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1. Introduction. Since this is a survey paper on blocking sets in
block designs, the definition of a block design seems an appropriate

beginning. So, here goes. A block design of index X 1is a pair

(P, B), where P 1is a finite set (the elements of which are sometimes
called Boints) and B 1is a collection of subsets of P (all of the
same size k) called blocks such that every pair of distinct elements
of P Dbelongs to exactly )} blocks of B. The number |Pl =n 1is
called the order of the block design (P, B) and, of course, the
number of blocks 1s 'B' = An(n—l)/k(k—l).

Now let (P, B) be a block design. The subset X of P 'is
called a blocking set if and only if for each block’ beB, bMX 9
and b (P \ X) # #. (The set X also defines a 2-colouring of
(P, B) with the property that none of the blocks in B receive a
monochromatic colouring. However, in what follows we will stick with
calling X a blogking set rather than a 2=colouring.) The most widely
studied classes of block designs are triple systems; i.e., block

designs with block size 3. (See [9], for example.,) Hence we begin

Research supported by NSF grant DMS-8703642 and NSA grant
MDA~904-89-H-2016.

Australasian Journal of Combinatorics 1(1990), pp. 101-125



with a discussion of blocking sets

a very short discussion!

2, Triple Systems. We begin with

Example 2.1.

(1) The unigue triple system
Y o= 1,
P, = {1, 2, 3}
Blocking sets: {1}, {2},
(2) The unique triple system
vo= 2,
P2 =71, 2, 3, 4 and B

B8locking sets:

in triple systems.

a few examples.

(P

and

As we shall see,

Four to be exact.

1 Bl) of order 3 and index

B, = {{1, 2, 3}}.

{2, 3}.

1 1S
{3y, {1, 2}, {1, 3}, and
(Pz, BZ) of order 4 and index

, = 111, 2, 3}, {1, 2, 4}, {1, 3, 4},

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, and

3, 4%,
(3) The unique triple system of order 3 and index X > 1 =)
coples of (Pl’ Bl) and admits the same blocking sets as (Pl’ Bl)’
(4) The unique triple system of order 4 and index X = 2k > 2 =k

copies of (Pz, Bz)

and admits the same blocking sets as (Pz, BZ)’

Now Lt is more or less well-known (see [8], for example) that the

spectrum for triple systems (= the set of all orders for which a triple

system exists) is precisely the set of all

(1) a=1 or 3 {mod 6) for A =1 or 5 (mod 6),
(11) n: 0 or 1 {mod 3) for X = 2 or 4 (mod 6},
(1i1) n = 1 (mod 2) for » = 3 (mod 6), and

(iv) ali n >3 for

il
(&)

(mod 6).
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Unfortunately, out of all of these triple systems, only the triple
systems listed in Example 2.1 admit a blocking set. This is quite easy
to see. Let (P, B) be a triple system of order n and index A
admitting the blocking set X, If ‘X’ = x, then Ax(n-x)/2 = !Bl
=xn(o-1)/6 implies n=3 and x =1 or 2 (Example 2,1 (3)) or
n =4 (and hence XA = 2k) and x = 2 (Example 2.1 (4)).

So much for triple systems! We now irreversibly turn our atten-

tion to block designs with block size 4.

3. Block designs. In the sixties H. Hanani (see [1l] for a unified
discussion) proved that the spectrum for block designs with block size

4 is the set of all (i) n

1

1 or 4 (mod 12) for

"y

1 or 5 (mod 6),
(11) n =1 (mod 3) for XA £ 2 or 4 (mod 6), (ii1) u =0 or 1

(mod 4) for X = 3 (mod 6), and (iv) all n>4 for A =0 (mod 6),

i

As with triple systems, we begin with some examples. From now on,

"block design” without additional quantification means block design -

with block size four.

Example 3.1. The following examples ére examples of block designé
with * = 1,

n=4 (=1)).

12 3 4 Blocking set {1, 2}

n =13 (A =1, the projective plane of order 3).

1 2 4 10 6 9 2 11 12 1 7
2 3 5 11 7 10 3 12 13 2 8
3 4 6 12 8 11 4 13 1 3 9
4 5 7 13 9 10 12 5
5 6 8 1 10 11 13 6

Blocking set {1, 2, 3, 4, 5, 6, 7}



the affine plane of order 4).
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10

Blocking set {1, 2,

[4] Design #9).

3, 4, 5, 8,

11, 15}
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221 6

251 6

191 6

221 6

181 7
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20¢ 8
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Blocking set {1, 2, 3, 4,

5, 6, 13, 14, 15, 16,
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n=25 ( =1, [4] Design #8).

1 2 42501 3 8 11 4}{1 5 9 24}1 6 7 15/1 10 13 17
1 1219211 141822 {1 16 2023 | 2 3 14 1912 5 38 16
2 6 91202 7 1823 |2 1011 22 | 2 13 15 20} 2 17 21 24
3 4101503 5 7 1313 6 2125 {3 9 16 22{ 3 12 17 23
3 182024} 4 5 112044 6 8 14 | 4 7 1lo 214 9 17 13
4 1213 24 4 192223 |5 6 17 22 |5 10 21 23] 5 12 14 15
5 18 19 25 6 1019 20 | 6 11 23 24 | 6 13 16 18} 7 8 19 24
7 9 102507 111417 {7 122022 (8 9 15 23{8 10 12 13
8 1321 22{8 172025} 9 111319 |9 14 20 21|10 14 16 24

11 12 16 25|11 15 18 21 |13 14 23 25 |15 16 17 19|15 22 24 25

Oops! No blocking sets.

The above examples illustrate two things. One is that there are
non~trivial block designs which admit blocking sets, and the other is
that there 1s no use in attempting to show that every block design
admits a blocking set, since it's not true. (Design #8 is a counter=
exaﬁple.) Since blocking sets in block designs (for ény 1) cannot be
ruled out by a cardinality argument a la triple systems, and not every .
block design admits a blocking set (1t is easy to construct infinite
classes of block designs which fail to admit blocking sets, just take
direct products) the following question is the only reasomable question
we can ask: Can we construct (= does there exist) a block design
admitting a blocking set for every admissible order and index?

Quite recently, a complete solution of this problem (modulo a
handful of possible exceptions) was obtained by the author, D. G.

Hoffman, and K. T. Phelps [2, 3]. 1In this brief survey, we synthesize
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these results leaving out the gory details. The interested reader can
consult the original papers for a complete account. After all, this is
a survey!

In view of the remarks at the beginning of this section, we break
the constructions into four parts: A = 1 or 5 (mod 6), » = 2 or 4
(mod 6), A = 3 (mod 6), and X = 0 (mod 6).

In what follows we will refer to a block design with index A as

a “x=fold block design". When X = 1, this will be shortened to simply

"block design”.

4o % = 1 or 5 {mod 6). Since the spectrum for A-fold block designs

is the set of all n = 1 or 4 (mod 12) for X = I or 5 (mod 6), any
solution for 7 =1 1is also a solution for » > 5 and A = 1 or 5
(mod 6). Just list each block of a block design (admitting a blocking
set) X times. The blocking set is the same. In this set of notes we
concentrate on t = 1 exclusively. Hence any possible exception for
% = 1 runs through everything. However, there are omly three possible
exceptions for A =1, and we eliminate two of these for X = 1 or 5
(mod 6) > 5 in Section 8. So it's not exactly the end of the world!

To make sure that everyone 1s on the same wave length we state the
following well-known definitions.

A pairwise balanced design (PBD) of index X 1is a pair (P, B),

where P is a finite set and B 1is a collection of subsets (called
blocks), not necessarily of the same size, such that every pair of
distinct elements of P belongs to exactly A blocks of B,

A group divisible design (GDD) of index XA 1is a triple (X, G, B)

where G 1s a collection of subsets (called grougs) which partition X

and B is a collection of subsets (called blocks) such that
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(X, A\G U B)

A times.)

index X = 1" to simply “PBD or GDD".

Example 4.1. (X, G, T) 1is a GDD design of order IX‘ = 24, group

size 6, and block size 3.

X

is a PBD of index A.

16, 17, 18, 19, 20, 21, 22, 23, 24};

{1, 2, 3, 4, 5, 6},
{7, 8, 9, 10, 11, 12},

{13, 14, 15, 16, 17, 18}, and
{19, 20, 21, 22, 23, 24},

(AG = each group of G

As is the usual custom we will abbreviate "PBD or GDD of

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
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Let (X, G, T) be a GDD with block size 3. The mapping
%
a: T+ X is called a nesting if and only if (X, G, T') is a GDD with
*
block size 4 and index X* = 2, where T = {{a, b, ¢, ta}lt =

{a, b, ¢} & T}.

Example 4,2. A nesting o of the GDD (X, G, T) in Example 4.1.

t je2) t to 4 ta t ta

1 8 13 ]20 1 16 23 j12 | 4 9 16 |19 6 15 22 7
1 7 20 {14 |11 15 23 1 4 10 19 |15 8 1lo 22 6
1 14 191 8 2 11 16 §23 } 4 15 20} 9 5 10 13 j24
7 13 19 1 2 12 23 {15 J]10 16 20 | 4 | 53 9 24 |14
2 7 14 {19 2 15 24 |11 3 12 13 |22 5 14 23 jl10
2 8 19 {13 |12 16 24 2 3 11 22 14 9 13 23 5
2 13 2 7 3 8 17 |24 } 3 14 21 |12 6 9 14 (23
* 8 14 20 2 3 7 24 118 111 13 21 3 6 10 23 13
1 10 17 (22 3 18 23 8 14 11 14 121 6 13 24 9
19 22 {18 7 17 23 314 12 21 |13 |10 14 24 6
1 18 21 {10 } 4 7 138 |23 4 13 22 {11 5 12 17 J20
9 17 21 1 4 8 23 117 |12 14 22 y 4 5 11 20 |18
2 9 18 }j21 4 17 24 7 5 8 15 |22 5 18 19 {12
2 10 21 {17 8 18 24 4 5 7 22 {16 11 17 19 5
2 17 2219 3 10 15420} 5 16 21 {8 |6 11 18 |19
10 18 22 | 2 39 20 |16 7 15 21 5 6 12 19 |17
1 12 15 |24 3 16 19 }10 6 7 16 J21 6 17 20 |11

1 11 24 4§16 | 9 15 19 } 3 |6 8 21 |15 {12 18 20 6

%

(X, G, T ) 1is a GDD with group size 6, block size 4, and index

108



Theorem 4.3 (Doug Stinson [7]). There exists a GDD (X, G, T)
with group size 6 and block size 3 which can be nested of every order

le = 6k, except k =1, 2, 3, and 6. []

The 12k + 1 Construction. Let (X, G, T) be a GDD with group

size 6 and block size 3. Let o« be a nesting of (X, G, T). Let
P ={=} U (Xx {1, 2}) and define a collection of blocks B as follows:
(1) For each ge G let ({=}U (g x {1, 2}), g*) be a block
design of order 13 with blocking set g x {1} (Example 3.1) and place
the blocks of g* in B, and
(2) 1if x and ky belong to different groups place the 2 blocks
{(x, 1), (y, 1), (z, 1), (o, 2)} and {(x, 2), (y, 2), (z, 2),
(ta, 1)} in B, where t = {x, y, z} ¢ T.
Then (P, B) 1is a block design of order 12k + I and X x {1}

is a blocking set. [

The 12k + 4 Construction. In the 12k + 1 Construction set

P = {ml, ®5s “3s 004} U (X x {1, 2}) and replace (1) by: For each
*
ge G let ({ml, ®os ©3s °°4}U (g x {1, 2}), g ) be a block design of
% ,
order 16 such that {°°1, ©5s @35 °°4} € g and {wl, wz}u (g x {1})

*
is a blocking set (Example 3.1) and place the blocks of g in B, -
Then (P, B) is a block design of order 12k + 4 and

{°°1, °°2} U (X x {1}) 1is a blocking set. []

Theorem 4.4. There exists a block design admitting a blocking set
of every order n= 1 or 4 (mod 12), except possibly n = 37, 40, and

73.
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Proof. Example 3.1, Theorem 4.3, and the 12k + 1 and 12k + 4
Constructions take care of everything except 28, 37, 40, 73, and 76,
Ad hoc constructions (see [2]) handle the cases n = 28 and 76 leaving

only n = 37, 40, and 73 as possible exceptions. O

Remark. The author doesn't believe for a moment th
exceptions listed in the above theorem are really exceptions. (Neither
does Alex Rosa.) 1t remains only for someone to produce the required

block designs.

5. A = 2 or 4 (mod 6). The spectrum for A=fold block designs is the

set of all n = 1, 4, 7, or 10 (mod 12) for X = 2 or 4 (mod 6). As
with ) = 1 or 5 (mod 6), we construct oanly 2-fold block designs
admitting a blocking set, since for A > 4 and X = 2 or 4 (mod 6) we
can just take repeated copies of a 2-fold block design (admitting a
blocking set), This, of course, stretches any possible exceptions for
X =2 through all X = 2 or 4 (mod 6). Since there are only 5
possible exceptions for A = 2, it's not something to lie awake at
aight worrying over. If n = 1 or 4 (mod 12), except for n = 37, 40,
and 73, we can double the’blocks of a block design admitting a blocking
set. Hence, other than these three cases, we need look only at the

construction of 2=fold block designs of order n = 7 or 10 (mod 12)

which admit a blocking set. We begin with an example.
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Example 5,1. A 2-fold block design of order 7.

1 2 4 7
2 3 5 1
3 4 6 2
4 5 7 3
5 6 1 4
6 7 2 5
7 1 3 6

Blocking set {1, 2, 3}.

Theorem 5.2 (C. C. Lindner and C. A. Rodger [5]). There exists a
GDD (X, G, T) with group size 3 and block size 3 which can be nested

of every order 'Xl = 6k+3 > 15. ]

The 12k + 7 Construction. Let (X, G, T) be a GDD with group

size 3 and block size 3., Let o be a nesting of (X, G, T). Set
P ={e=}(/J (X x {1, 2}) and define a collection of blocks B as
follows: v

(l? For each ge G let ({=}U/ (g x {1, 2}), g*) ‘be a 2-fold
block design of order 7 with blocking set g x {1} and place the
blocks of g* in B, and

(2) if x and y belong to different groups place the 4 blocks
((x, 1)y (v, )y (z, 1), (ta, 2)}, {{x, 1), (v, 1), (z, 1), (ta, 2)},
{(x, 2), (y, 2), (2, 2), (ta, 1)}, and {(x, 2), (y, 2), (z, 2),
(ta, 1)} in B, where t = {x, y, 2} € T.

Then (P, B) 1is a 2-fold block design of order 12k + 7 and

X % {1} 1is a blocking set. []



Lemma 5.3. There exists a 2-fold block design admitting a

blocking set of every order n = 7 (mod 12), except possibly n = 19.

Proof. Write 12k+7 = 2(6k+3) + 1 and use the 12k+7

Construction. []

More examples!

Example 5.4. (2-fold block designs).

n = 10,
1 2 810
2 3 9 6
3 410 7
4 5 6 8
5 1 7 9
1 3 4 6
2 4 5 7
3 5 1 8
4 1 2 9
5 2 310
1 6 710
2 7 8 6
3 8 9 7
4 910 8
510 6 9

Blocking set {1, 2, 3, 4, 5}.



n =22
16 7 8 9 {19 3 8 12 {22 2 7 12 |18 3 5 15' 21 10 12 13
16 2 6 10§19 2 5 13 ]22 6 8 15 |18 9 10 14 j22 1 5 9
16 4 5 11119 1 7 14 22 11 13 14 {19 4 6 9 22 3 4 10
16 1 3 13{19 10 11 15 ]16 7 8 9 19 3 8 12 j22 2 7 12
16 12 14 15{20 5 7 10 |16 2 6 10 |19 2 5 13 22 6 8 15
17 1 8 10i20 4 8 13 Jl6 4 5 11 {19 1 7 14 |22 11 13 14
17 3 7 11420 3 6 14 }j16 1 3 13 [19 10 11 15 |l6 17 19 22
17 5 6 12120 1 2 15 {16 12 14 15 |20 5 7 10 |17 18 20 16
17 2 4 14120 911 12 |17 1 8 10 {20 4 8 13 |18 19 21 17
17 9 13 15121 2 3 9 17 3 7 11 {20 3 6 14 §19 20 22 18
18 2 8 1121 1 6 11 jL7 5 6 12 j20 1 2 15 |20 21 16 19
18 1 4 12121 5 8 14 |17 2 4 14120 9 11 12 j21 22 17 20
18 6 7 1321 4 7 15 {17 9 13 15 21 2 3 9 22 16 18 21
18 3 5 1521 10 12 13 18 2 8 11 j21 1 6 11
18 9 1014122 1 5 9 18 1 4 12 j21 5 8 14
19 4 6 9122 3 4 10 |18 6 7 13 |21 4 7 15
Blocking set {1, 2, 3; 4, 9, 12, 13, 14, 19, 20, 22},
Let (X, o) be a quasigroup and H.= {hl, hys B3y eee, hm} a

partition of X.

If for each hole

(X, o)

The subsets hi belonging to H are called holes.

hi e H, (hi’ o) 1is a subquasigroup of (X, o), then

is called a quasigroup with holes H.

Lemma 5.5.

4t + x with

t

There exists a pair of orthogonal quasigroups of order

holes of size 4 and one hole of size x, for all

xe {1, 3} and t{ {1, 2, 3, 6, 10}.
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Proof. Let (X, G, B) be a GDD of order 'XI = 5t with group
size t and block size 5 (equivalent to 3 mutually orthogonal
quasigroups of order t). Truncate one of the groups to size x = 1 or
3 and denote by (X*, G, B*) the derived GDD. Any one of the
deleted points gives t disjoint blocks of size 4 which we can take to
be holes along with the truncated group of size x. Placing a pair of
orthogonal quasigroups on each hole and a pair of orthogonal idempotent

quasigroups on the remalning groups and blocks completes the

construction. [

The 12k + 10 Construction. Write 12k + 10 = 6(4t + x) + 4,

where x =1 or 3. Let (X, 01) and (X, 02) be a pair of
orthogonal quasigroups of order 4t + x with holes

id=1{h, hy, hy, .., b}, where |n1| = x and |h2‘ = |n3| =

27 73
e = Ihml = 4. Let Po=fo, @, e o U (X x {1, 2, 3, 4, 5, 6))
and define a collection of blocks B as follows:

(1) et (fop, =y, @, =} U (h) % 11, 2, 3, 4, 5, 63), b)) be a
2-fold block design of order 10 or 22 (depending on whether
thll = x = 1 or 3, Example 5.4) with blocking set {ml, mz} U

o
"

x {1, 2, 3}) and place the blocks of n, in B,

(2) for h,, 1 =2, 3, ..., m, let

(1215 %y @g0 =0 U (0 < (1, 2, 3, 4, 5, 6}), hy) be a 2-fold block

design of order 28 containing the blocks {ml’ ©or Py m4} and

s @0 P =, with blocking set fe)s =y} v (hy x {1, 2, 3}) and
*

place the blocks of h [ {{=;, =,y =5, @3, {=, @), =3, =]} in

in B, and
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(3) for each ordered pair (x, y); x and y in different holes
of H, and for each (a, a, b, ¢) € D= {(1, 1, 2, 5), (2, 2, 3, 6),
3, 3, 4, 1), (4, 4, 5, 2), (5, 5, 6, 3), (6, 6, 1, 4)} place the
block {(x, a), (y, a), (x 0, 9, b), (x 0y s c)} in B,

As with the previous constructions it is routine to see that
(P, B) 1is a 2-fold block design of order 12k + 10 and that

{wl’ WZ}LJ (x x {1, 2, 3}) 1is a blocking set. []

Lemma 5.6, There exists a 2-fold block design admitting a
blocking set of every order n = 10 (mod 12), except possibly n = 34,

46, 58.

Proof. Example 5.4, Lemma 5.5, and the 12k+l0 Comstruction takes
care of everything except for n = 34, 46, 58, 70, 82, 94, 154, 166,
250, and 262. The cases n = 70, 82, 94, 154, 166, 250, and 262 are
handled in [2] using ad hoc constructions (which we omit here since
this is a survey paper) leaving only n = 34, 46, and 58 as possible

exceptions. []

Theorem 5.7. There exists a 2-fold block design admitting a
blocking set of every order n = 1 (mod 3), except possibly n =19,

34, 37, 46, and 58.

Proof. Theorem 4.4, Lemma 5.3, and Lemma 5.6 guarantee the
existence of a 2=fold block design of every order n = 1 (mod 3),
except possibly n = 19, 34, 40, 46, 58, and 73. Although n = 40 and
73 are possible exceptions for A = 1, they can be removed as possible
exceptions for X = 2. We refer the reader to [2] for the appropriate

details. []
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Remarks. As with the case X = 1, the author has no doubt that
the possible exceptions in Theorem 5.7 are purely a figment of a

fertile imagination.

6. X = 3 (mod 6). The spectrum for iA-fold block designs for A = 3
(mod 6) is the set of all n = 0 or 1 (mod 4). As with the conditions
Xz 1or 5 (mod 6) and X = 2 or 4 (mod 6), we construct only 3-=fold
block designs admitting a blocking set. Since there are no exceptions
for A = 3, this gives a complete solution., How about that!

As usual, some examples.

Example 6.1. (3-fold block designs).

n =4,
1 2 3 4
1 2 3 4
1 2 3 4
Blocking set {1, 2}
n= S,
1 2 3 4
1 2 3 5
1 2 4 5
1 3 4 5
2 3 4 5
Blocking set {1, 2}
n= 3.
1 2 4 3 3 5 6 7
2 3 5 3 1 4 6 7
3 4 6 & 1 2 5 7
4 5 7 3 1 2 3 6
5 6 1 3 2 3 4 7
6 7 2 3 1 3 4 5
7 1 3 8 2 4 5 6

Blocking set {1, 2, 3, 4}
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n= 12,

I e e
wooN BB WLWNN
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Blocking set {1, 2, 3, 9}

(i, 3), (1+1, j), (1, 1+j), (2+i, 1+j)
(1, 3), (3+i, 3), (4, 1+3), (3+i, 1+3)
(1+1, j), (2+1, 3), (3+1i, j), (4, 1+j)

(1+i, §), (2+i, j), (4+1i, j), (3+i, 1+j)

ie 26 (mod 6) and j ¢ 22 (mod 2)

Blocking set {(i, 0)|1i ¢ 26}

(1, 3), (4+i, 3), (i, 1 + j), (4+1, 1+j)
(i, 3), (241, j), (5+i, 3), (3+i, 1+j)
(is j)9 (l+1s j), (2+i’ j), (3+i) l+j)
(1, j)s (1+is j)s'(4+is j>’ (1+i9 1+j)

LN (i, j), ' (2+i, j), (4+i, 1+j)

iceg Z8 (mod 8) and j ¢ Z, (mod 2)

Blocking set {(i, 0)|1 ¢ 28}
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(i, 3) 5, (1+i, 3), (6+i, j), (2+1i, 1+j)
(1+1, 3), (2+1, 3), (4+i, 3), (4, 1+3)

(l+i’ j)! (2+i’ j)’ (5+i’ j)5 (10+1! l+j)
(1+i, j), (4+1, 3), (8+i, 3), (10+i, 1+j)
(1+1i, j), (3+1, 3y, (5+i, 3), (i, 1+37)

(i, 3) , (6+i, 1), (i, 1+3), (6+1i, 1+3)
(1, 3) , (5+i, 3), (i, l+j), (5+i, 1+3)

12

ie Z (mod 12) and j ¢ 22 (mod 2)

Blocking set {(i, 0)|1i ¢ le}.

We now generalize the definition of nesting. Let (X, G, T) be a
GDD with block size 3 and index A = 3. The mapping o: T » X is
called a nesting if and only if (X, G, T*) is a GDD with block size 4

%
and index A = &, where T = {{a, b, c, tﬁ}'t = {a, b, ¢} £ T},

Example 6,2, (X, G, T) 1is a GDD of order 'Xl = 10, group size
2, block size 3, and index A =3 and « 1is a nesting.

X =11, 2, 3, 4, 5, 6, 7, 8, 9, 10},

i

G = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}, and
t t t to Tt @ t ta

1 6 101413 1 9138 6 7 10 2 8 4 9] 0

1 8 10613 6 8189 6 2 3 4 8 2 5110

T(r¥) =

2 4 5 715 8 911 7 3 10151410 3 711
2 3 8 105 1 713 7 1 5419410 5 813
3 5 10} 1}5 4 1088 3 612110 2 415

3 2 7 6 15 2 31918 1 10}4 {10 1 6}7

[}
o
°

*
(X, G, T ) 1is a GDD with group size 2, block size 4, and index 2
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Theorem 6.3 (C. C. Lindner, C. A. Rodger, and D. R. Stinson [6]).
There exists a GDD (X, G, T) with group size 2 or 4, block size 3, and
index X = 3 which can be nested of every order ’XI = 2k,

kg {2, 4, 6, 8, 12},

The 4k Construction. Let (X, G, T) be a GDD of order 2k

with group size 2 or 4, block size 3, and index X = 3, Further, let
o be a nesting of (X, G, T). Let P = X x {1, 2} and define a
collection of blocks B as follows:

(1) For each ge G let (g x {1, 2}, g*) be a 3-fold block
design (of order 4 or 8, Example 6.1) with blocking set g x {1}, and

(2) for each triple t={x, y, z} € T place each of the blocks
((xy 1)y (v, )y (2, 1), (o, 2)} and {(x, 2), (y, 2), (z, 2),
(ta, 1)} in B.

Then (P, B) 1s a 3-fold block design of order 4k and X x {1}

is a blocking set. []

The Ak‘+ 1 Construction. Exacily the same as the 4k
Construction Egilwith P={=}U (X x {1, 2}) and (1) replaced by:
For each ge G let ({=}U (g x {1, 2}), g*) be a 3-fold block
design (of order 5 or 9, Example 6.1) with blocking set g x {1},

Then (P, B) is a 3-fold block design of order 4k + 1 and

X x {1} 1is a blocking set, [J

Theorem 6.4. The spectrum for 3-fold block designs admitting a

blocking set is precisely the set of all n = 0 or 1 (mod 4).

Proof, Theorem 6.3 and the 4k and 4k+1 Constructions produce a

3-fold block design admitting a blocking set of every order n 4 {12,
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13, 16, 17, 24, 25}, The cases n = 12, 17, and 24 are taken care of
by Example 6.1, and n =13, 16, and 25 by Example 3.1 (triple each

block). U

7. A = 0 (mod 6). The spectrum for A=fold block designs for X = 0O
(mod 6) 1s the set of all n > 4, We construct only 6-fold block
designs admitting a blocking set. It turns out that (like the case
X = 3 (mod 6)) there are no exceptions for A = 6 and so the solution
for A =6 gives a complete solution. In view of Theorem 6.4 we need
consider only the cases n = 2 or 3 (mod 4) for 6~fold block designs.
(For n: 0 or 1 (mod 4) take two copies of a 3=fold block design.) As
always, we begin with some examples.

Example 7.1.

n = 6. All 4-element subsets of {1, 2, 3, 4, 5, 6}. Blocking
set {1, 2, 3}.

n= 11,

(1+1, 3), (241, 3), (4+1, J), (1+1, 1+3)
2 times

(1+1i, §), (2+1, 3), (3+i, 3), (1, 1+3)
= 3 (l+iy J)) (4+i’ j)9 (1’ 1+J)
=, (24, ), (3+i, 3), (1, 1+3)
(2+1i, §), (3+i, 3), (2+i, 1+3), (3+1, 1+j)

ie Zg (mod 6) and j ¢ z, (mod 2)

Blocking set {(i, 0)|i e 25}
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n =1l4. Let (213, B) be a l-fold block design with blocking set

{0, 1, 2, 6, 9, 11} (Example 3.l).

B 5 times

w, 141, 2+1, 5+1i
w, 141, 3+i, 8+1

ic 213 (mod 13)

Blocking set {«, 0, 1, 2, 6, 9, 11}

n= 15,
(1+1, 3, (2+1, §), (4+1i, 3), (i, 1+j)
(5 times)
«® s (1, 3) 5 (2+i, j), (i, 1+j)
® s (i, j) 3 (3+i’ j)» (1, 1+3)
(1, 3) 5 A+, 3), (L+1, 1+3), (4, 1+3)
ie Z7 (mod 7) and j ¢ Z2 (mod 2)
Blocking set {(i, 0)|i ¢ 27}.
n 18. .

(1+1, j), (2+i, j), (3+i, j), (5+i, 1+j)
(1+i, 3), (3+1, 1), (5+1, §), (1, 1+j)
(1+1, 3), (241, 3), (6+1, j), (i, 1+j)
(1+1, §), (2+1, j), (4+1, §), (5+1, 1+j)
(1+1, 3), (3+1, 3), (7+i, 3), (1, 1+43)
(2+1, 3), (641, 3), (5+i, §), (i, 1+})
(i, 1), (3+1, J), (6+1, J), (1+1, 1+j)
(1, 3), (I+1, 3), (1, 1+j), (1+i, 1+j)
(1, 3), (2+i, 3), (i, 1+j), (2+1i, 1+3)
(i, 3), (4+1, 3), (1, 143), (4+1, 1+3)

ice Z9 (mod 9) and j e Z2 (mod 2)

Blocking set {(i, 0)|i ¢ 29}.
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n =19,

(1+i, j), (2+1, 3), (4+1, 3), (L, 1+j)
5 times

1+, 3), (241, 3), (4+i, 3), (7+1, 1+3)
*® s (1, 3) , (241, ), (4, 1+3)
= , (1, ) , (441, 3), (1, 1+])
(i, 3), (1+i, 3), (5+i, j), (2+i, 1+j)
(1, 3), (2+1i, 3), (5+1, j), (3+i, 1+j)
(i, 3), (3+i, 3), (i, 1+j), (3+i, 1+j)

ice 29 (mod 9) and j ¢ Z, (mod 2)

2

Blocking set {(i, 0)|i ¢ Zg}

1t should now come as no surprise that the main constructions for
o=fold block desizns admitting a blocking set use GDDs which can be
nested. Hence the following (by now repetitive) definition. Let
(X, 3, T) be a GDD with block size 3 and index A = 6., The mapping
a: T+ X is called a nesting if and only if (X, G, T*) is a GDD with
plock size 4 and index X = 12, where T* = {{a, b, ¢, ta}

t=1{a, by, ¢} ¢ T}.

. Example 7.2. (X, G, T) 1is a GDD of order 11 with group sizes 2
and 3, block size 3, and index X = 6, which can be nested.

X = G = {{0, 4}, {1, 5}, {2, 6}, {3, 7}, {8, 9, 10}}, and

Z130
B = {{10, 1, l+i; 2+i}, {1, 10, 1+i; 3+i}, {1, 1+i, 10; 2+i},

{4, 2+1, 5+i; 10}, {9, i, 2+i; S5+i}, {i, 9, 2+i; 7+i},

{1, 3+i, 9; 1+i}, {1, 5+1, 3+i; 9}, {8, 1, 5+i; 3+i}, {1, 8, 7+i; 6+i},
(1, 6+1, 85 5+i}, {1, 7+i, 6+i; 8}|i e Z}. Set T = {{a, b, c}

{a, b, ¢; d} € B} and define o by {a, b, cloa =d 1if and only if
{a, b, ¢; d} € B, Then (X, G, T) 1is a GDD of order 1l with block

size 3, » = 5, and group size 2 or 3 and a 1is a nesting.
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Theorem 7.3. (C. C. Lindner, D. G. Hoffman and K. T. Phelps [3]).
There exists a GDD (X, G, T) of order ’x‘ = 2k+1 with block size
3, » = 6, and 2k+1 > Ig‘ > 2 for all g e G which can be nested for

all k> 5.0
We now proceed to the main constructions for X = 6.

The 4k + 2 Construction. Let (X, G, T) be a GDD of order

2k + 1 with block size 3, A = 6, and such that 2"g| belongs to the
known spectrum of 6-fold block designs admitting a blocking set of size
,gl. Further let o be a nesting of (X, G, T). Let P =X x {1, 2}
and define a collection of blocks B as follows:

(1) TFor each ge G let (g x {1, 2}, g*) be a 6-fold block
design with blocking set g x {1}, and

(2) for each triple t = {x, y, z} € T place each of the blocks
{(xs 1), (v, 1), (2, 1), (o, 2)} and {(x, 2), (y, 2), (2, 2),
(te, 1)} in B.

Then (P, B) 1is a 6-fold block design of order 4k + 2 and

X x {1} 1s a blocking set. [}

The 4k + 3 Construction. Exactly the same as the 4k + 2

Construction but with P = {=}\ (X x {1, 2}) and'(l) réglaced bys
For each ge G let ({=}U (g x {1, 2}), g*) be a 6-fold block
design with blocking set g x {1}.

Then (P, B) 1is a 6-fold block design of order 4k + 3 and

X x {1} 1is a blocking set. L]
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Theorem 7.4. The spectrum for 6-fold block designs admitting a

blocking set is precisely the set of all n > 4.

Proof. Because of Theorem 6.4 we need coﬁsider only the cases
nz 2 or 3 (mod 4). We begin by taking care of the cases n = 6, 7,
10, 11, 14, 15, 18, and 19. The cases n = 6, 11, 14, 15, 18, and 19
are taken care of by Example 7.1 and n = 7 and 10 by Examples 5.1 and
5,4 (triple each block). We can now assume n = 2 or 3 (mod 4) > 22
and that we have constructed 6-fold block designs of every order
2m + 1 <n, 1 = 0 or 1, with a blocking set of size m. Write
n= 2(2k + 1) or 2(2k + 1) + 1. Since n > 22, 2k + 1 > 11, Hence
by Theorem 7.3 there exists a GDD (X, G, T) of order 2k + 1, block
size 3, » = 6, and ’g! > 2 for all g e G which can be nested.
Since 'gl < 2k+l, 2-‘g‘ < n and so there exists a 6~fold block design

of order 2-’g‘ with a blocking set of order lg

« Applying the

,

4k + 2 or 4k + 3 Construction completes the proof.[j

3. Concluding remarks. Combining all of the results in this paper we

have the following theorem.

Theorem 8.1, There exists a A=fold block design admitting a
blocking set for every admissible (n, X) except‘possibly for
(ne {37, 40, 73}, x = 1), (n =37, A = 1 or 5 (mod 6) > 5), and

(n < {19, 34, 37, 46, 58}, % = 2 or 4 (mod 6)).

Proof. The elimination of 40 and 73 for X = 1 or 5 (mod 6) 2_5
is achleved by pasting together 2-fold and 3-fold block designs of

orders 40 and 73, [}
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Open problem. Nobody in the city of Auburn believes for a moment
that the possible exceptions listed in the statement of Theorem 8.1 are
really exceptions at all. The elimination of these possible exceptions
is no doubt a tractable prqblem. However, after struggling with
blocking sets in block designs for over a year the song "But not for

me” is running through my head.
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