2;G) 

Proof: Let G = {e=h1,h2' ... ,h }, I2 be the identity 

matrix of ize 2, and J2 be the square matrix of size 2 

whose entries are all l's. We replace each zero entry in 

the GBRD(v,k,2g;CXZ2) by a square zero matrix of size 2 

and the non-zero entries are replaced in the following 

manner: 

the entry +hi is replaced by h i I2 and 

the entry -h i is replaced by h i (J 2 -I 2 ) The 

matrix thus formed is a PGBRD ( 2 v I k I 9 12; G) • 

Seberry (1985) has shown that the necessa~y 

conditions are sufficient for the existence of a 

GBRD(v,3,tg;EA(g» over the elementary abelian group 

EA(g). Hence, a GBRD(V,3,2tg;Z2xEA(g» exists if and 

only if v ~ 3 and 

t 9 V ( v -1) _ 0 (mod 12). 
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The following table summarises the constraints on the 

triples t, g and v when tg is even. 

tg (mod 6 ) Constraint on v ~ 3 

0 none 

- 2 or 4 v - 0 or 1 (mod 3 ) 

Hence, by Theorem ~.4t we have 

Corollary 2.5. There exists a PGBRD(v,3,tg,2;EA(g) 

whenever 

t g _ 0 (mod 6'), v :: 6,8,10, ... 

tg - 2 or 4 (mod 6), v > 6 and v = 0 or 2 (mod 6). 

. Lemma 2.6. (Hanani (197 , Lemma 2.16» . Suppose that a 

PBD(v;H;~) exists and that there exist GDD(mh,k, ~,m) for 

each h belonging to li, then a GDD(mv,k, ~~,m) exists. 

Lemma 2.7. (Hanani(1975, Lemma 5.3)). For every v> 3, 

the PBD(viK3il) exists where K3 == {3,4,5,6,8}. 

Theorem 2.8. Let G be a finite group. 

Suppose that a PBD(v;H;A) exists and that for each h 

belonging to H a PGBRD(mh,k,fl,miG) exists. Then a 

PGBRD(mv~k,~fl,m;G) exists. 

Proof: Let N be an incidence matrix for a PBD(v;H;l). 

We ~orm a matrix w from N in the following manner. 

Suppose the first column of N contains h lIs. We then 

partition the matrix Ah=~GBRD(mh,k'fl,m;G) as follows: 



where Aih, 1< i< h are matrices each consisting of m 

distinct rows of Ah. We then replace the first 1 in the 

first column of N by Alh, the second 1 in the first 

column of N by A2h, and so on. The zeros in the first 

column of N are replaced by a zero matrix of the size 

as each Ai h • 

The process is repeated for the remaining columns of 

N to construct the matrix w. We claim that w is a 

PGBRD(mv,k,A~/m;G). 

Example 2.9. The incidence matrix of a PBD ( 11; {3 , 5 } ; 1 ) 

(Hanani (1975, p. 289)) is exhibit ed below: 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 

1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 

0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 

0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 1 0 1 1 i 0 0 0 0 

0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 

We construct a PGBRD(22,3,3, :23) by replacing the 

l's in all columns except the last by 2x12 matrices 

coming from the partitioning of the PGBRD(6,3,3,2;z3) 

which was constructed in Example 2.2. The l's in the 

last column are replaced by the 2x40 matrices arising 

from the partitioning of a design PGBRD(10,3,3,2;z3) 

which exists by application of Theorem 2.4 to a 

GBRD(S,3,6iZ3xz2). The O's in the first 15 columns are 

replaced by a 2x12 zero matrix and the remaining O's are 

replaced by a 2x40 zero matrix. 
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Theorem 2.10. Suppose that there exists a BIBD(v,k,A) 

and a PGBRD(mk,j,~,m;G}. Then there exists a 

PGBRD(mv,j,A~,m;G). 

Proof: We observe that a BIBD(v,k,A) is a PBD(v,{k},A} 

and then apply Theorem 2.8. 

Corollary 2.11. Let G be a group of ord~r g. There 

exists a PGBRD(lO,3,3g,2;G) whenever there exists a 

PGBRD(6,3,g,2;G). 

Proof: A B1BO(5,3,3) exists by Hanani (1975, Theorem 

5.1). The result follows from Theorem 2.10 with the 

B1BD(5,3,3) and the PGBRD(6,3,g,2;G). 

Corollary 2.12. Suppose that G is a group of order g. 

There exists a PGBRD(16,3,3g/2;G) whenever there exists a 

PGBRD( 8 ,3 ,g 12; G) . 

Proof: A B1BD(8,4,3) exists by Hanani (1975, Theorem 

5.2). This design used with PGBRD(8,3,g,2;G) produces 

a PGBED(16,3,g,2iG). 

Theorem 2.13. Suppose that there exists a GBRD(v,k,A;G), 

A, and a PGBRD(mk,j, ~,m;H), R. Then there exists a 

PGBRD(mv,j, All/miGXH). 

Proof: The new PGBRD is obtained by replacing the jth 

non-zero entry, say x, of each column o~ A by x times 

Ri' where Ri is a matrix with m rows in the partitioning 

of R given by 
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The next theo~em,is an adaptation of a construction of 

GBRD/1s given in Gibbons and Mathon (1987, p.12). 

Theorem 2.14. Let W be a PGBRri(v,k, ~.n;G) and suppose 

that G contains a normal subgroup T. Then there exists a 

PGBRD(v,k,~,niH), where H = GIT is the factor group of G 

with respect to T. 

Proof: In w, replace each group element x (say) by its 

coset Tx. The new matrix thus formed is a GBRO(v,k,A,n;H) 

where H GIT. 

3. Necessary Conditions 

Hanani (1975, p.355) has shown that the necessary 

conditions are sufficient for the existence of a 

GOD ( v I k, A, n ) where k = 3. These conditions are 

v ::: 0 (mod n) (3.1 ) 

v > 3n (3.2) 

A( v-n) - 0 (mod 2 ) (3.3) 

AV( v-n) - 0 (mod 6 ) (3.4) 

For the existence of a PGBRD(v, k I ~ In;G) we also 

require 

~ ::: 0 (mod g) (3.5) 

where g is the order of the group G. 

We now give an extra necessary condition for the 

existence of a 'PGBRD/2 over Z2' This condition is an 

adaptation of Theorem 1 of Seberry (1984) which is 

concerned with GBRDs over z 2 • 
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Theorem 3.1. A PGBRD(v,k,A,niZ2)' W, can only exist if 

the equations: 

(i) x3 + 3X5 + 6x7 + " . +((k 2 -1)/8)Xk b(k-l)/8 

for k odd, 

( i i) -xo + 3x4 + 8x6 + ... + ((k 2 -4)/4)X k b(k-4)/4 

for k even, 

have integral solutions. In particular~ a 

PGBRD(v,3,A 1 n:Z2) can onl~ exist if b = 0 (mod 4). 

In view of Theorem 2.14 we see that if g is even 

the existence of a PGBRD(v,k,A,n:EA(g))' wQuld imply the 

existence of a PGBRD (v ,k , A,n : Z 2)' Thus, by Theorem 3. 1, 

b A v ( v - n) _ 0 (mod 4) 
6 

or 

Av(v-n) ~ 0 (mod 24) (3.6) 

is a necessary condition for the existence of a ' 

PGBRD(v,3,A,n:EA(g» when g is even~ Hence, we have 

Theorem 3.2. The necessary conditions for the existence 

of a PGBRD(v,3,A = tg,2; EA(g) ) are: 

A - 0 (mod g) (3.7) 

v ~ 6 ( 3 .8) 

v - 0 (mod 2) ( 3 .9) 

AV(v-2) - 0 (mod 3) (3.10 ) 

In the remaining parts of the paper we will show 

that the necessary conditions are sufficient for the 

existence of a PGBRD(v,3,A=tg,2;EA(g». 
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4. Existence ofPGBRD over EA(g), g odd 

Theorem 4.1. If g :: 1 or (mod 6), the necessary 

conditions (3 ), (3.8), (3. ) and (3.10) are sufficient 

for the exi tence of a PGBRD(v,3,A=tg,2iEA(g). 

Proof: The necessary conditions for the existence of a 

PGBRD(v,3,A=tg,2iEA(g)), g == lor 5 (mod· 6) are: 
t _ 0 (mod 3) tV:::: 6 I 8, 10 ... 

t == lor 2 (mod 3), v > 6 and v - 0 or 2 (mod 6). 

We consider two cases. 

Case 1: A:::: g. Corollary 2.3 tells us a 

PGBRD(v,3,g,2 EA(g)) exists when v 6 and v == 0 or 2 (mod 
6). By taking t copies of this design we can construct a 

PGBRD ( v, 3 ,A == t g, 2 i EA ( g) ) • 

Case 2: A :::: 3g. By Lemma 2.7 and Theorem 2.8 we need 

only establish the existence of a PGBRD(Y,3,3g,2;EA(g)) 

for v belonging to {6,8,10,l2,16} to show there exists a 

PGBRD(u,3,3g; ;EA{g) for all u belonging to {6,8, ... J. 
The designs PGBRD(v,3,3g,2;EA(g» exist for 

v Reason 

6 PGBRD(6,3,3g,2;EA(g») is 3 copies of 

PGBRD(6,3,g,2;EA(g)), given in Case 1. 

8 PGBRD(8,3,3g,2;EA(g) is 3 copies of 

PGBRD(8,3,g,2;EA(g), given in Case 1. 

10 Apply Corollary 2.11 to the 

PGBRD(6,3,g,2;EA(g). 

12 PGBRD(12,3,3g,2;EA(g» is 3 copies of 

PGBRD(12,3,g,2;EA(g»), given in Case 1. 

16 Apply Corollary 2.12 to the 

P GBRD ( 8 , 3 , g, 2 ; EA ( g) ) • 
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By taking t copies of the newly constructed designs 

EGBRD(u
t
3,3g,2i EA (g»), u belonging to {6,8 ,10, ... }, we can 

produce a PGBRD(u,3,3tg,2;EA(g)). 

Theorem 4.2. If g = 3 (mod 6) the necessary conditions 

(3.7), (3.8), (3.9) and (3.10) are sufficient for the 

existence of a GBRD(v,3tg,2iEA(g)). 

Proof: The des igns PGBRD ( v, 3, g, 2 i EA( g) ), v belonging to 

{6,8,12}, exist by Corollary .3. We observe that 

EA(g) = 23 x EA(h), where h is odd. The existence of a 

GBRD(5,3,3,;23)(Seberry (1982» and aPGBRD(6,3,h,2;EA(h» 

gua~antees, by Theorem 2.13, the existence of a 

PGBRD(10,3,g,2iEA(g». Similarly, the existence of a 

GBRD(8,4,3;Z3)(de Launey and Seberry (1984) and a 

PGBRD(8,3,h,2;EA(h) establi·shes the existence of a 

PGBRD(16,3,g,2;EA(g». By application of Lemma 2.7 and 

Theorem 2.8 we conclude that aPGBRD(v,3,gI2iEA(g») exists 

for v belonging to {6,8, •.. }. By taking L copies of 

these designs we may construct a PGBRD(v,3,A=tg,2i EA (g» 

where g = 3 (mod 6) and v belongs to {6,8, ... }. 

5. Existence of PGBRD over EA( g), g even. 

Theorem 5.1. When g is even, the necessary conditions 

(3.7), (J.B), (3.9) and (3.10) are sufficient for the 

existence of a PGBRD(v,J ,tg,2:EA(g». 

Proof: When g is even, the necessary conditions (3.7), 

(3.8), (3.9) and (3.10) reduce to: 

t g _ 0 (mod 6), v = 6, 8 I ••• 

tg _ 2 or 4 (mod 6), v > 6 and v = 0 or 2 (mod 6). 
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By Corollary 2.5, we see these conditions are sufficient 

for the existence of a PGBRD(v,3, tg,2;EA(g)) when g is 

even. 

6. Main Result 

Theorem 6.1. For the abelian group EA(g) a 

PGBRD( v, 3, A. I 2;EA( g)) exists if and only if 

A. _ 0 (mod g) 

v > 6 

v _ 0 (mod 2) 

Av(v-2) _ 0 (mod 3) 

Proof: The result follows by invoking the theorems as 

indicated below: 

g Theorem 

- 1 or 5 (mod 6 ) Theorem 4 .1 

- 3 (mod 6 ) Theorem 4.2 

- 0 (mod 2 ) Theorem 5.1 

7. Applications 

Let EA(g}= {e=h1, ••• ,h g } where EA(g) is the abelian 

group defined in section 1. Suppose that EA(g) is 

represented by the gxg permutation matrices P1, ... ,Pg 

so that hi corresponds to Pi, 1 < i < g. As in Street 
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and Rodger (1980) and Seberry (1982), we construct, by 

replacing each group element of a PGBRD(v,b,r,3.A1=D,A1= 

A,2;EA(g)) by its corresponding gxg permutation matrix, 

the incidence matrix of group divisible design with v/2 

groups each of size 2g and with the parameters 

v*=vg, b*=bg. r*=r, k*=3, Al*=O, A2*=(1/g) 

Hence we have part of Hanani's theorem but by a 

different approach: 

Theorem 7.1. 

A - 0 (mod g) 

v - 0 (mod 2 ) 

v > 6 

Av(v-2) - 0 (mod 3 ) 

are sufficient for the existence of a group divisible 

design with v/2 groups each of size 2g and with the 

parameters: 
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