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ABSTRACT 

This paper surveys the known ovals in Desarguesian of even order, mak-

ing use of the connection between ovals and hyperovals. First the known hyperovals 

are and the inequivalent m of small order arc found. 

The ovals contained in each of the known are determined and presented 

in a uniform way. Computer for new hyperovals reported. 

1. OVALS AND HYPEROVALS 

Let PG(2, q) be the 'DC," "<"""'0" -:)"t, projective plane over the field G F( q) of order 

q, where q is a power of a prime p. An oval of PG(2, q) is (1 set of q + 1 points, 

no three of which are collinear. The points of a non-degenerate conic in PG(2, q) 

form an oval. When q is odd, the converse is true, so that every (q + 1 )-arc is the 

set of points of a non-degenerate conic ([12; 5, 8.2.4]). vVhen q is even, examples of 

non-conic ovals are known, and a complete classification of ovals has not yet been 

effected. 

A line of PG(2, q) meets an oval in either 2 points, 1 point or 0 points, in which 

case it is called a secant, a tangent or an external line ,iVhen q is even, 

the set of tangents to an oval all pass through a common point. This point can 

be adjoined to the oval to give a set of q + 2 points, no three collinear. Such a set 

is called a hyperoval and the unique point which is adjoined to an oval to obtain 

a hyperoval is called the mLcle1Ls of the oval. An a,ccount of ovals and hyperovals 

appears in Hirschfeld [5]. 
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Given a hyperova.l, an oval can be obtained by deleting one of the points of 

the hyperoval. This deleted point is the nucleus of the resulting oval. There are 

up to q + 2 ovals which can be obtained from a hyperoval in this way, but we 

only distinguish those which are distinct under the action of the automorphism 

group pr L(3, q) of PG(2, q). Sets of points which are images of one another under 

elements of q) are called eq'ui'valeni. 

1.1 Theorem Let H be a hyperoval in PG(2, q), q even, and let G be the stabiliseI' 

of H in pr L( 3, q). The ovals obtained by the P and Q of Hare 

if and only if P and Q lie in the same orbit of G on H. 

Proof: Let 0 1 and O 2 be ovals such that 

First suppose that and for some element 

u E q). Since u maps lines to and P and Q are the intersections of 

the tangents of 0 1 and O 2 respectively, u(P) = Q. Thus 

so u E G and thus P and Q are in the same orbit of G on n. 

Conversely, suppose that P and Q are in the same orbit of G 011 H. Then there 

exists an element u E G such that u(P) = Q. Since u fixes H, u(Ol) = O 2 and the 

result follows. 

Thus to study ovals when q is even, it is useful to first find hyperovals, then 

determine the possible ovals by finding the stabiliseI' of each hyperoval. 

For the rest of the paper we suppose that q is evell, ~o that q 2h for some 

integer h. 

2. THE KNOWN HYPEROVALS OF PG(2,q), q = 211 

A polynomial with coefficients in G F( q) \v11ic11 induces a permutat.ion on the 
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There a useful canonical elements of G F( q) is called permutation 'fII11.'11'11. ,fj 'ff I. '/ll.I. 

form for hyperoval in terms of IJ,,"A. LU'UUVClH'-'" poly'nomlals, follows. 

2.1 Theorem [5, 

written 

A o in q) where q is even can be 

D(f) {(I, t,f(t»): t E GF(q)} U {(O, 1,0), 0,1)} 

where f a IJ ... ·Je.Lu'u.u",U."·H of 

and f(1) 1. for each E 

IS 

If f a 

~AJ11""C':LJ.lu term and that the 

IS that t he coefficient of each 

=0 

where 

then f(O) = and f(l) = 1 

of the coeffkients of' f is 1. It 

of odd pO"wer in f zero 

on the codFicients of such a polynomial fare 

The known of q) with q = and h 2 are the following: 

( 1) The hyperovals R 

the translation hyperovals T = 

h ?. 3, 

h 2, 

), where (i, h) 

(3) the ), where h ?. 5 is odd, [11, 

(4) the Lunelli-Sce hyperoval L = D(f), where f( x) 

ry 2 x 4 + 1,9 q 16 and 77 is a. primitive root 

1, 1 < ::; h - 1 and 

X
12 + ::r 10 + 1}11 + x6 + 
= 1} + 1. [6] 

the 

q 1), 

where h ?. 7 is odd and (J''2 == :2 (mod 

(6) the 92 D( xO'+'\'), where h ?. 7 odd, (J'2 == 2 (mod q - 1), 

,\4 == 2 q 1) and ,\2 (J' (mod q 1), 

(7) the P + + :r5 / 6 ), where h ?. 5 is odd and the 

exponents are read modulo q 1, [10] 

(8) the Cherowitzo hyperovals C = D( xO' + :rO'+2 + x 3a+4), where h 5, 7 or 9 and 

(J'2 == 2 (mod q-1) [1]. 
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It is conjectured that the Cherowitzo hyperovals lie in an infinite that is, 

that D( xO' + xo+2 + x30'+4) is a hyperoval for all odd h 5. 

Each of the above infinite classes is defined for values of h 2 2 (either all values 

of h or only odd values of h as appropriate) but the restrictions on h are placed 

to ensure that when two classes of hyperovals are defined in a then they 

are distinct. To illustrate some of the collapses that can occur, we determine the 

distinct classes of known hyperovals in planes of small order. We need the following 

result about hyperovals: 

Theorenl 2.2 [5, 8.4.3] If 1i = D( xC>') is a hyperoval, then hyperova.l 

equivalent to 1i for k = I/o, 1- 0,1/(1-- 0),0:/(1- 0) a.nd (0' -1)/n. 

'iVhen q 4 we have h = 2 and there are no irregular transla.tion hyperovals. 

As h is even. there are no other known hyperovals. 'Vhen q we have h 3 

4 so there are no irregular translat.ion h,,'np·'YH.r:4 Also there a,re 

no as 6 = 1 - 2. 'Ve find that (J = 4 and ,\ 2 which 

imply (J + ,\ 6 and 30' + 4 2 so the hyperovals are regular hyperovals. 

Also 1/6 = 6 so the Payne and the Cherowitzo hyperovals are both D(x 2 +:r 4 +:rG
), 

which ean be shown to be equivalent to DCr2) [8,1.11]). In fact. 

Theorenl 2.3 [5,8.4.1] Every hyperoval of PG(2, 4) and PG(2,8) is regular, so is 

of the form D( x 2
). 

vVhen q 16 there are regular hyperovals and Lundli-See hyperovals known. 

Since h 4 and 2:3 = 8 = 1/2 there are no irregnlar translation hyperovals. and 

actually the following is true: 

Theoren1 2.4 [4, 7] In PG(2, 16) all hyperO'vals are either regular or are LundE-See 

hyperovals. 

This theorem, first proved with the aid of a computer in [4], has recently been 

proved without a computer. 

When q = 32 we have h 5 and smce 8 1/4 and 16 1/2 the only 
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irregular translation hyperoval is 'D(x 4 ). We find that = 8 and A 16, giving 

3a + 4 28 1 4 and a A 24 = 1 8 the Glynn hyperovals are both 

irregular translation. Also, 1/6 = 26 so that: 

2.5 In PG(2, 32) the known hut""'r",,,,,,I,,, either 

tion 'D( X4 ), 

When q 64 we have h = 6 so apart from regular hyperovals there may be 

irregular translation hyperovals for i 5. But 25 32 = 1/2 which gives the result: 

2.6 In 64) all known t,uT,pr,nU<:l are regular. 

In the above classes of known hyperovals are distinct (note that 

class is not 

3. THE OVALS OF q), q 

VVe now return to the problem of the ovals contained in glven 

hyperoval 11. This determination the orbits of the stabiliseI' of the 

hyperoval as shown in Section 1. It has been shown in [9] that, except in the case 

that 11 is one of P and C, the orbits on H of the stabiliser G(H) are unions of the 

sets: 

- X = {(I, 0, a)}; 

- y = {(0,1,0)}; 

Z = {(a, 0, I)} and 

:F = {( 1, t, f (t)) : t E G F( q) \ {a} }. 

The Table 1 displays, for each of the known H, apart from P and 

C, the order I G (H) I of the stabiliser of that hyperoval in pr L( 3, q) and the orbits 

of the stabiliseI' on H. The hyperovals P and C are dealt with separately. For the 

details, see [9]. 

The stabiliser of the Payne hyperoval P has order 2h and has about q/(21og2 q) 

orbits on the points of P. These are {(O,O,l)}, {(1,1,1)}, {(l,O,O),(O,I,O)} and 
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hyperoval I G('H) I orbits on 'H 
regular R, q = 2,4 (q + 2)(q + l)q(q l)h FUXuYuZ 
Lunelli-Sce £, q = 16 (q + 2)2h 144 FUXuYUZ 
regular R, q 2: 8 (q + l)q(q l)h FUXUZ, Y 
V(x6), q = 32 3(q-1)h 465 F, XUYUZ 
Glynn (h, q = 128 3(q-1)h 2667 F, X U Y U Z 
irregular translation T q(q-1)h FUX,Y,Z 
V(x 6), q 2: 128 (q-1)h F,X,Y,Z 
Glynn 91 (q-1)h F,X,Y,Z 
Glynn 92, q > 128 (q-1)h F,X,Y,Z 

Table 1 

sets 

O { (1 112; f( n2i)) . 1 I} {( n2i f . 11 = , W , 'LV : z = 1"" /. Uw 1 1,. ( 

of size 2d where d divides 11 Clndw is a primitive element of G F( q). The automorphic 

collineations stabilise the Chermvitzo hyperoval C, so the stabiliseI' of C has order 

divisible by h. The orbits of the stabiliseI' on the points of C are unions of the 

following sets: {(0,0,1)}. {(1,1,1)}, {(1,0,0)}, {(0.1,0)} and 

O { (1 n2; f( ,n2; .)) .. 
n = ,tv, 1[, . I L ... , h}. 

By Theorem 1.1 the number of orbits is the number of inequivalent ovals ob­

tained by deleting a point of 'H.. Incidentally the orbits of the stabiliser of a hyperoval 

on its points and on unordered pairs of its points are also of interest in constructing 

generalized quadrangles (see [10]). 

We now have the number of inequivalent ovals cOllta.ined in each of the known 

hyperovals (except the Cherowitzo hyperovals). \Ve proceed to a uniform way of 

describing these ovals. As in the case of hyperovals, there is a useful fonn for an oval 

O. This is obtained by completing the oval to a hyperoynl then llsing thc canonical 

form for the hyperoval, but ensuring that the nucleus of the O\"al is the point (0,1,0). 

The oval is then written as 

EU) = {(l,t,f(t)): t E GF(q)} U {(O,O,l)} 
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where f is a permutation polynomial of at most q 2 <:::It.l<:t·v,rlfT f(O) = ° 
and f(l) 1. Further, for each s E GF(q), the polynomial j(8) where 

is a permutation polynomial. 

To obtain each of the ovals contained in a hyperoval H in this form, 

we need to choose a point of each orbit of the stabiliser, then map this to the 

point (0,1,0) with an element of pr L(3, q), that the resulting image of H 

contains the fundamental quadrangle. The of H can be written H' V(g) 

and the corresponding oval is E (g) { (1, t, g ( t) ) t G F ( q ) } U {( 0, 0, I)} and has 

nucleus (0, 1, 0) as required. This representation is not ne(.:ess;u'lly 

For each of the known h",,,,,,,er,,,',=, except the and Cherowitzo hyperovals, 

there at most 4 orbits of the stabiliser and each contains at least one of the fun-

damental points, Thus we need use only (some of) the fundamental points (1,0,0), 

(0,1,0), (0,0,1) and (1,1,1) to determine the ovals contained in each hyperoval, and 

the maps we require are the identity together with the maps: 

(1) (a,b,c) (b,e, 

(2) (a,b,c) f-7 (c,b,a), and 

(3) (a,b,c) f-7 (a+b,b,b+c). 

These maps were considered in [1], where it is shown that they map the hyper­

oval V(f) to the equivalent hyperoval V(g) where 

(1) g(x) xf(l/x); 

(2) g(x) f-l(X); 

(3) g(x) (x + l)f(x/x + 1) +:r. 

these means we have: 

3.1 The following hyperovals rise to the 11'<"'rll'"'''' ovals E(g) indicated 

in Table 2. (For convenience an oval E(xn) for some n will be denoted by 

The expressions for the ovals contained in the Payne and Cherowitzo hyperovals 

are more complicated as there are more than four orbits of the stabiliseI' of the 
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hyperoval H ovals in 1-l 
regular R, q = 2,4 £(2) 
LunelE-Sce £, q = 16 £(f(x)) 
regular R, q ~ 8 £(2), £(1/2) 
V(x6), q = 32 £(6), £(26) 
Glynn ~h, q 128 £(20), £(108) 
irregular translation T £(2i), £(1/2i), £(1 - 2i) 
V(X6), q ~ 128 £(6), £(1/6), £(1 - 6), £((x + l)(x/(x + 1))6 + x) 
Glynn 91 £(30- + 4), £(1/(30" + 4)), 

£(1 - (30- + 4)), £((x + l)(x/(x + 1))317+4 + x) 
Glynn 92, q > 128 £(0" + A), £(1/(0- + >-)), 

£(1 - (0- + >-)), £((x + l)(x/(x + 1))17+>- + x) 

Table 2 

hyperoval on its points. 

Once the orders of the stabilisers of the various hyperova.ls are known, and the 

lengths of the orbits of these stabilisers on the hyperovals are found, it is easy to 

calculate the orders of the stabilisers of the known ovals. 

3.2 Theorenl Let 0 be an oval of PG(2, q), q even, \"lith nucleus P so that 

H = 0 U {P} is a hyperovaL Let G be the stabiliser in Pf £( 3, q) of H, and suppose 

that the orbit of G on H which contains P has n points. Then the stabiliseI' J in 

Pf £(3, q) of 0 has order I G I/n. 

Proof: If an element 0- E Pf L(3, q) stabilises 0 then it stabilises P and hence 

H, so that J is a subgroup of G. In fact J is that subgroup of G which fixes P, 

which has order I G I divided by the length of the orbit of G on H containing P. 

4. COMPUTER SEARCHES FOR HYPEROVALS 

The polynomials over G F( q) which could represent hyperovals are of the form 

f( x) = 2:~~~2)/2 a2ix2i where 2:~~~2)/2 a2i = 1. There are easily programmed 

tests which can be applied to such a polynomial to determine whether or not it 

represents a hyperoval ([1, 2, 3]). In fact the Lunelli-See hyperoval, the t\VO classes of 

Glynn hyperovals and the Cherowitzo hyperovals were first discovered by computer 

searches. 
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The following spaces of polynomials over G F( q) have been searched for polyno­

mials which represent hyperovals. In each case, any polynomials found correspond 

to a hyperoval belonging to one of the known classes. 

(1) PG(2,32) 

- polynomials with coefficients in GF(2) ([1, 3]); 

polynomials with one term ([2]); 

- polynomials with 2 to 4 terms ([8]); 

- some polynomials with 5 terms ([8]). 

(2) PG(2, 64) 

- polynomials with coefficients in GF(2) ([3, 8]); 

- some polynomials with coefficients in GF(4) ([3, 8]); 

- polynomials with one term 8]). 

polynomials with 2 to 3 terms ([8]); 

(3) PG(2, 

- polynomials with one term ([2]); 

polynomials with 3 terms and coefficients in GF(2) ([1]); 

(4) PG(2, 256) 

polynomials with one term ([2]); 

- the 2040 polynomials which represent the LunelE-Sce hyperovc\l with coeffi­

cients (from GF(16)) considered as elements of GF(256) ([8]); 

(5) PG(2, 512) 

- polynomials with one term ([2]); 

polynomials with 3 terms and cocfficents in GF(2) whose exponents occur as 

monomial o-polynomials ([lJ); 
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( 5) P G (2, 2 h), h ::; 28 

- polynomials with one term ([2, 3]). 
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