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Abstract

We address the chromatic number of a class of Euclidean distance graphs
having vertex set Q3, the 3-dimensional rational space. It is shown that
if s is any positive integer with no prime factors congruent to 2 (mod 3),
and G is the graph with vertex set Q3 where any two vertices are adjacent
if and only if they are distance

√
2s apart, then G has chromatic number

4. Along the way, we obtain a few results on the chromatic numbers of
certain Euclidean distance graphs having vertex set Z3, the 3-dimensional
integer space. We conclude by constructing an example (possibly the
first) of a triangle-free, 4-chromatic distance graph in Q3.

1 Definitions

Suppose (X, ρ) is a metric space and d > 0. Let G(X, d) be the graph with vertex
set X where any two vertices are adjacent if and only if they are distant d apart.
Define χ(X, d) to be the chromatic number of G(X, d) – that is to say, the minimum
number of colors needed to color X such that any two vertices distance d apart
receive different colors. As is customary, we will use R, Q, and Z to denote the
rings of real numbers, rational numbers, and integers, respectively. Throughout this
paper, if X ⊆ Rn, the distance function used will be the usual Euclidean distance
metric. Also throughout this paper, we will make use of two non-standard bits
of notation. We designate by S the set of all positive, square-free integers whose
prime factorization consists solely of factors congruent to 1 (mod 3). For any vector
v = 〈a, b, c〉 with a, b, c ∈ Q, we write Φv to denote the set of all vectors formed by
permuting the entries of v along with replacing any number of those entries with
their negatives. Just to make sure the previous notation is clear, as an example if
v = 〈1, 0, 0〉, then Φv = {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈−1, 0, 0〉, 〈0,−1, 0〉, 〈0, 0,−1〉}. If
v = 〈1, 2, 3〉, then Φv consists of forty-eight vectors which we decline to write out.
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2 Introduction and Preliminaries

Although coloring Qn does not get the same publicity as coloring Rn (see [8], [12], or
[14] for a historical perspective), the subject has been around for quite a while.
Woodall introduced the matter as a secondary result in a 1973 paper [15], off-
handedly showing that χ(Q2, 1) = 2. Benda and Perles also focused on the unit
distance in [1], showing that, among other results, χ(Q3, 1) = 2 as well. The follow-
ing question remained unaddressed for some time however, and is in fact still open
today:

Given an arbitrary distance d, what is χ(Q3, d)?

It is readily seen that for any distance d and any q ∈ Q+, the graphs G(Q3, d) and
G(Q3, qd) are isomorphic. This is a straightforward observation, but it leads to the
following lemma which we state for easy reference in later sections of the paper.

Lemma 2.1 For any d1, d2 > 0, χ(Q3, d1) = χ(Q3, d2) if d1 and d2 are rational
multiples of each other.

Any distance realized in Q3 is of the form
√
q for some q ∈ Q+. So to completely

resolve the above question, it suffices to determine χ(Q3,
√
z) for every positive,

square-free integer z. Fortunately, a lot of the work has already been done. In
[9] Johnson showed that for any odd integer p such that

√
p is a distance actually

realized in Q3, χ(Q3,
√
p) = 2. In [3], Chow showed that for any odd, positive integer

p, χ(Q3,
√

2p) ≥ 3. And in [7], Johnson, Schneider, and Tiemeyer provide an upper
bound for the chromatic numbers in question, demonstrating that for any d > 0,
χ(Q3, d) ≤ 4. Putting these facts together, the original question is narrowed down
to the following:

Given any odd, positive, square-free integer p,
does χ(Q3,

√
2p) = 3 or does χ(Q3,

√
2p) = 4?

The main result of this paper is that for all such values of p whose prime factorization
contains no factors congruent to 2 (mod 3), χ(Q3,

√
2p) = 4. We obtain this conclu-

sion by proving two slightly stronger results concerning colorings of Z3. Although
we find a large class of distances d such that χ(Z3, d) = 3 (see Theorem 3.2), it is
ultimately still an open question whether there exists d such that χ(Q3, d) = 3.

Our arguments will make frequent use of the following lemma.

Lemma 2.2 Let v = 〈a, b, c〉 where a, b, c ∈ Z such that gcd(a, b, c) = 1 and a+ b+
c ≡ 0 (mod 2). Let V be the group of vectors generated by those in Φv under the
usual vector addition. Then V = {〈x, y, z〉 : x, y, z ∈ Z and x+ y + z ≡ 0 (mod 2)}.

Proof Clearly V ⊆ {〈x, y, z〉 : x, y, z ∈ Z and x + y + z ≡ 0 (mod 2)}. Since
gcd(a, b, c) = 1 and a + b + c ≡ 0 (mod 2), it must be the case that exactly two of
a, b, c are odd. Note that if 〈v1, v2, v3〉 ∈ V and σ is any permutation of the sequence
(v1, v2, v3), then 〈±σ(v1),±σ(v2),±σ(v3)〉 ∈ V . Note also that for any even integers
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m,n, and p, 〈ma, 0, 0〉, 〈nb, 0, 0〉, 〈pc, 0, 0〉 ∈ V . Since gcd(a, b, c) = 1, there exist
integers r, s, t such that ra+ sb+ tc = 1. But this gives us 〈2ra, 0, 0〉 + 〈2sb, 0, 0〉 +
〈2tc, 0, 0〉 = 〈2, 0, 0〉. Thus 〈±2, 0, 0〉, 〈0,±2, 0〉, 〈0, 0,±2〉 ∈ V . So given any vector
〈x, y, z〉 satisfying x, y, z ∈ Z and x+ y+ z ≡ 0 (mod 2), we can select 〈0, 0, 0〉 or an
appropriate vector from those used to generate V and add to it some combination
of multiples of 〈±2, 0, 0〉, 〈0,±2, 0〉, 〈0, 0,±2〉 to construct 〈x, y, z〉. 2

In a series of recent papers (see [5] and [6]), Ionascu gives a complete characteri-
zation of equilateral triangles whose vertices are points of Z3. Central to his work in
[5] is the following lemma which will feature prominently here as well.

Lemma 2.3 A square-free positive integer n can be represented as n = a2 + ab+ b2

for some a, b ∈ Z if and only if n has no prime factor congruent to 2 (mod 3).

Ionascu attributes this result to Euler. However, the author’s own efforts to track
down its genesis were ultimately unsuccessful. In any case, this lemma appears to
be a fairly well-known fact and can be gleaned from the material presented in many
introductory number theory texts or any work focusing on representations of integers
using quadratic forms ([2], for example). For our purposes, the following consequence
of Lemma 2.3 will suffice.

Lemma 2.4 Let n be a square-free positive integer which contains no prime factor
congruent to 2 (mod 3). Then there exist a, b, c ∈ Z such that
a2 + b2 + c2 = 2n and a+ b+ c = 0.

Proof Given some n as described above, by Lemma 2.3 there exist a, b ∈ Z such
that a2 + ab + b2 = n. We then have 2a2 + 2ab + 2b2 = 2n which implies that
a2 + b2 + (−a − b)2 = 2n. Now letting c = −a − b we have that a2 + b2 + c2 = 2n
and a+ b+ c = 0. 2

We feel that before venturing forward it is worthwhile to mention that in the case
of p = 1, it is trivial to find a 4-chromatic subgraph of G(Q3,

√
2p). It is well-known

that the points (0, 0, 0), (1, 0, 1), (1, 1, 0), and (0, 1, 1) constitute the vertices of a
regular tetrahedron of edge-length

√
2, or in other words, a copy of the complete

graph K4 appearing as a subgraph of G(Q3,
√

2). It is shown in [5], however, that
there is no other square-free integer p where this occurs.

3 Results

Theorem 3.1 For every s ∈ S, χ(Z3,
√

2s) = 4.

Proof Let s ∈ S. As χ(Q3,
√

2s) ≤ 4 [7], clearly χ(Z3,
√

2s) ≤ 4 as well. By Lemma
2.4 there exists a, b, c ∈ Z such that a2 + b2 + c2 = 2s and a + b + c = 0. Thus the
vectors 〈a, b, c〉, 〈b, c, a〉, and 〈c, a, b〉 each have length

√
2s and together sum to the

zero vector. We can use these vectors to create the pair of equilateral triangles in
Figure 1, each with side length

√
2s and vertices in Z3.
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√
2s

√
2s

√
2s

√
2s

√
2s

(a,b,c)

(0,0,0) (a+b, b+c, a+c) = (-c,-a,-b)

(2a+b, 2b+c, a+2c)

Figure 1

We will now assume there exists some proper 3-coloring of G(Z3,
√

2s) and obtain
a contradiction. The diagram in Figure 1 shows that in any proper 3-coloring of
G(Z3,

√
2s), the vertices (0, 0, 0) and (2a+b, 2b+c, a+2c) must receive the same color.

Furthermore, any arrow in Z3 representing the vector v = 〈2a+b, 2b+c, a+2c〉 must
have initial and terminal point colored the same color. By permuting the coordinates
and changing the sign of some of the coordinates in the above construction, it can
be seen that each of the vectors of Φv must also have initial and terminal point
colored the same color. Let V be the group of Z3 vectors generated under vector
addition by those of Φv. In any proper 3-coloring of G(Z3,

√
2s), any vector in V

must have initial and terminal point colored the same color. Note that (2a + b)2 +
(2b + c)2 + (a + 2c)2 = 6s and since 6s ≡ 2 (mod 4), it must be the case that
exactly two of (2a + b), (2b + c), (a + 2c) are odd. Also, since 6s is square-free,
gcd(2a + b, 2b + c, a + 2c) = 1. Then by Lemma 2.2, V = {〈x, y, z〉 : x, y, z ∈ Z and
x + y + z ≡ 0 (mod 2)}. This means that 〈a, b, c〉 ∈ V and thus that (0, 0, 0) and
(a, b, c) must be colored the same color which is our desired contradiction. Hence
χ(Z3,

√
2s) = 4. 2

It would appear that the next logical step in uncovering 4-chromatic subgraphs
of Q3 would be focusing on the graph G(Z3,

√
6s). However, it just so happens to be

the case that χ(Z3,
√

6s) 6= 4. The proof of this fact we include below as a matter of
secondary interest.

Theorem 3.2 For every s ∈ S, χ(Z3,
√

6s) = 3.

Proof Let s ∈ S. By Lemma 2.4, there exist a, b, c ∈ Z such that a2 + b2 + c2 = 6s
and a + b + c = 0. Just as in the proof of Theorem 3.1, we can use the vectors
〈a, b, c〉, 〈b, c, a〉, and 〈c, a, b〉 to create a 3-cycle in G(Z3,

√
6s), thus ensuring that

χ(Z3,
√

6s) ≥ 3. Let X, Y ∈ Z3 where X = (x1, x2, x3) and Y = (y1, y2, y3). Let
∆i = xi − yi for i ∈ {1, 2, 3} and suppose that X and Y are adjacent in G(Z3,

√
6s).

Then (∆1)
2+(∆2)

2+(∆3)
2 = 6s. This means that (∆1)

2+(∆2)
2+(∆3)

2 ≡ 0 (mod 3)
but (∆1)

2 + (∆2)
2 + (∆3)

2 6≡ 0 (mod 9), which in turn implies that ∆i 6≡ 0 (mod 3)
for i ∈ {1, 2, 3}. Note here that we are using the fact that for any integer n such
that n 6≡ 0 (mod 3), n2 ≡ 1 (mod 3). So in order to properly 3-color G(Z3,

√
6s),

we need only use ϕ : Z3 → {0, 1, 2} where for every X = (x1, x2, x3), ϕ(X) = x1
(mod 3). 2
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Theorem 3.3 For every s ∈ S, χ(Z3, 3
√

6s) = 4.

Proof Let s ∈ S. Again, by the results of [7] we have that χ(Z3, 3
√

6s)
≤ 4. By Lemmas 2.3 and 2.4, there exist a, b, c ∈ Z such that a2 + ab+ b2 = 3s, a2 +
b2+c2 = 6s, and a+b+c = 0. From this we obtain two facts. First notice that (3a)2+
(3b)2 + (3c)2 = 54s implying that the vertices (0, 0, 0) and (3a, 3b, 3c) are adjacent
in G(Z3, 3

√
6s). Secondly, the points in Figure 2 define an equilateral triangle with

side length 3
√

6s and vertices in Z3. We note that this triangle parameterization
(and others like it) is given in [6].

3
√
6s 3

√
6s

3
√
6s

(-4a-3b, -a+3b, a)

(0,0,0) (-3a+b, 3a+4b, -b)

Figure 2

We can extend Figure 2 into three equilateral triangles each with side length 3
√

6s
and vertices in Z3 as is done in Figure 3.

(-a-4b, -4a-b, a+b) (-4a-3b, -a+3b, a)

(-3a+b, 3a+4b, -b)

(a+4b, 4a+b, -a-b)

(0,0,0)

Figure 3

Let V1 be the vector with initial point (a+ 4b, 4a+ b,−a− b) and terminal point
(−4a− 3b,−a+ 3b, a). Let V2 be the vector with initial point (−3a+ b, 3a+ 4b,−b)
and terminal point (−a − 4b,−4a − b, a + b). Using the same strategy as that in
the proof of Theorem 3.1, we will again suppose that χ(Z3, 3

√
6s) = 3 and obtain a

contradiction. In any proper 3-coloring of G(Z3, 3
√

6s) the initial and terminal point
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of V1 must be colored the same color and the initial and terminal point of V2 must
be colored the same color. Writing V1 and V2 in component form we have that

V1 = 〈−5a− 7b,−5a+ 2b, 2a+ b〉
V2 = 〈2a− 5b,−7a− 5b, a+ 2b〉

We know that a2 + ab+ b2 = 3s. This implies that gcd(a, b) = 1 and either a and
b are both congruent to 1 (mod 3) or a and b are both congruent to 2 (mod 3). Also
note that since a ≡ b (mod 3), the individual entries of V1 and the individual entries
of V2 are each congruent to 0 (mod 3). We now desire to show that at least one of V1
and V2 has all three entries not congruent to 0 (mod 9). This can be done through
simple inspection. The chart in Figure 4 lists all possible congruences modulo 9 for
a and b along with a vector V1 or V2 whose individual entries are each not congruent
to 0 (mod 9).

With this information in mind, and also considering that V1 and V2 both have
length 9

√
2s, it must be the case that at least one of V1, V2 can be written as

〈3x, 3y, 3z〉 for some x, y, z ∈ Z where x + y + z ≡ 0 (mod 2) and gcd(x, y, z) = 1.
Letting v = 〈3x, 3y, 3z〉 and again using the same ideas as in the proof of Theorem
3.1, we have that in any proper 3-coloring of G(Z3, 3

√
6s) each vector of Φv must

have initial and terminal point colored the same color.

a b Vector whose entries are each
not congruent to 0 (mod 9)

1 (mod 9) 1 (mod 9) V2
1 (mod 9) 4 (mod 9) V1
1 (mod 9) 7 (mod 9) V2
4 (mod 9) 1 (mod 9) V2
4 (mod 9) 4 (mod 9) V1
4 (mod 9) 7 (mod 9) V1
7 (mod 9) 1 (mod 9) V1
7 (mod 9) 4 (mod 9) V2
7 (mod 9) 7 (mod 9) V1
2 (mod 9) 2 (mod 9) V1
2 (mod 9) 5 (mod 9) V2
2 (mod 9) 8 (mod 9) V1
5 (mod 9) 2 (mod 9) V1
5 (mod 9) 5 (mod 9) V1
5 (mod 9) 8 (mod 9) V2
8 (mod 9) 2 (mod 9) V2
8 (mod 9) 5 (mod 9) V1
8 (mod 9) 8 (mod 9) V1

Figure 4
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Let V be the group of vectors generated by those of Φv under vector addition. By
applying Lemma 2.2, we have that V = {〈3m, 3n, 3p〉 : m,n, p ∈ Z and m+n+p ≡ 0
(mod 2)}. Any vector in V must have initial and terminal point colored the same
color. But 〈3a, 3b, 3c〉 ∈ V and (0, 0, 0) is adjacent to (3a, 3b, 3c) in G(Z3, 3

√
6s).

This contradiction implies that χ(Z3, 3
√

6s) = 4. 2

To now establish the main result of this section, we need only do a little book-
keeping with previous theorems.

Theorem 3.4 Let p be any positive integer which contains no prime factor congruent
to 2 (mod 3). Then χ(Q3,

√
2p) = 4.

Proof If p is not divisible by 3, we have

4 ≥ χ(Q3,
√

2p) ([7])

≥ χ(Z3,
√

2p)

= 4. (Theorem 3.1)

If p is divisible by 3, we have

4 ≥ χ(Q3,
√

2p) ([7])

= χ(Q3, 3
√

2p) (Lemma 2.1)

≥ χ(Z3, 3
√

2p)

= 4. (Theorem 3.3)

2

4 Extensions

In this section we denote by T the set of all odd, positive, square-free integers whose
prime factorization contains at least one factor congruent to 2 (mod 3). We now
return to the question presented in Section 2, that of determining χ(Q3, d) for ar-
bitrary distance d. In light of Theorem 3.4, it suffices to determine χ(Q3,

√
2t) for

each t ∈ T .
As a consequence of [5], we have that each graph G(Q3,

√
2t) is triangle-free. This

fact in itself has no bearing on χ(Q3,
√

2t) as there exist triangle-free graphs of arbi-
trarily large chromatic number (see [10]). It does ensure that no direct application
of the technique used in Theorems 3.1 and 3.3 is possible. We can however, offer a
modified version of this technique that is shown to be successful in the specific case
of G(Q3,

√
10).

Theorem 4.1 χ(Q3,
√

10) = 4.



M. NOBLE/AUSTRALAS. J. COMBIN. 65 (1) (2016), 59–70 66

Proof Consider the graph G given in Figure 5. It is known alternately as the
Grötzsch graph or as the Mycielskian graph, and is shown in [4] to be the unique
triangle-free, 4-chromatic graph with minimum vertex set.

Figure 5

Whether or not G appears as a subgraph of G(Q3,
√

10) (or of any other G(Q3,
√

2t))
we cannot say. We were, however, able to embed a particular subgraph of G in
G(Q3,

√
10). We denote this graph G′, and it is given in Figure 6 with the aforemen-

tioned representation.

(0, 0, 0)

( 45 ,
−3
5 ,−3)(0,−1,−3)

(−1, 2,−3)(−2,−1,−3)

( 2
3
, 5
3
, −1

3
)

(−7
15

, −26
15

, −1
3
)

(
57
23 ,

−19
23 , −24

23

)
( 35 ,

4
5 ,−3)(1, 0,−3)

Figure 6

Since G′ contains an odd cycle and is a proper subgraph of G, we have that
χ(G′) = 3. Any proper 3-coloring of G′ has the property that the vertices u = (0, 0, 0)
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and v = (57
23
, −19

23
, −24

23
) must be colored the same color. To see this, suppose that G′

has been 3-colored, say with the colors red, blue, and green, and suppose that u and v
have been colored red and blue, respectively. It follows that (3

5
, 4
5
,−3) and (0,−1,−3)

must each be colored green. Vertices (2
3
, 5
3
, −1

3
) and (−7

15
, −26

15
, −1

3
) cannot then both be

colored red as that would force the adjacent vertices (−2,−1,−3) and (−1, 2,−3) to
both be colored blue. Similarly, the vertices (2

3
, 5
3
, −1

3
) and (−7

15
, −26

15
, −1

3
) cannot both

be colored green as that would force each of the vertices (1, 0,−3) and (4
5
, −3

5
,−3) to

be colored blue, which would in turn force (−2,−1,−3) and (−1, 2,−3) to both be
colored red. Regarding the symmetry of G′, we may assume that (2

3
, 5
3
, −1

3
) is colored

green and (−7
15
, −26

15
, −1

3
) is colored red. We are then forced to color (−2,−1,−3) blue,

which results in (1, 0,−3) being adjacent to vertices colored red, blue, and green,
and requiring the use of a fourth color.

We now assume χ(Q3,
√

10) = 3 and use the same strategy as that used in the
proofs of Theorems 3.1 and 3.3. Let w be the vector with initial point u and terminal
point v, and note that w = 〈57

23
, −19

23
, −24

23
〉. The preceding arguments show that in any

3-coloring of G(Q3,
√

10), any arrow representing the vector w must have initial and
terminal point colored the same color. It follows that the vector w′ = 〈57,−19,−24〉
must also have initial and terminal point colored the same color, and furthermore that
any vector in Φw′ must have initial and terminal point colored the same color. Letting
W denote the group of vectors generated by those of Φw′ under vector addition, and
observing that |w′| =

√
4186 =

√
2 · 7 · 13 · 23, we may use Lemma 2.2 to conclude

that 〈3, 1, 0〉 ∈ W . This contradiction, along with the previously mentioned results
of [7], gives us that χ(Q3,

√
10) = 4. 2

The proof of Theorem 4.1 is satisfactory in showing that χ(Q3,
√

10) = 4, and
we include it as is due to the fact that it uses the machinery already put in place
by the proofs of Theorems 3.1 and 3.3. However, it is a bit unsatisfying in the fact
that no 4-chromatic subgraph of G(Q3,

√
10) is explicitly produced. Fortunately, this

issue can be addressed with an application of Rodrigues’ well-known rotation formula
(originally appearing in [13]) which is usually presented in the following form. For
vectors v1, v2 ∈ R3 with |v1| = |v2|, a rotational matrix R mapping v1 to v2 is given
by

R = I + (sinα)K + (1− cosα)K2

where α is the angle between v1 and v2 and

K =




0 −k3 k2
k3 0 −k1
−k2 k1 0




with k = 〈k1, k2, k3〉 where either k = 1
|v1×v2|(v1×v2) or k = 1

|v1×v2|(v2×v1), depending
on the orientation of the vectors v1 and v2.

Observing the basic identities cosα = v1·v2
|v1||v2| and sinα = |v1×v2|

|v1||v2| , we have that for

v1, v2 ∈ Q3, the entries of the matrix R are rational. In other words, for v1, v2 ∈ Q3

with |v1| = |v2|, there is a rotation mapping v1 to v2 which is a bijection on Q3.
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Now returning to the proof of Theorem 4.1, it was shown that if there was a proper
3-coloring of G(Q3,

√
10), in such a coloring the vector w = 〈57

23
, −19

23
, −24

23
〉 must have

initial point and terminal point colored the same color. The above observations
concerning isometries of Q3 extend this claim, showing that in a proper 3-coloring
of G(Q3,

√
10), any Q3 vector of length |w| must have initial and terminal point

colored the same color. As we desire to construct an explicit 4-chromatic subgraph

of G(Q3,
√

10), our next question is to ask how many vectors of length |w| =
√

182
23

are

needed to create a vector of length
√

10. It turns out that three vectors are required.
Letting w1 = 〈64

23
, 9
23
, 3
23
〉, w2 = 〈−57

23
, 19
23
, 24
23
〉, and w3 = 〈 8

23
, 39
23
, −51

23
〉, we have that

|w1| = |w2| = |w3| =
√

182
23

and w1+w2+w3 = 〈15
23
, 67
23
, −24

23
〉 with |w1+w2+w3| =

√
10.

Incidentally, it is impossible to have two Q3 vectors of length
√

182
23

which together

sum to a vector of length
√

10. Proof of this fact is omitted, but we remark that it
can be shown by applying the results found in Chapter 5 of [11].

We now return to the graph G′ in Figure 6 and consider two rotations of Q3. R1

rotates about the origin u and maps v to the point v′ = ( 8
23
, 39
23
, −51

23
). R2 rotates

about the point v and maps u to the point u′′ = (−7
23
, −28

23
, −27

23
). Note that the vector

with initial point u′′ and terminal point v is equal to w1, the vector with initial
point v and terminal point u is equal to w2, and the vector with initial point u and
terminal point v′ is equal to w3. Thus an induced subgraph of G(Q3,

√
10) whose

vertices are those of G′ along with their images under the mappings R1 and R2 must
have chromatic number 4.

The vertex set and edge set of the subgraph we have produced are given below.
Any vertex of the form x′ or x′′ indicates the image of vertex x under the mapping
R1 or R2, respectively. Note that there is no vertex labeled u′ or v′′ as R1 fixes u
and R2 fixes v.

Vertex Set of a 4-chromatic Subgraph of G(Q3,
√

10)

u = (0, 0, 0) u′′ = (− 7
23
,−28

23
,−27

23
)

v = (57
23
,−19

23
,−24

23
) v′ = ( 8

23
, 39
23
,−51

23
)

a = (1, 0,−3) a′ = (−937497
429065

, 41983
33005

,−162996
85813

) a′′ = (3231632
1634633

,−5419943
1634633

,−38895
71071

)

b = (−2,−1,−3) b′ = (−11339
3731

,−494
287
,−5007

3731
) b′′ = (− 179936

1634633
,−7725314

1634633
,−4019760

1634633
)

c = (−1, 2,−3) c′ = (−13523
3731

, 227
287
, 1818
3731

) c′′ = (− 481328
1634633

,−7296249
1634633

, 1122741
1634633

)

d = (4
5
,−3

5
,−3) d′ = (−177453

85813
, 5080
6601

,−194391
85813

) d′′ = (16459552
8173165

,−5505756
1634633

,−418062
355355

)

e = (3
5
, 4
5
,−3) e′ = (−2455

943
, 1323

943
,−1056

943
) e′′ = (124904

89815
,−64243

17963
, 6813
89815

)

f = (2
3
, 5
3
,−1

3
) f ′ = (− 731099

1287195
, 152186

99015
, 207293
257439

) f ′′ = (− 751768
4903899

,−6398174
4903899

, 3155528
4903899

)

g = (− 7
15
,−26

15
,−1

3
) g′ = ( 24569

257439
,−25945

19803
,−326422

257439
) g′′ = ( 1364824

24519495
,−7856995

4903899
,−71644877

24519495
)

h = (0,−1,−3) h′ = (−259
115
,− 12

115
,−51

23
) h′′ = (26968

17963
,−67072

17963
,−32544

17963
)

Explicitly stated, the edge set of the subgraph we have constructed is given by
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E = {ab, af, au, bc, be, bg, cd, cf, ch, dg, du, eu, ev, fv, gv, hu, hv, a′b′, a′f ′, a′u,
b′c′, b′e′, b′g′, c′d′, c′f ′, c′h′, d′g′, d′u, e′u, e′v′, f ′v′, g′v′, h′u, h′v′, a′′b′′, a′′f ′′, a′′u′′,
b′′c′′, b′′e′′, b′′g′′, c′′d′′, c′′f ′′, c′′h′′, d′′g′′, d′′u′′, e′′u′′, e′′v, f ′′v, g′′v, h′′u′′, h′′v, u′′v′}.

We close by remarking that to our knowledge this is the first example given of a
triangle-free, 4-chromatic distance graph in Q3.
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