# Dominance in a Cayley digraph and in its reverse

## M. KNOR

Slovak University of Technology in Bratislava Faculty of Civil Engineering, Department of Mathematics Radlinského 11, 813 68, Bratislava Slovakia knor@math.sk

# J. SÝS

Mánesovo námestie 7 851 01 Bratislava Slovakia sys.jaromirr@gmail.com

#### Abstract

Let D be a digraph. Its reverse digraph,  $D^{-1}$ , is obtained by reversing all arcs of D. We show that the domination numbers of D and  $D^{-1}$  can be different if D is a Cayley digraph. The smallest groups admitting Cayley digraphs with this property are the alternating group  $A_4$  and the dihedral group  $D_6$ , both on 12 elements. Then, for each  $n \ge 6$  we find a Cayley digraph D on the dihedral group  $D_n$  such that the domination numbers of D and  $D^{-1}$  are different, though D has an efficient dominating set. Analogous results are also obtained for the total domination number.

### 1 Introduction

Let D be a digraph. The vertex and arc sets of D are denoted by V(D) and E(D), respectively. If there exists a positive integer d such that there are exactly d arcs starting at every vertex and exactly d arcs terminating at every vertex then D is a regular digraph of degree d. A digraph which is obtained by reversing all arcs of D is called the reverse digraph (or converse digraph) of D and is denoted by  $D^{-1}$ .

Let  $v \in V(D)$ . The open and closed neighbourhoods of v in D are denoted by  $N_D(v)$  and  $N_D[v]$ , respectively. That is,  $N_D(v) = \{u; vu \in E(D)\}$  and  $N_D[v] = N_D(v) \cup \{v\}$ . For  $S \subseteq V(D)$ , we set  $N_D(S) = \bigcup_{v \in S} N_D(v)$  and  $N_D[S] = \bigcup_{v \in S} N_D[v]$ . Then S is a dominating set (total dominating set) if  $N_D[S] = V(D)$  ( $N_D(S) = V(D)$ ). The smallest size of a dominating set (total dominating set) is the domination number  $\gamma(D)$  (total domination number  $\gamma_t(D)$ ) of D. Let S be a dominating set (total dominating set) in D. Then S is an efficient dominating set (efficient total dominating set) if for every  $u, v \in S$ ,  $u \neq v$ , we have  $N_D[u] \cap N_D[v] = \emptyset$  ( $N_D(u) \cap N_D(v) = \emptyset$ ).

Domination is an intensively studied area in graph theory. Problems of resource allocations and scheduling in networks are frequently formulated as domination problems of underlying (di)graphs; for terminology and survey of results see [5]. Compared with graphs, there is a smaller number of results for domination in digraphs. The domination number in digraphs was introduced in [2] and a survey on domination in digraphs is given in [3].

Let G be a group and let  $X \subseteq G$  such that the identity element is not in X. The Cayley digraph  $\operatorname{Cay}(G, X)$  has vertex set G and there is an arc from v to u in  $\operatorname{Cay}(G, X)$  if and only if va = u for some  $a \in X$ . Observe that  $\operatorname{Cay}(G, X)$  is a regular digraph of degree |X|. Furthermore,  $\operatorname{Cay}(G, X)$  is vertex-transitive, which means that for every pair of its vertices v and u there is an automorphism g of  $\operatorname{Cay}(G, X)$  such that g(v) = u. Observe that the reverse digraph to  $\operatorname{Cay}(G, X)$  is simply  $\operatorname{Cay}(G, X^{-1})$ .

In [7, 4] it is shown that for every  $d \ge 2$   $(d \ge 3)$  there is a *d*-regular digraph D such that the domination numbers (total domination numbers) of D and  $D^{-1}$  are different. Can these numbers differ even if D is a Cayley digraph? In [6, text below Theorem 8] the authors state that this is not the case but their conclusion is implied by a wrong assumption that  $\operatorname{Cay}(G, X)$  and  $\operatorname{Cay}(G, X^{-1})$  are isomorphic digraphs. This wrong assumption was probably caused by the fact that the groups used in [6] are abelian, and in such a case  $\operatorname{Cay}(G, X)$  and  $\operatorname{Cay}(G, X^{-1})$  are isomorphic. However, even for metacyclic groups G (at least for some of them) we can find  $X \subseteq G$  such that  $\operatorname{Cay}(G, X)$  and  $\operatorname{Cay}(G, X^{-1})$  are not isomorphic digraphs, see [1]. Recall that a group is metacyclic if it is a semidirect product of cyclic groups.

In this paper we show that  $\gamma(\operatorname{Cay}(G, X))$  and  $\gamma(\operatorname{Cay}(G, X^{-1}))$  can be different numbers. The smallest groups G admitting  $X \subseteq G$  such that  $\gamma(\operatorname{Cay}(G, X)) \neq$  $\gamma(\operatorname{Cay}(G, X^{-1}))$  are the alternating group  $A_4$  and the dihedral group  $D_6$ , both on 12 elements. Then we show that for every  $n \geq 6$  there exists  $X_n \subseteq D_n$  such that  $\gamma(\operatorname{Cay}(D_n, X_n)) \neq \gamma(\operatorname{Cay}(D_n, X_n^{-1}))$ . In this case  $|X_n| = n - 1$  and  $\operatorname{Cay}(D_n, X_n)$  has an efficient dominating set. For the total domination number we present analogous results.

As regards further research, it seems that if G is a sufficiently large nonabelian group, then there are  $X, Y \subseteq G$  such that  $\gamma(\operatorname{Cay}(G, X)) \neq \gamma(\operatorname{Cay}(G, X^{-1}))$  and  $\gamma_t(\operatorname{Cay}(G, Y)) \neq \gamma_t(\operatorname{Cay}(G, Y^{-1}))$ . However, as this may be a hard problem, we pose the following ones:

**Problem 1.1** Let G be a metacyclic group,  $G = \mathbb{Z}_a \rtimes \mathbb{Z}_b$ . Is there  $X \subseteq G \setminus \{(0,0)\}$ , with |X| = a - 1,  $\gamma(\operatorname{Cay}(G, X)) = b$  and  $\gamma(\operatorname{Cay}(G, X^{-1})) > b$ ?

Analogously for the total domination number:

**Problem 1.2** Let G be a metacyclic group,  $G = \mathbb{Z}_a \rtimes \mathbb{Z}_b$ . Is there  $Y \subseteq G \setminus \{(0,0)\}$ , with |Y| = a,  $\gamma(\operatorname{Cay}(G,Y)) = b$  and  $\gamma(\operatorname{Cay}(G,Y^{-1})) > b$ ?

Of course, we know that for very small groups the answers for the above problems are negative. But if, for fixed b, the value of a is sufficiently large, are the answers to the above problems positive?

The next problem to consider is whether there are digraphs D whose symmetry is higher than that of Cayley digraphs, yet which nevertheless satisfy  $\gamma(D) \neq \gamma(D^{-1})$ (or  $\gamma_t(D) \neq \gamma_t(D^{-1})$ ). Here, one can start with searching through the database of small 2-regular arc-transitive digraphs; see [8].

#### 2 Small digraphs

There are exactly seven non-abelian groups of order at most 12, namely the dihedral groups  $D_3$ ,  $D_4$ ,  $D_5$  and  $D_6$ , then the quaternion group Q, dicyclic group  $\text{Dic}_3$  and the alternating group  $A_4$ . Denote by  $\Gamma$  the set of these seven groups. By a computer we checked that, if  $G \in \Gamma$ ,  $X \subseteq G$  and  $\gamma(\text{Cay}(G, X)) \neq \gamma(\text{Cay}(G, X^{-1}))$ , then either  $G = D_6$  or  $G = A_4$ . If  $G = D_6$  then |X| = 5 and if  $G = A_4$  then either |X| = 3or |X| = 5. In all these cases, one of Cay(G, X) and  $\text{Cay}(G, X^{-1})$  has an efficient dominating set while the other digraph does not have such a set. Similarly, if  $G \in \Gamma$ ,  $Y \subseteq G$  and  $\gamma_t(\text{Cay}(G, Y)) \neq \gamma_t(\text{Cay}(G, Y^{-1}))$ , then either  $G = D_6$  or  $G = A_4$ . If  $G = D_6$  then |Y| = 6 and if  $G = A_4$  then either |Y| = 4 or |Y| = 6. In all these cases, one of Cay(G, Y) and  $\text{Cay}(G, Y^{-1})$  has an efficient total dominating set while the other digraph does not have such a set.

In the rest of this section we consider  $A_4$ , the group of even permutations of 4element set, say  $\{1, 2, 3, 4\}$ . The group operation is the composition of permutations. Recall that  $A_4$  is one of the two smallest groups admitting a Cayley digraph whose (total) domination number differs from the (total) domination number of its reverse. (The other smallest case,  $D_6$ , is considered and generalized in the next section.) For  $G = A_4$  we define  $X, Y \subseteq G$  such that  $\gamma(\operatorname{Cay}(G, X)) \neq \gamma(\operatorname{Cay}(G, X^{-1}))$  and  $\gamma_t(\operatorname{Cay}(G, Y)) \neq \gamma_t(\operatorname{Cay}(G, Y^{-1}))$ . Though we did check the above inequalities by a computer, we present rigorous proofs. In fact, we prove that  $\gamma(\operatorname{Cay}(G, X)) \neq$  $\gamma(\operatorname{Cay}(G, X^{-1}))$  for a set X of three elements, and then we transform X to Y such that |Y| = 4 and  $\gamma_t(\operatorname{Cay}(G, Y)) \neq \gamma_t(\operatorname{Cay}(G, Y^{-1}))$ .

**Theorem 2.1** Let  $X = \{(12)(34), (123), (243)\}$ . Then  $\gamma(\text{Cay}(A_4, X)) = 3$  and  $\gamma(\text{Cay}(A_4, X^{-1})) = 4$ .

PROOF. We denote  $\operatorname{Cay}(A_4, X)$  and  $\operatorname{Cay}(A_4, X^{-1})$  by  $D_X$  and  $D_X^{-1}$ , respectively. The digraphs  $D_X$  and  $D_X^{-1}$  are depicted in Figure 1, where thick edges represent pairs of opposite arcs formed by the involutory generator (12)(34), regular arcs correspond to (123) in  $D_X$  and to its reverse (132) in  $D_X^{-1}$ , while dashed arcs correspond to (243) in  $D_X$  and to its reverse (234) in  $D_X^{-1}$ .

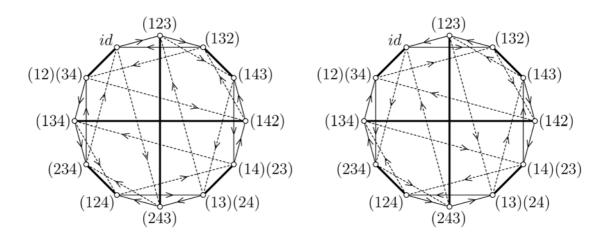


Figure 1: The digraph  $D_X$  and its reverse digraph  $D_X^{-1}$ .

First we show  $\gamma(D_X) = 3$ . Let  $S = \{id, (143), (134)\}$ . Then

$$N_{D_X}[id] = \{id, (12)(34), (123), (243)\},\$$
  

$$N_{D_X}[(143)] = \{(143), (132), (14)(23), (13)(24)\},\$$
  

$$N_{D_X}[(134)] = \{(134), (142), (234), (124)\}.$$

So  $N_{D_X}[S] = A_4 = V(D_X)$ , and hence S is a dominating set. Since  $D_X$  has 12 vertices and every vertex of  $D_X$  is a starting vertex of exactly three arcs, the set S is a minimum dominating set. Hence  $\gamma(D_X) = 3$ . Since  $N_{D_X}[id]$ ,  $N_{D_X}[(143)]$  and  $N_{D_X}[(134)]$  are disjoint sets, S is an efficient dominating set.

Now consider  $D_X^{-1}$  and suppose that  $\gamma(D_X^{-1}) = \gamma(D_X)$ . Then  $\gamma(D_X^{-1}) = 3$  and  $D_X^{-1}$  has an efficient dominating set, say T. Since  $D_X^{-1}$  is vertex-transitive, without loss of generality we may assume that  $id \in T$ . Since T is an efficient dominating set, neighbours of id are not in T, and so  $(12)(34), (132), (234) \notin T$ . For the same reason, T does not contain a vertex  $v, v \neq id$ , such that v and id dominate a common vertex. Since (12)(34) is dominated by both (134) and id, we have  $(134) \notin T$ . Analogously  $(142), (143), (124) \notin T$ . Finally, T does not contain a vertex which dominates id, and so  $(123), (243) \notin T$ . We excluded all the vertices of  $D_X^{-1}$  except (13)(24) and (14)(23). Thus,  $T = \{id, (13)(24), (14)(23)\}$ . Since (13)(24) and (14)(23) are connected by an arc in  $D_X^{-1}$ , T cannot be an efficient dominating set. Thus,  $\gamma(D_X^{-1}) > 3$ . On the other hand, since  $\{id, (143), (13)(24), (234)\}$  is a dominating set in  $D_X^{-1}$  (see Figure 1), we have  $\gamma(D_X^{-1}) = 4$ .

For the total domination number we have  $\gamma_t(\text{Cay}(A_4, X)) = \gamma_t(\text{Cay}(A_4, X^{-1})) =$ 5. However, modifying X slightly one can obtain a digraph with the total domination number different from the total domination number of its reverse.

The key ingredient in the following proof is the existence of  $g, h \in A_4$  such that  $(X \cup \{id\})g$  does not contain id and  $g^{-1}(X^{-1} \cup \{id\}) = (X^{-1} \cup \{id\})h$ .

**Theorem 2.2** Let  $Y = \{(14)(23), (142), (134), (13)(24)\}$ . Then  $\gamma_t(\text{Cay}(A_4, Y)) = 3$ and  $\gamma_t(\text{Cay}(A_4, Y^{-1})) = 4$ .

PROOF. Let  $D_Y$  denote  $\operatorname{Cay}(A_4, Y)$ . Observe that  $Y = (X \cup \{id\})g$ , where  $X = \{(12)(34), (123), (243)\}$  as in Theorem 2.1 and g = (13)(24). For every  $a \in A_4$  we have

$$(N_{D_X}[a])g = a[X \cup \{id\}]g = aY = N_{D_Y}(a),$$

and consequently  $(N_{D_X}[S])g = N_{D_Y}(S)$  for every  $S \subseteq A_4$ . (We remark that  $D_X$  is the digraph defined in the proof of Theorem 2.1.) Since g acts on the elements of  $A_4$ as a permutation, S is a dominating set in  $D_X$  if and only if it is a total dominating set in  $D_Y$ . Hence,  $\gamma_t(D_Y) = 3$  by Theorem 2.1.

Now consider  $D_Y^{-1} = \text{Cay}(A_4, Y^{-1})$ . Then

$$Y^{-1} = g^{-1}[X^{-1} \cup \{id\}] = \{(14)(23), (124)(143), (13)(24)\} = (X^{-1} \cup \{id\})h,$$

where h = (14)(23). Thus, for every  $a \in A_4$  we have  $(N_{D_X^{-1}}[a])h = N_{D_Y^{-1}}(a)$ , and consequently  $(N_{D_X^{-1}}[S])h = N_{D_Y^{-1}}(S)$  for every  $S \subseteq A_4$ . Since h acts on the elements of  $A_4$  as a permutation, S is a dominating set in  $D_X^{-1}$  if and only if it is a total dominating set in  $D_Y^{-1}$ . Hence,  $\gamma_t(D_Y^{-1}) = 4$  by Theorem 2.1.

#### 3 Digraphs on dihedral groups

In this section we show that for every dihedral group  $D_n$ , where  $n \ge 6$ , there are  $X_n, Y_n \subseteq D_n$  such that  $\gamma(\operatorname{Cay}(D_n, X_n)) \ne \gamma(\operatorname{Cay}(D_n, X_n^{-1}))$  and  $\gamma_t(\operatorname{Cay}(D_n, Y_n)) \ne \gamma_t(\operatorname{Cay}(D_n, Y_n^{-1}))$ . As mentioned above, for  $n \le 5$  such sets of generators do not exist.

The dihedral group  $D_n$  is a semidirect product of  $\mathbb{Z}_n$  with  $\mathbb{Z}_2$ ,  $D_n = \mathbb{Z}_n \rtimes \mathbb{Z}_2$ , and so  $a \in D_n$  if and only if  $a = (a_1, a_2)$  where  $a_1 \in \mathbb{Z}_n$  and  $a_2 \in \mathbb{Z}_2$ . The multiplication in  $D_n$  is given by  $(x_1, x_2)(y_1, y_2) = (x_1 + (-1)^{x_2}y_1, x_2 + y_2)$ , where the first coordinate is modulo n and the second is modulo 2.

Let  $a \in \mathbb{Z}_n$ . The set  $\{(a, 0), (a, 1)\}$  is called a *pair* of  $D_n$ . We use the following simple lemma.

**Lemma 3.1** For arbitrary  $x, y_1, y_2 \in D_n$ , the set  $x\{y_1, y_2\}$  is a pair if and only if  $\{y_1, y_2\}$  is a pair.

**PROOF.** Let  $y_1 = (a_1, b_1), y_2 = (a_2, b_2)$  and let x = (c, d). Then

$$x\{y_1, y_2\} = \{(c + (-1)^d a_1, d + b_1), (c + (-1)^d a_2, d + b_2)\}.$$

Hence, if d = 0 then  $x\{y_1, y_2\} = \{(c + a_1, d + b_1), (c + a_2, d + b_2)\}$ , while if d = 1 then  $x\{y_1, y_2\} = \{(c - a_1, d + b_1), (c - a_2, d + b_2)\}$ . In both cases,  $x\{y_1, y_2\}$  is a pair if and

only if  $a_1 = a_2$  and  $b_1 \neq b_2$ . That is,  $x\{y_1, y_2\}$  is a pair if and only if  $\{y_1, y_2\}$  is a pair.

Now we prove a result for the domination number. If n is even, n = 2k, then set

$$X_n = \{(0,1), (1,0), (1,1), (2,0), (2,1), \dots, (k-2,0), (k-2,1), (2k-2,0), (2k-2,1)\}.$$

On the other hand if n is odd, n = 2k + 1, then set

$$X_n = \{(0,1), (1,0), (1,1), (2,0), \dots, (k-2,1), (k-1,0), (2k-1,0), (2k-1,1)\}.$$

Observe that in both cases, the first n-3 elements of  $X_n$  are consecutive in lexicographic order, the last two elements of  $X_n$  are (n-2, 0) and (n-2, 1) and  $|X_n| = n-1$ .

**Theorem 3.2** Let  $n \ge 6$ . Then  $\gamma(\operatorname{Cay}(D_n, X_n)) \ne \gamma(\operatorname{Cay}(D_n, X_n^{-1}))$ . Particularly,  $\operatorname{Cay}(D_n, X_n)$  has an efficient dominating set of size 2 while  $\operatorname{Cay}(D_n, X_n^{-1})$  does not have such a set.

PROOF. Since  $|X_n| = n - 1$ ,  $\gamma(\operatorname{Cay}(D_n, X_n)) \ge 2$ . We shall show that the set  $\{(0,0), (n-3,1)\}$  is a dominating set, which implies  $\gamma(\operatorname{Cay}(D_n, X_n)) = 2$ . Observe that every  $x \in D_n$  dominates exactly the *n* vertices of  $x[\{(0,0)\} \cup X_n]$ . We distinguish two cases.

Case 1. If n = 2k then

$$(2k-3,1)(\{(0,0)\} \cup X_n) = \{(2k-3,1), (2k-3,0), (2k-4,1), (2k-4,0), \dots, (k-1,0), (2k-1,1), (2k-1,0)\}.$$

Since  $(0,0)(\{(0,0)\} \cup X_n) = \{(0,0)\} \cup X_n$  and the union  $(\{(0,0)\} \cup X_n) \cup (2k-3,1)(\{(0,0)\} \cup X_n) = D_n$ , the set  $\{(0,0), (n-3,1)\}$  is a dominating set in  $Cay(D_n, X_n)$ .

Case 2. If n = 2k + 1 then

$$(2k-2,1)(\{(0,0)\} \cup X_n) = \{(2k-2,1), (2k-2,0), (2k-3,1), (2k-3,0), \dots, (k-1,1), (2k,1), (2k,0)\}.$$

Since  $(\{(0,0)\} \cup X_n) \cup (2k-2,1)(\{(0,0)\} \cup X_n) = D_n$ , the set  $\{(0,0), (n-3,1)\}$  is a dominating set in Cay $(D_n, X_n)$ .

Now we show that  $\operatorname{Cay}(D_n, X_n^{-1})$  does not have a dominating set of size 2. First, by an exhaustive computer search we found that  $\gamma(\operatorname{Cay}(D_n, X_n^{-1})) = 3$  if  $n \in \{6, 7\}$ . Hence, assume that  $n \geq 8$ . Then in both cases, n = 2k and n = 2k + 1, we have

$$\{(0,0)\} \cup X_n^{-1} = \{(0,0), (0,1), (1,1), (2,0), (2,1), (3,1), \dots, (k-2,1), \\ (k+2,0), (k+3,0), \dots, (n-2,0), (n-2,1), (n-1,0)\}.$$

Suppose that  $\operatorname{Cay}(D_n, X_n^{-1})$  has a dominating set S of size 2. Since every Cayley digraph is vertex-transitive, we may assume that  $(0,0) \in S$ . If we denote by  $(a_1, a_2)$  the other element of S, then  $(\{(0,0)\} \cup X_n^{-1}) \cup (a_1, a_2)(\{(0,0)\} \cup X_n^{-1}) = D_n$ . Next we consider the pairs in  $\{(0,0)\} \cup X_n^{-1}$  and in  $(a_1, a_2)(\{(0,0)\} \cup X_n^{-1})$ .

If  $n \geq 8$ , there are exactly three pairs in  $\{(0,0)\} \cup X_n^{-1}$ , namely  $\{(0,0), (0,1)\}$ ,  $\{(2,0), (2,1)\}$  and  $\{(n-2,0), (n-2,1)\}$ . Denote by  $X_+^{-1}$  the set of these three pairs. On the other hand, there are exactly three pairs with empty intersection with  $\{(0,0)\} \cup X_n^{-1}$ , namely  $\{(k-1,0), (k-1,1)\}$ ,  $\{(k,0), (k,1)\}$  and  $\{(k+1,0), (k+1,1)\}$ . Denote by  $X_-^{-1}$  the set of these three pairs. Since  $\{(0,0), (a_1,a_2)\}$  is a dominating set in  $\operatorname{Cay}(\mathbb{D}_n, X_n^{-1})$ , we must have  $(a_1, a_2)X_+^{-1} = X_-^{-1}$ , by Lemma 3.1. Next we shall show that this cannot be true.

Observe that  $X_{-}^{-1}$  contains three consecutive pairs. Since

 $(a_1, 0)X_+^{-1} = \{(a_1, 0), (a_1, 1), (a_1+2, 0), (a_1+2, 1), (a_1-2, 0), (a_1-2, 1)\} = (a_1, 1)X_+^{-1}$ for every  $a_1 \in \mathbb{Z}_n$  and  $a_2 \in \mathbb{Z}_2$  the set  $(a_1, a_2)X_+^{-1}$  does not contain three consecutive pairs. Hence  $(a_1, a_2)X_+^{-1} \neq X_-^{-1}$ , a contradiction. Consequently,  $Cay(D, X_n^{-1})$  does not have a dominating set of size 2.

Now we show an analogous result for the total domination number. Denote  $Y_n = D_n \setminus (\{(0,0)\} \cup X_n)$ , where  $X_n$  is the set defined before Theorem 3.2. Then we have the following result.

**Theorem 3.3** Let  $n \ge 6$ . Then  $\gamma_t(\operatorname{Cay}(D_n, Y_n)) \ne \gamma_t(\operatorname{Cay}(D_n, Y_n^{-1}))$ . Particularly,  $\operatorname{Cay}(D_n, Y_n)$  has an efficient total dominating set of size 2 while  $\operatorname{Cay}(D_n, Y_n^{-1})$  does not have such a set.

PROOF. Since  $|Y_n| = n$ , we have  $\gamma_t(\operatorname{Cay}(D_n, Y_n)) \ge 2$  and  $\gamma_t(\operatorname{Cay}(D_n, Y_n^{-1})) \ge 2$ . By the definition of  $Y_n$ , for every  $u \in D_n$  we have  $N_{\operatorname{Cay}(D_n, Y_n)}(u) = D_n \setminus N_{\operatorname{Cay}(D_n, X_n)}[u]$ . Therefore,  $\{a, b\}$  is a total dominating set in  $\operatorname{Cay}(D_n, Y_n)$ , with *a* dominating *A* and *b* dominating *B*, if and only if  $\{a, b\}$  is a dominating set in  $\operatorname{Cay}(D_n, X_n)$ , with *a* dominating *B* and *b* dominating *A*. Hence,  $\gamma_t(\operatorname{Cay}(D_n, Y_n)) = \gamma(\operatorname{Cay}(D_n, X_n)) = 2$ , by Theorem 3.2.

Next,  $Y_n^{-1} = [D_n \setminus (\{(0,0)\} \cup X_n)]^{-1} = D_n \setminus (\{(0,0)\} \cup X_n^{-1})$ . So analogously as above, for every  $u \in D_n$  we have  $N_{\operatorname{Cay}(D_n,Y_n^{-1})}(u) = D_n \setminus N_{\operatorname{Cay}(D_n,X_n^{-1})}[u]$ . Hence,  $\{a,b\}$  is a total dominating set in  $\operatorname{Cay}(D_n,Y_n^{-1})$  if and only if  $\{a,b\}$  is a dominating set in  $\operatorname{Cay}(D,X_n^{-1})$ . Consequently,  $\gamma_t(\operatorname{Cay}(D_n,Y_n^{-1})) > 2$ , by Theorem 3.2.

We remark that if n is odd, then we cannot use a method described in the proof of Theorem 2.2 to find  $U_n \subseteq D_n$  such that  $\gamma_t(\operatorname{Cay}(D_n, U_n)) \neq \gamma_t(\operatorname{Cay}(D_n, U_n^{-1}))$ . The reason is that there are no  $g, h \in D_n$  such that  $(\{(0,0)\} \cup X_n)g$  does not contain (0,0) and  $g^{-1}(\{(0,0)\} \cup X_n^{-1}) = (\{(0,0)\} \cup X_n^{-1})h$ . However, for even n, n = 2k, the method of Theorem 2.2 works. It suffices to choose g = h = (k,0) as (k,0) is in the center of  $D_n$ .

#### Acknowledgements

The first author acknowledges partial support by Slovak research grants APVV-0136-12, VEGA 1/0007/14, VEGA 1/0026/16 and by Slovenian research agency ARRS, program no. P1-00383, project no. L1-4292.

#### References

- M. Abas, Comparing a Cayley digraph with its reverse, Acta Math. Univ. Commenianae LXIX (2000), 59–70.
- [2] Y. Fu, Dominating set and converse dominating set of directed graph, Amer. Math. Monthly 75 (1968), 861–863.
- [3] J. Ghosal, R. Laskar and D. Pillone, Topics on domination in directed graphs, in: T.W. Haines, S.T. Hedetniemi and P.J. Slater (Eds.), *Domination in graphs: Advanced topics*, Marcel Dekker, New York, 1998, pp. 401–437.
- [4] S. Gyurki, On the difference of the domination of a digraph and of its reverse, Discrete Applied Math. 160 (2012), 1270–1276.
- [5] T.W. Haines, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [6] L'. Niepel, A. Černý and B. AlBdaiwi, Efficient domination in directed tori and the Vizing's conjecture for directed graphs, Ars Comb. 91 (2009), 411–422.
- [7] L. Niepel and M. Knor, Domination in a digraph and in its reverse, *Discrete* Applied Math. **157** (2009), 2973–2977.
- [8] P. Potočnik, P. Spiga and G. Verret, A census of half-arc-transitive graphs and arc-transitive digraphs of valence two, arXiv:1310.6543 [math.CO].

(Received 25 June 2015; revised 21 Apr 2016)