DEFICIENCIES AND VERTEX CLIQUE COVERING NUMBERS OF

A FAMILY OF TREES

L. Caccetta and Purwanto School of Mathematics and Statistics Curtin University of Technology G.P.O. Box U1987 PERTH WA 6001

ABSTRACT: Let G be a simple graph on n vertices having a maximum matching M. The **deficiency** def(G) of G is the number of M-unsaturated vertices in G. The **vertex clique covering number** vcc(G) of G is the smallest number of cliques (complete subgraphs) needed to cover the vertex set of G. In this paper we determine def(G) and vcc(G) for the case when G is a tree with each vertex having degree 1 or k.

1. INTRODUCTION

All graphs considered in this paper are finite, loopless and have no multiple edges. For the most part our notation and terminology follows that of Bondy and Murty [1]. Thus G is a graph with vertex set V(G), edge set E(G), $\nu(G)$ vertices and $\varepsilon(G)$ edges.

A matching M in G is a subset of E(G) in which no two edges have a vertex in common. M is a maximum matching if $|M| \ge |M'|$ for any other matching M' of G. A vertex v is saturated by M if some edge of M is incident with v; otherwise v is said to be unsaturated. The deficiency def(G) of G is the number of unsaturated vertices by any maximum matching M of G. If def(G) = 0, then, of course, G has a perfect matching. For a maximum matching M we have $|M| = \frac{1}{2}(n - def(G))$. Many problems concerning matchings in graphs have been investigated in the literature - see, for example, Lovasz and Plummer [7]. In this paper we consider the problem of determining def(G); results for a family of trees are obtained.

Australasian Journal of Combinatorics 1(1990) pp.15-27

A clique of G is a complete subgraph of G. The clique covering number (clique partion number) cc(G) (cp(G)) of G is the smallest number of cliques (edge-disjoint cliques) needed to cover the edge set of G. The vertex clique covering number vcc(G) of G is the minimum number of cliques needed to cover the vertex set of G. Many authors have studied the functions cc(G) and cp(G) - see for example Caccetta and Pullman [2], Pullman [10] and Ma et.al. [8]. In this paper we investigate the function vcc(G). Observe that vcc(G) $\leq |M| + def(G) = \frac{1}{2}(v + def(G))$, with equality holding when G is triangle free. So the functions def(G) and vcc(G) are related. Further the vcc(G) is the same as the chromatic number $\chi(\overline{G})$ of \overline{G} . The chromatic number of regular graphs has been studied by Caccetta and Pullman [3-4].

The results we present are for the case when G is a tree in which each vertex has degree 1 or k. We let $\tau(n; 1, k)$ denote the class of trees on n vertices in which each vertex has degree 1 or k, $k \ge 2$.

2. RESULTS

We begin by making some simple observations concerning def(G). The definition implies that def(G) $\equiv \nu \pmod{2}$. If $\epsilon(G) > 0$, then $0 \leq def(G) \leq \nu - 2$. Consider the tree T on n vertices drawn in Figure 1 below, where d $\equiv n \pmod{2}$.

Figure 1

Clearly def(T) = d. Consequently, if D(n) denotes the set of possible values of def(G) as G ranges over the class of simple non-empty graphs on n vertices, then

$$D(n) = \{d: 0 \le d \le n-2, d \equiv n \pmod{2}\}$$
.

Thus we need to look at restricted classes of graphs to obtain more interesting results on def(G). We consider the case when G is a tree. In view of the graph displayed in Figure 1 we need to add some further restrictions. We now consider the class $\tau(n; 1, k)$.

Lemma 1. Let $T \in \tau(n;1,k)$ be a graph with s vertices of degree k. Then

$$def(T) \le (k - 3)s + 2 + 2|(s - 1)/k| .$$
 (1)

Proof: Simple counting yields

$$s = (n - 2)/(k - 1)$$
 (2)

We prove the lemma using induction on s. When s = 0, $T = K_2$ and def(T) = 0. When s = 1, then T is a star with n = k + 1 and hence def(T) = k - 1. Thus the result is true for s = 0 and s = 1. Assume it is true for all $1 \le s \le m$ and let T be a tree with s = m + 1.

Equation (2) implies that n = (k - 1)(m + 1) + 2. If T contains a vertex, u say, of degree k that is joined to a vertex of degree 1, then every maximum matching saturates u. Furthermore, there exists a maximum matching M which contains an edge uv with $d_T(v) = 1$. So let us assume that M is a maximum matching in T which contains such edges. Suppose T contains s' vertices of degree k adjacent to vertices of degree 1, then

$$s' \geq \frac{n-m-1}{k-1}$$

$$= m + 1 - \frac{m - 1}{k - 1}$$
.

If T has no M-unsaturated vertices of degree k, then

$$def(T) = (n - m - 1) - s'$$

$$\leq (k - 2)(m + 1) + 2 - (m + 1) + \frac{m - 1}{k - 1}$$

Hence

$$def(T) \leq (k - 3)(m + 1) + 2 + \left\lfloor \frac{m - 1}{k - 1} \right\rfloor .$$

Now if k > m, then $\lfloor (m - 1)/(k - 1) \rfloor = \lfloor m/k \rfloor = 0$ and hence (1) holds. So we can suppose that $2 \le k \le m$.

Then $(k - 2)(k - m) \le 0$ and so $(m - 1)k \le (k - 1)(2m - k)$.

Hence

$$\left\lfloor \frac{m-1}{k-1} \right\rfloor \leq \left\lfloor \frac{2m-k}{k} \right\rfloor$$

 $\leq 2 \left\lfloor \frac{m}{k} \right\rfloor$.

Thus

$$def(T) \leq (k - 3)(m + 1) + 2 + 2\left\lfloor \frac{m}{k} \right\rfloor,$$

proving that (1) holds for s = m + 1 when T has no M-unsaturated vertices.

Now suppose that T has M-unsaturated vertices of degree k. Let u be such a vertex and let $N_T(u) = \{v_1, v_2, \dots, v_k\}$ denote the neighbours of u. Form the graph T' from T as follows. Delete u and add k new vertices u_1, u_2, \dots, u_k and k new edges $v_1 u_i$, $1 \le i \le k$ (see Figure 2).

Then T' consists of k trees T_1, T_2, \dots, T_k with $T_i \in \tau(n_i; 1, k)$. Suppose T_i has s_i vertices of degree k. Then $s_i \leq m$ for all i and $\sum_{i=1}^k s_i = m$. Now, by our induction hypothesis,

$$def(T_{i}) \leq (k - 3) s_{i} + 2 + 2 \left\lfloor \frac{s_{i} - 1}{k} \right\rfloor.$$

Figure 2

× • • • **r** >

and the second sec

For each i there exists a maximum matching in ${\rm T}_{\rm i}$ that does not saturate ${\rm u}_{\rm i}.$ We have

$$def(T) = \sum_{i=1}^{k} def(T_i) - k + 1$$

$$\leq (k - 3) \sum_{i=1}^{k} s_i + 2k + 2 \sum_{i=1}^{k} \left\lfloor \frac{s_i - 1}{k} \right\rfloor - k + 1$$

$$= (k - 3)m + k + 1 + 2 \sum_{i=1}^{k} \left\lfloor \frac{s_i - 1}{k} \right\rfloor$$

$$\leq (k - 3)m + k + 1 + 2 \left\lfloor \sum_{i=1}^{k} \frac{s_i - 1}{k} \right\rfloor$$

$$= (k - 3)m + k + 1 + 2 \left\lfloor \frac{m - k}{k} \right\rfloor$$

$$= (k - 3)(m + 1) + 2 + 2 |m/k|$$
.

Thus (1) holds for s = m + 1. This completes the proof of (1).

We now demonstrate that the bound given in Lemma 1 is sharp. This is obviously the case for k = 2, so we suppose that $k \ge 3$. Let A(k,t) denote the graph formed from the path $P = v_1, v_2, \ldots, v_t$ by joining each v_i to k - 2 new vertices $v_{i1}, v_{i2}, \ldots, v_i$, k-2 (see Figure 3). Observe that $\nu(A(k,t)) = t(k - 1)$ and def(A(k,t)) = t(k - 3).

Figure 3 A(k,t)

Consider the graph A(k,2). We form the graph B(k) by adding (k - 2) disjoint copies of \overline{K}_{k-1} and joining v_{2i} , $1 \le i \le k-2$, to all the vertices of the ith copy of \overline{K}_{k-1} (see Figure 4). Observe that B(k) is a tree with k(k - 1) vertices and deficiency (k - 1)(k - 2). We will now construct, using A(k,t) and B(k) as building blocks, a graph $T \in \tau(n; 1, k)$ with def(T) equal to the right hand side of (1).

Let s - 1 = kp + r, $0 \le r \le k - 1$ and $p \ge 0$. If p = 0, we can take our T as the graph formed from A(k, r+1) by joining v_1 and v_{r+1} to two new vertices u_1 and u_2 , respectively. When p > 0 we form our T as follows.

Take p copies of $B_1(k), B_2(k), \ldots, B_p(k)$ and A(k, r+1). Identify the " v_1, v_2 vertices" of $B_1(k), 1 \le i \le p$, by $v_1^{(i)}$ and $v_2^{(i)}$, respectively. We join the vertex $v_2^{(i)}$ to $v_1^{(i+1)}$ for each $1 \le i \le p-1$, join $v_1^{(1)}$ to a new vertex u_1 , join $v_2^{(p)}$ to the vertex v_1 of A(k, r+1) and join the vertex v_{r+1} of A(k, r+1) to a new vertex u_2 . Call the resulting graph T. Observe that every vertex of T has degree 1 or k and

$$\nu(T) = pk(k - 1) + (r + 1)(k - 1) + 2$$
$$= s(k - 1) + 2.$$

Thus $T \in \tau(n; 1, k)$ with n = s(k - 1) + 2. Now every maximum matching of T saturates the vertices $v_1^{(i)}$, $1 \le i \le p$, $v_1, v_2, \dots v_{r+1}$. Also, every maximum matching of $B_i(k)$ saturates $v_1^{(i)}$, $1 \le i \le p$. Consequently

$$def(t) = \sum_{i=1}^{p} def(B_i(k)) + def(A(k,r+1)) + 2$$

= p(k - 1)(k - 2) + (r + 1)(k - 3) + 2

$$= (k - 3)s + 2 + 2 |(s - 1)/k|$$

This establishes that the upper bound given by Lemma 1 is sharp. We now turn our attention to the lower bound.

Lemma 2. Let $T \in \tau(n; 1, k)$ be a graph with s vertices of degree k. Then

(a)
$$def(T) = 0$$
, if $s = 0$
(b) $def(T) \ge (k - 3)s + 2$, if $s \ge 1$

and this bound is sharp for $k \ge 3$.

Proof: The lemma will be proved by using induction on s. The result is true for s = 0 and s = 1. Assume it is true for all s, $1 \le s \le m$, and let T be a tree with s = m + 1. Let u be a vertex of degree k in T. As in the proof of Lemma 1 we form T' from T by deleting u and adding k new vertices $u_1, u_2, \ldots u_k$ and k new edges $u_i v_i$, $1 \le i \le k$, (see Figure 2). Then T' is a forest consisting of k components T_1, T_2, \ldots, T_k with $u_i \in T_i$. Let $n_i = |V(T_i)|$. Clearly $T_i \in \tau(n_i; 1, k)$ and $\sum_{i=1}^{k} n_i = n + k - 1$.

Suppose T_i has s_i vertices of degree k. Then $s_i \le m$ and $\sum_{i=1}^{K} s_i$ = m. By our induction hypothesis we have

$$def(T_i) \ge (k - 3)s_i + 2 \qquad \text{when } s_i > 0.$$

If $s_i = 0$, then T_i is necessarily an edge and hence $def(T_i) = 0$. On the other hand, if $s_i > 0$ then v_i is saturated by every maximum matching of T_i ; u_i may or may not be saturated. Suppose T' has p components with no vertices of degree k. Without loss of generality we may take these components as T_1, T_2, \ldots, T_p . We have

$$def(T) \ge def(T') - (k - p) + p - 1$$

$$= \sum_{i=p+1}^{k} def(T_i) - (k - p) + p - 1$$

$$\ge \sum_{i=p+1}^{k} [(k - 3)s_i + 2] - k + 2p - 1$$

$$= (k - 3)m + 2(k - p) - k + 2p - 1$$

$$= (k - 3)(m + 1) + 2$$

This completes the proof of the inequality in (b).

That the bound is sharp follows from the graph T obtained from A(k,s) by adding two new vertices u_1 and u_2 and the edges u_1v_1 and v_su_2 .

Let

 $D(n; 1, k) = \{ def(T) : T \in \tau(n; 1, k) \}$.

When k = 2, $\tau(n; 1, k)$ consists of just a path of length n - 1 and hence

 $D(n; 1, k) = \{0\}$ if n is even and $D(n; 1, k) = \{1\}$, if n is odd. For $k \ge 3$ we have the following result.

 $s = \int_{-\infty}^{\infty} ds = tg - a + to f = 0$ where s = to f = 0 is the second field of t

(a) $D(n; 1, k) = \phi$, if $n \neq 2(mod(k - 1))$, and

(b)
$$D(n; 1, k) = \{d: \frac{(k-3)n+4}{k-1} \le d \le \frac{(k-3)n+4}{k-1} + 2 \lfloor \frac{n-k-1}{k(k-1)} \rfloor$$

 $d \equiv n \pmod{2}$, if $n \equiv 2 \pmod{k-1}$.

Proof: Let $T \in \tau(n; 1, k)$ be a graph with s vertices of degree k. Equation (2) implies that $n \equiv 2(mod(k - 1))$, proving (a). Now suppose that n = s(k - 1) + 2 and let s - 1 = kp + r, where $0 \le r \le k - 1$ and $p \ge 0$. Then n = (k - 1)(kp + r + 1) + 2. Hence

$$\frac{(k-3)n+4}{k-1} = (k-3)(kp+r+1)+2,$$

and

$$\left\lfloor \frac{n-k-1}{k(k-1)} \right\rfloor = \left\lfloor \frac{kp+r}{k} \right\rfloor = p.$$

Thus we must prove that

$$D(n; 1, k) = \{d: (k-3)(kp+r+1) + 2 \le d \le (k-3)(kp+r+1) + 2 + 2p, d \equiv n(mod 2)\}.$$
(3)

We do this by construction.

Let

$$d = (k-3)(kp+r+1) + 2 + 2q, \quad 0 \le q \le p.$$

We have already given constructions for the lower bound q = 0 and the upper bound q = p. So suppose $1 \le q \le p - 1$. Using the building blocks B(k) and A(k,t) defined earlier we shall form a graph $T_q \in \tau(n; 1, k)$ having deficiency d.

Take q copies $B_1(k)$, $B_2(k)$,..., $B_q(k)$ of B(k) and the graph A(k, k(p - q) + r + 1). As earlier we identify the vertices v_1 and v_2 of $B_1(k)$, $1 \le i \le q$, by $v_1^{(i)}$ and $v_2^{(i)}$, respectively. We join: $v_2^{(i)}$ to $v_1^{(i+1)}$ for each $1 \le i \le q - 1$; $v_1^{(1)}$ to a new vertex u_i ; $V_2^{(q)}$ to the vertex v_1 of A(k, k(p - q) + r + 1); and the vertex $v_{k(p-q)+v+1}$ of A(k, k(p - q) + r + 1) to a new vertex u_2 . Call the resulting graph T_q . Then $T_q \in \tau(n; 1, k)$ as every vertex of T_q has degree 1 or k and

$$\nu(T_q) = q k(k - 1) + (k(p - q) + r + 1)(k - 1) + 2$$

= (k - 1)(pk + r + 1) + 2

= n .

Further, using the arguments following Lemma 1, we have

$$def(T_q) = \sum_{i=1}^{q} def(B_i(k)) + def(A(k,k(p-q) + r + 1)) + 2$$

= q(k - 1)(k - 2) + (k(p - q) + r + 1)(k - 3) + 2

$$= (k - 3)(kp + r + 1) + 2 + 2q$$

Hence T has deficiency d as required. The theorem now follows from Lemmas 1 and 2. $\hfill \Box$

Let

$$V(n; 1, k) = \{vcc(T): T \in \tau(n; 1, k)\}$$

Since $\tau(n; 1, 2)$ consists of just a path of length n - 1, we have $V(n; 1, 2) = \{ \lceil \frac{n}{2} \rceil \}$. For $k \ge 3$, Theorem 1 and the fact that $vcc(T) = \frac{1}{2}(n + def(T))$ yields:

Theorem 2. For integers $k \ge 3$ and $n \ge 4$,

(a) $V(n; 1, k) = \phi$, if $n \neq 2 \pmod{(k - 1)}$,

(b)
$$V(n; 1, k) = \{x : \frac{(k-2)n+2}{k-1} \le x \le \frac{(k-2)n+2}{k-1} + \lfloor \frac{n-k-1}{k(k-1)} \rfloor$$
,
 $x \in \mathbb{N} \}$, if $n \equiv 2 \pmod{(k-1)}$.

The edge covering number $\rho(G)$ of G is the smallest number of edges needed to cover the vertex set of G. Let $\delta(G)$ denote the minimum degree of vertices of G. In 1959, Gallai proved (see p102 of [1]) the following result.

Theorem (Gallai) Let M be any maximum matching in G, where $\delta(G) > 0$. Then

$$\rho(G) + |M| = \nu(G) .$$

We have the following corollary.

Corollary. If G is triangle free and $\delta(G) > 0$, then

 $\rho(G) = vcc(G) .$

26

REFERENCES

- J.A. Bondy and U.S.R. Murty, <u>Graph Theory with Applications</u>, The MacMillan Press, London (1977).
- [2] L. Caccetta and N.J. Pullman, On clique covering numbers of regular graphs, <u>Ars Combinatoria</u> 15 (1983), 201-230.
- [3] L. Caccetta and N.J. Pullman, Regular graphs with prescribed chromatic number, J. Graph Theory (in press).
- [4] L. Caccetta and N.J. Pullman, Colouring regular graphs, (submitted).
- [5] P. Katerinis, Maximum matching in regular graph of specified connectivity and bounded order, <u>J. Graph Theory</u> 11 (1987), 53-58.
- [6] C.H.C. Little, D.D. Grant and D.A. Holton, On defect-d matching in graphs, <u>Discrete Mathematics</u> 13 (1975), 41-54.
 Erratum, On defect-d matching in graphs, <u>Discrete Mathematics</u> 14 (1976), 203.
- [7] L. Lovasz and M.D. Plummer, <u>Matching Theory</u>, Annals of Discrete Math. 29, North Holland, Amsterdam (1986).
- [8] S. Ma, W.D. Wallis and J. Wu, Clique covering of chordal graphs, Utilitas Math (to appear).
- [9] J. Pila, Connected regular graphs without one-factors, <u>Ars Combinatoria</u> 18 (1984), 161-172.
- [10] N.J. Pullman, Clique covering of graphs A survey, <u>Lecture</u> <u>Notes in Math.</u> 1036, Combinatorial Math. X, Springer-Verlag, Berlin (1984), 72-85.