# DEFICIENCIES AND VERTEX CLIQUE COVERING NUMBERS OF 

A FAMILY OF TREES

## L. Caccetta and Purwanto

School of Mathematics and Statistics
Curtin University of Technology
G.P.O. Box U1987

PERTH WA 6001

ABSTRACT: Let $G$ be a simple graph on $n$ vertices having a maximum matching $M$. The deficiency $\operatorname{def}(G)$ of $G$ is the number of M-unsaturated vertices in $G$. The vertex clique covering number vcc $(G)$ of $G$ is the smallest number of cliques (complete subgraphs) needed to cover the vertex set of $G$. In this paper we determine def(G) and vcc(G) for the case when $G$ is a tree with each vertex having degree 1 or $k$.

## 1. INTRODUCTION

All graphs considered in this paper are finite, loopless and have no multiple edges. For the most part our notation and terminology follows that of Bondy and Murty [1]. Thus $G$ is a graph with vertex set $V(G)$, edge set $E(G), v(G)$ vertices and $\varepsilon(G)$ edges.

A matching $M$ in $G$ is a subset of $E(G)$ in which no two edges have a vertex in common. $M$ is a maximum matching if $|M| \geq\left|M^{\prime}\right|$ for any other matching $M^{\prime}$ of $G$. A vertex $v$ is saturated by $M$ if some edge of $M$ is incident with $v$; otherwise $v$ is said to be unsaturated. The deficiency $\operatorname{def}(G)$ of $G$ is the number of unsaturated vertices by any maximum matching $M$ of $G$. If $\operatorname{def}(G)=0$, then, of course, $G$ has a perfect matching. For a maximum matching $M$ we have $|M|=\frac{1}{2}(n-$ def(G)). Many problems concerning matchings in graphs have been investigated in the literature - see, for example, Lovasz and Plummer [7]. In this paper we consider the problem of determining def(G); results for a fanily of trees are obtained.

A clique of $G$ is a complete subgraph of $G$. The clique covering number (clique partion number) $c c(G)(c p(G))$ of $G$ is the smallest number of cliques (edge-disjoint cliques) needed to cover the edge set of $G$. The vertex clique covering number vcc( $G$ ) of $G$ is the minimum number of cliques needed to cover the vertex set of $G$. Many authors have studied the functions $c c(G)$ and $c p(G)$ - see for example Caccetta and Pullman [2], Pullman [10] and Ma et.al. [8]. In this paper we investigate the function $\operatorname{vcc}(G)$. Observe that $\operatorname{vcc}(G) \leq|M|+\operatorname{def}(G)=$ $\frac{1}{2}(v+\operatorname{def}(G))$, with equality holding when $G$ is triangle free. So the functions $\operatorname{def}(G)$ and $\operatorname{vcc}(G)$ are related. Further the vcc(G) is the same as the chromatic number $\chi(\overline{\mathrm{G}})$ of $\overline{\mathrm{G}}$. The chromatic number of regular graphs has been studied by Caccetta and Pullman [3-4].

The results we present are for the case when $G$ is a tree in which each vertex has degree 1 or $k$. We let $\tau(n ; 1, k)$ denote the class of trees on $n$ vertices in which each vertex has degree 1 or $k, k \geq 2$.

## 2. RESULTS

We begin by making some simple observations concerning def(G). The definition implies that $\operatorname{def}(G) \equiv v(\bmod 2)$. If $\varepsilon(G)>0$, then $0 \leq$ $\operatorname{def}(G) \leq \nu-2$. Consider the tree $T$ on $n$ vertices drawn in Figure 1 below, where $\mathrm{d} \equiv \mathrm{n}(\bmod 2)$.


Figure 1
Clearly $\operatorname{def}(T)=d$. Consequently, if $D(n)$ denotes the set of possible values of $\operatorname{def}(G)$ as $G$ ranges over the class of simple non-empty graphs on $n$ vertices, then

$$
D(n)=\{d: 0 \leq d \leq n-2, d \equiv n(\bmod 2)\}
$$

Thus we need to look at restricted classes of graphs to obtain more interesting results on $\operatorname{def}(G)$. We consider the case when $G$ is a tree. In view of the graph displayed in Figure 1 we need to add some further restrictions. We now consider the class $\tau(n ; 1, k)$.

Lemma 1. Let $T \in \tau(n ; 1, k)$ be a graph with $s$ vertices of degree $k$. Then

$$
\begin{equation*}
\operatorname{def}(T) \leq(k-3) s+2+2\lfloor(s-1) / k\rfloor . \tag{1}
\end{equation*}
$$

Proof: Simple counting yields

$$
\begin{equation*}
s=(n-2) /(k-1) \tag{2}
\end{equation*}
$$

We prove the lemma using induction on $s$. When $s=0, T=K_{2}$ and $\operatorname{def}(T)=0$. When $s=1$, then $T$ is a star with $n=k+1$ and hence $\operatorname{def}(T)=k-1$. Thus the result is true for $s=0$ and $s=1$. Assume it is true for all $1 \leq s \leq m$ and let $T$ be a tree with $s=m+1$.

Equation (2) implies that $n=(k-1)(m+1)+2$. If $T$ contains a vertex, $u$ say, of degree $k$ that is joined to a vertex of degree 1 , then every maximum matching saturates $u$. Furthermore, there exists a maximum matching $M$ which contains an edge $u v$ with $d_{T}(v)=1$. So let us assume that $M$ is a maximum matching in $T$ which contains such edges. Suppose $T$ contains $s^{\prime}$ vertices of degree $k$ adjacent to vertices of degree 1 , then

$$
\begin{aligned}
s^{\prime} & \geq \frac{n-m-1}{k-1} \\
& =m+1-\frac{m-1}{k-1}
\end{aligned}
$$

If $T$ has no M-unsaturated vertices of degree $k$, then

$$
\begin{aligned}
\operatorname{def}(T) & =(n-m-1)-s^{\prime} \\
& \leq(k-2)(m+1)+2-(m+1)+\frac{m-1}{k-1}
\end{aligned}
$$

Hence

$$
\operatorname{def}(T) \leq(k-3)(m+1)+2+\left\lfloor\frac{m-1}{k-1}\right\rfloor .
$$

Now if $k>m$, then $\lfloor(m-1) /(k-1)\rfloor=\lfloor m / k\rfloor=0$ and hence (1) holds. So we can suppose that $2 \leq k \leq m$.

Then $(k-2)(k-m) \leq 0$ and so $(m-1) k \leq(k-1)(2 m-k)$.

Hence

$$
\begin{aligned}
\left\lfloor\frac{m-1}{k-1}\right\rfloor & \leq\left\lfloor\frac{2 m-k}{k}\right\rfloor \\
& \leq 2\left\lfloor\frac{m}{k}\right\rfloor
\end{aligned}
$$

Thus

$$
\operatorname{def}(T) \leq(k-3)(m+1)+2+2\left\lfloor\frac{m}{k}\right\rfloor
$$

proving that (1) holds for $s=m+1$ when $T$ has no M-unsaturated vertices.

Now suppose that $T$ has $M$-unsaturated vertices of degree $k$. Let $u$ be such a vertex and let $N_{T}(u)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ denote the neighbours of $u$. Form the graph $T^{\prime}$ from $T$ as follows. Delete $u$ and add $k$ new vertices $u_{i}, u_{2}, \ldots, u_{k}$ and $k$ new edges $v_{i} u_{i}, 1 \leq i \leq k$ (see Figure 2).

Then $T^{\prime}$ consists of $k$ trees $T_{1}, T_{2}, \ldots, T_{k}$ with $T_{i} \in \tau\left(n_{i} ; 1, k\right)$. Suppose $T_{i}$ has $s_{i}$ vertices of degree $k$. Then $s_{i} \leq m$ for all $i$ and $\sum_{i=1}^{k} s_{i}=m$. Now, by our induction hypothesis,

$$
\operatorname{def}\left(T_{i}\right) \leq(k-3) s_{i}+2+2\left\lfloor\frac{s_{i}-1}{k}\right\rfloor
$$



T
$T^{\prime}$

Figure 2

For each $i$ there exists a maximum matching in $T_{i}$ that does not saturate $u_{i}$. We have

$$
\begin{aligned}
\operatorname{def}(T) & =\sum_{i=1}^{k} \operatorname{def}\left(T_{i}\right)-k+1 \\
& \leq(k-3) \sum_{i=1}^{k} s_{i}+2 k+2 \sum_{i=1}^{k}\left\lfloor\frac{s_{i}-1}{k}\right\rfloor-k+1 \\
& =(k-3) m+k+1+2 \sum_{i=1}^{k}\left\lfloor\frac{s_{i}-1}{k}\right\rfloor \\
& \leq(k-3) m+k+1+2\left\lfloor\sum_{i=1}^{k} \frac{s_{i}-1}{k}\right\rfloor \\
& =(k-3) m+k+1+2\left\lfloor\frac{m-k}{k}\right\rfloor
\end{aligned}
$$

$$
=(k-3)(m+1)+2+2\lfloor m / k\rfloor
$$

Thus (1) holds for $s=m+1$. This completes the proof of (1).

We now demonstrate that the bound given in Lemma 1 is sharp. This is obviously the case for $k=2$, so we suppose that $k \geq 3$. Let $A(k, t)$ denote the graph formed from the path $P=v_{1}, v_{2}, \ldots, v_{t}$ by joining each $v_{i}$ to $k-2$ new vertices $v_{i 1}, v_{i 2}, \ldots, v_{i, k-2}$ (see Figure 3). Observe that $v(A(k, t))=t(k-1)$ and $\operatorname{def}(A(k, t))=t(k-3)$.


Figure 3 A(k,t)
Consider the graph $A(k, 2)$. We form the graph $B(k)$ by adding ( $k-2$ ) disjoint copies of $\bar{K}_{k-1}$ and joining ${ }_{v_{21}}, 1 \leq i \leq k-2$, to all the vertices of the $i^{\text {th }}$ copy of $\bar{K}_{k-1}$ (see Figure 4). Observe that $B(k)$ is a tree with $k(k-1)$ vertices and deficiency $(k-1)(k-2)$. We will now construct, using $A(k, t)$ and $B(k)$ as building blocks, a graph $T \in$ $\tau(n ; 1, k)$ with $\operatorname{def}(T)$ equal to the right hand side of (1).

Let $s-1=k p+r, 0 \leq r \leq k-1$ and $p \geq 0$. If $p=0$, we can take our $T$ as the graph formed from $A(k, r+1)$ by joining $v_{1}$ and $v_{r+1}$ to two new vertices $u_{1}$ and $u_{2}$, respectively. When $p>0$ we form our $T$ as follows.


Figure $4 \quad B(k)$

Take $p$ copies of $B_{1}(k), B_{2}(k), \ldots, B_{p}(k)$ and $A(k, r+1)$. Identify the $" v_{1}, v_{2}$ vertices" of $B_{i}(k), 1 \leq i \leq p$, by $v_{1}^{(i)}$ and $v_{2}^{(i)}$, respectively. We join the vertex $v_{2}{ }^{(i)}$ to $v_{1}{ }^{(i+1)}$ for each $1 \leq i \leq$ $p-1$, join $v_{1}{ }^{(1)}$ to a new vertex $u_{1}$, join $v_{2}(p)$ to the vertex $v_{1}$ of $A(k, r+1)$ and join the vertex $v_{r+1}$ of $A(k, r+1)$ to a new vertex $u_{2}$. Call the resulting graph $T$. Observe that every vertex of $T$ has degree 1 or $k$ and

$$
\begin{aligned}
v(T) & =p k(k-1)+(r+1)(k-1)+2 \\
& =s(k-1)+2
\end{aligned}
$$

Thus $T \in \tau(n ; 1, k)$ with $n=s(k-1)+2$. Now every maximum matching of $T$ saturates the vertices $v_{1}{ }^{(i)}, 1 \leq i \leq p, v_{1}, v_{2}, \ldots v_{r+1}$. Also, every maximum matching of $B_{i}(k)$ saturates $v_{i}(i), 1 \leq i \leq p$. Consequently

$$
\begin{aligned}
\operatorname{def}(t) & =\sum_{i=1}^{p} \operatorname{def}\left(B_{i}(k)\right)+\operatorname{def}(A(k, r+1))+2 \\
& =p(k-1)(k-2)+(r+1)(k-3)+2
\end{aligned}
$$

$$
=(k-3) s+2+2\lfloor(s-1) / k\rfloor .
$$

This establishes that the upper bound given by Lemma 1 is sharp. We now turn our attention to the lower bound.

Lemma 2. Let $T \in \tau(n ; 1, k)$ be a graph with $s$ vertices of degree $k$. Then
(a) $\operatorname{def}(T)=0$ if $s=0$
(b) $\operatorname{def}(T) \geq(k-3) s+2$,
if $s \geq 1$
and this bound is sharp for $k \geq 3$.

Proof: The lemma will be proved by using induction on s. The result is true for $s=0$ and $s=1$. Assume it is true for all $s, 1 \leq s \leq m$, and let $T$ be a tree with $s=m+1$. Let $u$ be a vertex of degree $k$ in T. As in the proof of Lemma 1 we form $T^{\prime}$ from $T$ by deleting $u$ and adding $k$ new vertices $u_{1}, u_{2}, \ldots u_{k}$ and $k$ new edges $u_{i} v_{i}, 1 \leq i \leq k$, (see Figure 2). Then $T^{\prime}$ is a forest consisting of $k$ components $T_{1}, T_{2}, \ldots, T_{k}$ with $u_{i} \in T_{i}$. Let $n_{i}=\left|V\left(T_{i}\right)\right|$. Clearly $T_{i} \in \tau\left(n_{i} ; 1, k\right)$ and $\sum_{i=1}^{k} n_{i}=n+k-1$.

Suppose $T_{i}$ has $s_{i}$ vertices of degree $k$. Then $s_{i} \leq m$ and $\sum_{i=1}^{k} s_{i}$ $=\mathrm{m}$. By our induction hypothesis we have

$$
\operatorname{def}\left(T_{i}\right) \geq(k-3) s_{i}+2 \quad \text { when } s_{i}>0
$$

If $s_{i}=0$, then $T_{i}$ is necessarily an edge and hence $\operatorname{def}\left(T_{i}\right)=0$. On the other hand, if $s_{i}>0$ then $v_{i}$ is saturated by every maximum matching of $T_{i}$; $u_{i}$ may or may not be saturated. Suppose $T^{\prime}$ has $p$
components with no vertices of degree $k$. Without loss of generality we may take these components as $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{p}}$. We have

$$
\begin{aligned}
\operatorname{def}(T) & \geq \operatorname{def}\left(T^{\prime}\right)-(k-p)+p-1 \\
& =\sum_{i=p+1}^{k} \operatorname{def}\left(T_{i}\right)-(k-p)+p-1 \\
& \geq \sum_{i=p+1}^{k}\left[(k-3) s_{i}+2\right]-k+2 p-1 \\
& =(k-3) m+2(k-p)-k+2 p-1 \\
& =(k-3)(m+1)+2
\end{aligned}
$$

This completes the proof of the inequality in (b).

That the bound is sharp follows from the graph $T$ obtained from $A(k, s)$ by adding two new vertices $u_{1}$ and $u_{2}$ and the edges $u_{1} v_{1}$ and $v_{S} u_{2}$.

Let

$$
D(n ; 1, k)=\{\operatorname{def}(T): T \in \tau(n ; 1, k)\} .
$$

When $k=2, \tau(n ; 1, k)$ consists of just a path of length $n-1$ and hence $D(n ; 1, k)=\{0\}$ if $n$ is even and $D(n ; 1, k)=\{1\}$, if $n$ is odd. For $k \geq$ 3 we have the following result.

Theorem 1. For integers $k \geq 3$ and $n \geq 4$,
(a) $D(n ; 1, k)=\phi$, if $n \neq 2(\bmod (k-1))$, and
(b) $D(n ; 1, k)=\left\{d: \frac{(k-3) n+4}{k-1} \leq d \leq \frac{(k-3) n+4}{k-1}+2\left\lfloor\frac{n-k-1}{k(k-1)}\right\rfloor\right.$,

$$
\mathrm{d} \equiv \mathrm{n}(\bmod 2)\}, \quad \text { if } \mathrm{n} \equiv 2(\bmod (\mathrm{k}-1))
$$

Proof: Let $T \in \tau(n ; 1, k)$ be a graph with $s$ vertices of degree $k$. Equation (2) implies that $n \equiv 2(\bmod (k-1))$, proving (a). Now suppose that $n=s(k-1)+2$ and let $s-1=k p+r$, where $0 \leq r \leq k-1$ and $\mathrm{p} \geq 0$. Then $\mathrm{n}=(\mathrm{k}-1)(\mathrm{kp}+\mathrm{r}+1)+2$. Hence

$$
\frac{(k-3) n+4}{k-1}=(k-3)(k p+r+1)+2
$$

and

$$
\left\lfloor\frac{n-k-1}{k(k-1)}\right\rfloor=\left\lfloor\frac{k p+r}{k}\right\rfloor=p
$$

Thus we must prove that

$$
\begin{align*}
D(n ; 1, k)=\{d:(k-3)(k p+r+1)+2 & \leq d \leq(k-3)(k p+r+1)+2 \\
+2 p, \quad d & \equiv n(\bmod 2)\} . \tag{3}
\end{align*}
$$

We do this by construction.
Let

$$
d=(k-3)(k p+r+1)+2+2 q, \quad 0 \leq q \leq p
$$

We have already given constructions for the lower bound $q=0$ and the upper bound $q=p$. So suppose $1 \leq q \leq p-1$. Using the building blocks $B(k)$ and $A(k, t)$ defined earlier we shall form a graph $T_{q} \in$ $\tau(\mathrm{n} ; 1, \mathrm{k})$ having deficiency d .

Take $q$ copies $B_{1}(k), B_{2}(k), \ldots, B_{q}(k)$ of $B(k)$ and the graph $A(k, k(p-q)+r+1)$. As earlier we identify the vertices $v_{1}$ and $v_{2}$ of $B_{i}(k), 1 \leq i \leq q$, by $v_{1}^{(i)}$ and $v_{2}^{(i)}$, respectively. We join: $v_{2}^{(i)}$ to $v_{1}{ }^{(i+1)}$ for each $1 \leq i \leq q-1 ; v_{1}^{(1)}$ to a new vertex $u_{1} ; v_{2}^{(q)}$ to the vertex $v_{1}$ of $A(k, k(p-q)+r+1)$; and the vertex $v_{k(p-q)+v+1}$ of $A(k, k(p-q)+r+1)$ to a new vertex $u_{2}$. Call the resulting graph $T_{q}$. Then $T_{q} \in \tau(n ; 1, k)$ as every vertex of $T_{q}$ has degree 1 or $k$ and

$$
\begin{aligned}
v\left(T_{q}\right) & =q k(k-1)+(k(p-q)+r+1)(k-1)+2 \\
& =(k-1)(p k+r+1)+2 \\
& =n .
\end{aligned}
$$

Further, using the arguments following Lemma 1, we have

$$
\begin{aligned}
\operatorname{def}\left(T_{q}\right) & =\sum_{i=1}^{q} \operatorname{def}\left(B_{i}(k)\right)+\operatorname{def}(A(k, k(p-q)+r+1))+2 \\
& =q(k-1)(k-2)+(k(p-q)+r+1)(k-3)+2 \\
& =(k-3)(k p+r+1)+2+2 q
\end{aligned}
$$

Hence $T_{q}$ has deficiency $d$ as required. The theorem now follows from Lemmas 1 and 2.

Let

$$
V(n ; 1, k)=\{\operatorname{vcc}(T): T \in \tau(n ; 1, k)\}
$$

Since $\tau(n ; 1,2)$ consists of just a path of length $n-1$, we have $V(n ; 1,2)=\left\{\left\lceil\frac{n}{2}\right\rceil\right\}$. For $k \geq 3$, Theorem 1 and the fact that $\operatorname{vcc}(T)=\frac{1}{2}(n$ $+\operatorname{def}(T))$ yields:

Theorem 2. For integers $k \geq 3$ and $n \geq 4$,
(a) $V(n ; 1, k)=\phi$, if $n \neq 2(\bmod (k-1))$,
(b) $V(n ; 1, k)=\left\{x: \frac{(k-2) n+2}{k-1} \leq x \leq \frac{(k-2) n+2}{k-1}+\left\lfloor\frac{n-k-1}{k(k-1)}\right\rfloor\right.$, $x \in \mathbb{N}\}$, if $n \equiv 2(\bmod (k-1))$.

The edge covering number $\rho(G)$ of $G$ is the smallest number of edges needed to cover the vertex set of $G$. Let $\delta(G)$ denote the minimum degree of vertices of G. In 1959, Gallai proved (see p102 of [1]) the following result.

Theorem (Gallai) Let $M$ be any maximum matching in $G$, where $\delta(G)>0$. Then

$$
\rho(G)+|M|=v(G)
$$

We have the following corollary.

Corollary. If $G$ is triangle free and $\delta(G)>0$, then

$$
\rho(G)=\operatorname{vcc}(G) .
$$

## REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The MacMillan Press, London (1977).
[2] L. Caccetta and N.J. Pullman, On clique covering numbers of regular graphs, Ars Combinatoria 15 (1983), 201-230.
[3] L. Caccetta and N.J. Pullman, Regular graphs with prescribed chromatic number, J. Graph Theory (in press).
[4] L. Caccetta and N.J. Pullman, Colouring regular graphs, (submitted).
[5] P. Katerinis, Maximum matching in regular graph of specified connectivity and bounded order, J. Graph Theory 11 (1987), 53-58.
[6] C.H.C. Little, D.D. Grant and D.A. Holton, On defect-d matching in graphs, Discrete Mathematics 13 (1975), 41-54.
Erratum, On defect-d matching in graphs, Discrete Mathematics 14 (1976), 203.
[7] L. Lovasz and M. D. Plummer, Matching Theory, Annals of Discrete Math. 29, North Holland, Amsterdam (1986).
[8] S. Ma, W.D. Wallis and J. Wu, Clique covering of chordal graphs, Utilitas Math (to appear).
[9] J. Pila, Connected regular graphs without one-factors, Ars Combinatoria 18 (1984), 161-172.
[10] N.J. Pullman, Clique covering of graphs - A survey, Lecture Notes in Math. 1036, Combinatorial Math. X, Springer-Verlag, Berlin (1984), 72-85.

