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Abstract

Let D be a digraph. Its reverse digraph, D−1, is obtained by reversing all
arcs of D. We show that the domination numbers of D and D−1 can be
different if D is a Cayley digraph. The smallest groups admitting Cayley
digraphs with this property are the alternating group A4 and the dihedral
group D6, both on 12 elements. Then, for each n ≥ 6 we find a Cayley
digraph D on the dihedral group Dn such that the domination numbers
of D and D−1 are different, though D has an efficient dominating set.
Analogous results are also obtained for the total domination number.

1 Introduction

Let D be a digraph. The vertex and arc sets of D are denoted by V (D) and E(D),
respectively. If there exists a positive integer d such that there are exactly d arcs
starting at every vertex and exactly d arcs terminating at every vertex then D is a
regular digraph of degree d. A digraph which is obtained by reversing all arcs of D
is called the reverse digraph (or converse digraph) of D and is denoted by D−1.

Let v ∈ V (D). The open and closed neighbourhoods of v in D are denoted by
ND(v) and ND[v], respectively. That is, ND(v) = {u; vu ∈ E(D)} and ND[v] =
ND(v) ∪ {v}. For S ⊆ V (D), we set ND(S) = ∪v∈SND(v) and ND[S] = ∪v∈SND[v].
Then S is a dominating set (total dominating set) if ND[S] = V (D) (ND(S) =
V (D)). The smallest size of a dominating set (total dominating set) is the domination
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number γ(D) (total domination number γt(D)) of D. Let S be a dominating set
(total dominating set) in D. Then S is an efficient dominating set (efficient total
dominating set) if for every u, v ∈ S, u �= v, we have ND[u] ∩ ND[v] = ∅ (ND(u) ∩
ND(v) = ∅).

Domination is an intensively studied area in graph theory. Problems of resource
allocations and scheduling in networks are frequently formulated as domination prob-
lems of underlying (di)graphs; for terminology and survey of results see [5]. Com-
pared with graphs, there is a smaller number of results for domination in digraphs.
The domination number in digraphs was introduced in [2] and a survey on domina-
tion in digraphs is given in [3].

Let G be a group and let X ⊆ G such that the identity element is not in X.
The Cayley digraph Cay(G,X) has vertex set G and there is an arc from v to u
in Cay(G,X) if and only if va = u for some a ∈ X. Observe that Cay(G,X) is a
regular digraph of degree |X|. Furthermore, Cay(G,X) is vertex-transitive, which
means that for every pair of its vertices v and u there is an automorphism g of
Cay(G,X) such that g(v) = u. Observe that the reverse digraph to Cay(G,X) is
simply Cay(G,X−1).

In [7, 4] it is shown that for every d ≥ 2 (d ≥ 3) there is a d-regular digraph D
such that the domination numbers (total domination numbers) of D and D−1 are
different. Can these numbers differ even if D is a Cayley digraph? In [6, text below
Theorem 8] the authors state that this is not the case but their conclusion is implied
by a wrong assumption that Cay(G,X) and Cay(G,X−1) are isomorphic digraphs.
This wrong assumption was probably caused by the fact that the groups used in [6]
are abelian, and in such a case Cay(G,X) and Cay(G,X−1) are isomorphic. However,
even for metacyclic groups G (at least for some of them) we can find X ⊆ G such
that Cay(G,X) and Cay(G,X−1) are not isomorphic digraphs, see [1]. Recall that
a group is metacyclic if it is a semidirect product of cyclic groups.

In this paper we show that γ(Cay(G,X)) and γ(Cay(G,X−1)) can be different
numbers. The smallest groups G admitting X ⊆ G such that γ(Cay(G,X)) �=
γ(Cay(G,X−1)) are the alternating group A4 and the dihedral group D6, both on
12 elements. Then we show that for every n ≥ 6 there exists Xn ⊆ Dn such that
γ(Cay(Dn, Xn)) �= γ(Cay(Dn, X

−1
n )). In this case |Xn| = n− 1 and Cay(Dn, Xn) has

an efficient dominating set. For the total domination number we present analogous
results.

As regards further research, it seems that if G is a sufficiently large nonabelian
group, then there are X, Y ⊆ G such that γ(Cay(G,X)) �= γ(Cay(G,X−1)) and
γt(Cay(G, Y )) �= γt(Cay(G, Y −1)). However, as this may be a hard problem, we pose
the following ones:

Problem 1.1 Let G be a metacyclic group, G = Za�Zb. Is there X ⊆ G \ {(0, 0)},
with |X| = a− 1, γ(Cay(G,X)) = b and γ(Cay(G,X−1)) > b?

Analogously for the total domination number:
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Problem 1.2 Let G be a metacyclic group, G = Za �Zb. Is there Y ⊆ G \ {(0, 0)},
with |Y | = a, γ(Cay(G, Y )) = b and γ(Cay(G, Y −1)) > b?

Of course, we know that for very small groups the answers for the above problems
are negative. But if, for fixed b, the value of a is sufficiently large, are the answers
to the above problems positive?

The next problem to consider is whether there are digraphs D whose symmetry is
higher than that of Cayley digraphs, yet which nevertheless satisfy γ(D) �= γ(D−1)
(or γt(D) �= γt(D

−1)). Here, one can start with searching through the database of
small 2-regular arc-transitive digraphs; see [8].

2 Small digraphs

There are exactly seven non-abelian groups of order at most 12, namely the dihedral
groups D3, D4, D5 and D6, then the quaternion group Q, dicyclic group Dic3 and the
alternating group A4. Denote by Γ the set of these seven groups. By a computer we
checked that, if G ∈ Γ, X ⊆ G and γ(Cay(G,X)) �= γ(Cay(G,X−1)), then either
G = D6 or G = A4. If G = D6 then |X| = 5 and if G = A4 then either |X| = 3
or |X| = 5. In all these cases, one of Cay(G,X) and Cay(G,X−1) has an efficient
dominating set while the other digraph does not have such a set. Similarly, if G ∈ Γ,
Y ⊆ G and γt(Cay(G, Y )) �= γt(Cay(G, Y −1)), then either G = D6 or G = A4. If
G = D6 then |Y | = 6 and if G = A4 then either |Y | = 4 or |Y | = 6. In all these
cases, one of Cay(G, Y ) and Cay(G, Y −1) has an efficient total dominating set while
the other digraph does not have such a set.

In the rest of this section we consider A4, the group of even permutations of 4-
element set, say {1, 2, 3, 4}. The group operation is the composition of permutations.
Recall that A4 is one of the two smallest groups admitting a Cayley digraph whose
(total) domination number differs from the (total) domination number of its reverse.
(The other smallest case, D6, is considered and generalized in the next section.)
For G = A4 we define X, Y ⊆ G such that γ(Cay(G,X)) �= γ(Cay(G,X−1)) and
γt(Cay(G, Y )) �= γt(Cay(G, Y −1)). Though we did check the above inequalities by
a computer, we present rigorous proofs. In fact, we prove that γ(Cay(G,X)) �=
γ(Cay(G,X−1)) for a set X of three elements, and then we transform X to Y such
that |Y | = 4 and γt(Cay(G, Y )) �= γt(Cay(G, Y −1)).

Theorem 2.1 Let X = {(12)(34), (123), (243)}. Then γ(Cay(A4, X)) = 3 and
γ(Cay(A4, X

−1)) = 4.

Proof. We denote Cay(A4, X) and Cay(A4, X
−1) by DX and D−1

X , respectively.
The digraphs DX and D−1

X are depicted in Figure 1, where thick edges represent pairs
of opposite arcs formed by the involutory generator (12)(34), regular arcs correspond
to (123) in DX and to its reverse (132) in D−1

X , while dashed arcs correspond to (243)
in DX and to its reverse (234) in D−1

X .
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Figure 1: The digraph DX and its reverse digraph D−1
X .

First we show γ(DX) = 3. Let S = {id, (143), (134)}. Then
NDX

[id] = {id, (12)(34), (123), (243)},
NDX

[(143)] = {(143), (132), (14)(23), (13)(24)},
NDX

[(134)] = {(134), (142), (234), (124)}.
So NDX

[S] = A4 = V (DX), and hence S is a dominating set. Since DX has 12
vertices and every vertex of DX is a starting vertex of exactly three arcs, the set S
is a minimum dominating set. Hence γ(DX) = 3. Since NDX

[id], NDX
[(143)] and

NDX
[(134)] are disjoint sets, S is an efficient dominating set.

Now consider D−1
X and suppose that γ(D−1

X ) = γ(DX). Then γ(D−1
X ) = 3 and

D−1
X has an efficient dominating set, say T . Since D−1

X is vertex-transitive, without
loss of generality we may assume that id ∈ T . Since T is an efficient dominating set,
neighbours of id are not in T , and so (12)(34), (132), (234) /∈ T . For the same reason,
T does not contain a vertex v, v �= id, such that v and id dominate a common vertex.
Since (12)(34) is dominated by both (134) and id, we have (134) /∈ T . Analogously
(142), (143), (124) /∈ T . Finally, T does not contain a vertex which dominates id, and
so (123), (243) /∈ T . We excluded all the vertices ofD−1

X except (13)(24) and (14)(23).
Thus, T = {id, (13)(24), (14)(23)}. Since (13)(24) and (14)(23) are connected by an
arc in D−1

X , T cannot be an efficient dominating set. Thus, γ(D−1
X ) > 3. On the other

hand, since {id, (143), (13)(24), (234)} is a dominating set in D−1
X (see Figure 1), we

have γ(D−1
X ) = 4.

For the total domination number we have γt(Cay(A4, X)) = γt(Cay(A4, X
−1)) =

5. However, modifying X slightly one can obtain a digraph with the total domination
number different from the total domination number of its reverse.

The key ingredient in the following proof is the existence of g, h ∈ A4 such that
(X ∪ {id})g does not contain id and g−1(X−1 ∪ {id}) = (X−1 ∪ {id})h.
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Theorem 2.2 Let Y = {(14)(23), (142), (134), (13)(24)}. Then γt(Cay(A4, Y )) = 3
and γt(Cay(A4, Y

−1)) = 4.

Proof. Let DY denote Cay(A4, Y ). Observe that Y = (X ∪ {id})g, where
X = {(12)(34), (123), (243)} as in Theorem 2.1 and g = (13)(24). For every a ∈ A4

we have
(NDX

[a])g = a[X ∪ {id}]g = aY = NDY
(a),

and consequently (NDX
[S])g = NDY

(S) for every S ⊆ A4. (We remark that DX is
the digraph defined in the proof of Theorem 2.1.) Since g acts on the elements of A4

as a permutation, S is a dominating set in DX if and only if it is a total dominating
set in DY . Hence, γt(DY ) = 3 by Theorem 2.1.

Now consider D−1
Y = Cay(A4, Y

−1). Then

Y −1 = g−1[X−1 ∪ {id}] = {(14)(23), (124)(143), (13)(24)}= (X−1 ∪ {id})h,

where h = (14)(23). Thus, for every a ∈ A4 we have (ND−1
X
[a])h = ND−1

Y
(a), and

consequently (ND−1
X
[S])h = ND−1

Y
(S) for every S ⊆ A4. Since h acts on the elements

of A4 as a permutation, S is a dominating set in D−1
X if and only if it is a total

dominating set in D−1
Y . Hence, γt(D

−1
Y ) = 4 by Theorem 2.1.

3 Digraphs on dihedral groups

In this section we show that for every dihedral group Dn, where n ≥ 6, there are
Xn, Yn ⊆ Dn such that γ(Cay(Dn, Xn)) �= γ(Cay(Dn, X

−1
n )) and γt(Cay(Dn, Yn)) �=

γt(Cay(Dn, Y
−1
n )). As mentioned above, for n ≤ 5 such sets of generators do not

exist.

The dihedral group Dn is a semidirect product of Zn with Z2, Dn = Zn�Z2, and
so a ∈ Dn if and only if a = (a1, a2) where a1 ∈ Zn and a2 ∈ Z2. The multiplication
in Dn is given by (x1, x2)(y1, y2) = (x1+(−1)x2y1, x2+y2), where the first coordinate
is modulo n and the second is modulo 2.

Let a ∈ Zn. The set {(a, 0), (a, 1)} is called a pair of Dn. We use the following
simple lemma.

Lemma 3.1 For arbitrary x, y1, y2 ∈ Dn, the set x{y1, y2} is a pair if and only if
{y1, y2} is a pair.

Proof. Let y1 = (a1, b1), y2 = (a2, b2) and let x = (c, d). Then

x{y1, y2} = {(c+ (−1)da1, d+ b1), (c+ (−1)da2, d+ b2)}.

Hence, if d = 0 then x{y1, y2} = {(c+ a1, d+ b1), (c+ a2, d+ b2)}, while if d = 1 then
x{y1, y2} = {(c− a1, d+ b1), (c− a2, d+ b2)}. In both cases, x{y1, y2} is a pair if and
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only if a1 = a2 and b1 �= b2. That is, x{y1, y2} is a pair if and only if {y1, y2} is a
pair.

Now we prove a result for the domination number. If n is even, n = 2k, then set

Xn = {(0, 1), (1, 0), (1, 1), (2, 0), (2, 1), . . . , (k−2, 0), (k−2, 1), (2k−2, 0), (2k−2, 1)}.
On the other hand if n is odd, n = 2k + 1, then set

Xn = {(0, 1), (1, 0), (1, 1), (2, 0), . . . , (k−2, 1), (k−1, 0), (2k−1, 0), (2k−1, 1)}.
Observe that in both cases, the first n− 3 elements of Xn are consecutive in lexico-
graphic order, the last two elements ofXn are (n−2, 0) and (n−2, 1) and |Xn| = n−1.

Theorem 3.2 Let n ≥ 6. Then γ(Cay(Dn, Xn)) �= γ(Cay(Dn, X
−1
n )). Particularly,

Cay(Dn, Xn) has an efficient dominating set of size 2 while Cay(Dn, X
−1
n ) does not

have such a set.

Proof. Since |Xn| = n − 1, γ(Cay(Dn, Xn)) ≥ 2. We shall show that the set
{(0, 0), (n−3, 1)} is a dominating set, which implies γ(Cay(Dn, Xn)) = 2. Observe
that every x ∈ Dn dominates exactly the n vertices of x[{(0, 0)}∪Xn]. We distinguish
two cases.

Case 1. If n = 2k then

(2k−3, 1)({(0, 0)} ∪Xn) = {(2k−3, 1), (2k−3, 0), (2k−4, 1), (2k−4, 0),

. . . , (k−1, 0), (2k−1, 1), (2k−1, 0)}.
Since (0, 0)({(0, 0)} ∪ Xn) = {(0, 0)} ∪ Xn and the union ({(0, 0)} ∪ Xn) ∪
(2k−3, 1)({(0, 0)} ∪Xn) = Dn, the set {(0, 0), (n−3, 1)} is a dominating set in
Cay(Dn, Xn).

Case 2. If n = 2k + 1 then

(2k−2, 1)({(0, 0)} ∪Xn) = {(2k−2, 1), (2k−2, 0), (2k−3, 1), (2k−3, 0),

. . . , (k−1, 1), (2k, 1), (2k, 0)}.
Since ({(0, 0)}∪Xn)∪ (2k−2, 1)({(0, 0)}∪Xn) = Dn, the set {(0, 0), (n−3, 1)}
is a dominating set in Cay(Dn, Xn).

Now we show that Cay(Dn, X
−1
n ) does not have a dominating set of size 2. First,

by an exhaustive computer search we found that γ(Cay(Dn, X
−1
n )) = 3 if n ∈ {6, 7}.

Hence, assume that n ≥ 8. Then in both cases, n = 2k and n = 2k + 1, we have

{(0, 0)} ∪X−1
n = {(0, 0), (0, 1), (1, 1), (2, 0), (2, 1), (3, 1), . . . , (k−2, 1),

(k+2, 0), (k+3, 0), . . . , (n−2, 0), (n−2, 1), (n−1, 0)}.
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Suppose that Cay(Dn, X
−1
n ) has a dominating set S of size 2. Since every Cayley

digraph is vertex-transitive, we may assume that (0, 0) ∈ S. If we denote by (a1, a2)
the other element of S, then ({(0, 0)} ∪X−1

n ) ∪ (a1, a2)({(0, 0)} ∪X−1
n ) = Dn. Next

we consider the pairs in {(0, 0)} ∪X−1
n and in (a1, a2)({(0, 0)} ∪X−1

n ).

If n ≥ 8, there are exactly three pairs in {(0, 0)} ∪ X−1
n , namely {(0, 0), (0, 1)},

{(2, 0), (2, 1)} and {(n−2, 0), (n−2, 1)}. Denote by X−1
+ the set of these three pairs.

On the other hand, there are exactly three pairs with empty intersection with
{(0, 0)} ∪X−1

n , namely {(k−1, 0), (k−1, 1)}, {(k, 0), (k, 1)} and {(k+1, 0), (k+1, 1)}.
Denote by X−1

− the set of these three pairs. Since {(0, 0), (a1, a2)} is a dominating
set in Cay(Dn, X

−1
n ), we must have (a1, a2)X

−1
+ = X−1

− , by Lemma 3.1. Next we
shall show that this cannot be true.

Observe that X−1
− contains three consecutive pairs. Since

(a1, 0)X
−1
+ = {(a1, 0), (a1, 1), (a1+2, 0), (a1+2, 1), (a1−2, 0), (a1−2, 1)} = (a1, 1)X

−1
+

for every a1 ∈ Zn and a2 ∈ Z2 the set (a1, a2)X
−1
+ does not contain three consecutive

pairs. Hence (a1, a2)X
−1
+ �= X−1

− , a contradiction. Consequently, Cay(D, X−1
n ) does

not have a dominating set of size 2.

Now we show an analogous result for the total domination number. Denote
Yn = Dn \ ({(0, 0)}∪Xn), where Xn is the set defined before Theorem 3.2. Then we
have the following result.

Theorem 3.3 Let n ≥ 6. Then γt(Cay(Dn, Yn)) �= γt(Cay(Dn, Y
−1
n )). Particularly,

Cay(Dn, Yn) has an efficient total dominating set of size 2 while Cay(Dn, Y
−1
n )) does

not have such a set.

Proof. Since |Yn| = n, we have γt(Cay(Dn, Yn)) ≥ 2 and γt(Cay(Dn, Y
−1
n )) ≥ 2.

By the definition of Yn, for every u ∈ Dn we have NCay(Dn,Yn)(u) = Dn\NCay(Dn,Xn)[u].
Therefore, {a, b} is a total dominating set in Cay(Dn, Yn), with a dominating A and
b dominating B, if and only if {a, b} is a dominating set in Cay(Dn, Xn), with a
dominating B and b dominating A. Hence, γt(Cay(Dn, Yn)) = γ(Cay(Dn, Xn)) = 2,
by Theorem 3.2.

Next, Y −1
n = [Dn \ ({(0, 0)} ∪ Xn)]

−1 = Dn \ ({(0, 0)} ∪ X−1
n ). So analogously

as above, for every u ∈ Dn we have NCay(Dn,Y
−1
n )(u) = Dn \ NCay(Dn,X

−1
n )[u]. Hence,

{a, b} is a total dominating set in Cay(Dn, Y
−1
n ) if and only if {a, b} is a dominating

set in Cay(D, X−1
n ). Consequently, γt(Cay(Dn, Y

−1
n )) > 2, by Theorem 3.2.

We remark that if n is odd, then we cannot use a method described in the proof
of Theorem 2.2 to find Un ⊆ Dn such that γt(Cay(Dn, Un)) �= γt(Cay(Dn, U

−1
n )). The

reason is that there are no g, h ∈ Dn such that ({(0, 0)} ∪ Xn)g does not contain
(0, 0) and g−1({(0, 0)}∪X−1

n ) = ({(0, 0)}∪X−1
n )h. However, for even n, n = 2k, the

method of Theorem 2.2 works. It suffices to choose g = h = (k, 0) as (k, 0) is in the
center of Dn.
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