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Abstract

We prove a new sufficient condition for a cubic 3-connected planar graph
to be Hamiltonian. This condition is most easily described as a property
of the dual graph. Let G be a planar triangulation. Then the dual G∗

is a cubic 3-connected planar graph, and G∗ is bipartite if and only if G
is Eulerian. We prove that if the vertices of G are (improperly) coloured
blue and red, such that the blue vertices cover the faces of G, there is
no blue cycle, and every red cycle contains a vertex of degree at most 4,
then G∗ is Hamiltonian.

This result implies the following special case of Barnette’s Conjec-
ture: if G is an Eulerian planar triangulation, whose vertices are properly
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coloured blue, red and green, such that every red-green cycle contains a
vertex of degree 4, then G∗ is Hamiltonian. Our final result highlights
the limitations of using a proper colouring of G as a starting point for
proving Barnette’s Conjecture. We also explain related results on Bar-
nette’s Conjecture that were obtained by Kelmans and for which detailed
self-contained proofs have not been published.

1 Introduction

The study of Hamiltonian cycles in cubic planar graphs has a rich history, originally
motivated by Tait’s conjecture that every cubic 3-connected planar graph is Hamil-
tonian (which implies the 4-colour theorem). Tutte [21] disproved Tait’s conjecture,
which led to the following conjecture of Barnette:

Conjecture (Barnette [3]). Every cubic 3-connected planar bipartite graph is Hamil-
tonian.

This paper proves a new sufficient condition for a cubic 3-connected planar graph
to be Hamiltonian. This condition is most easily described as a property of the dual
graph. The dual of a cubic 3-connected planar graph G is a planar triangulation
G∗, and G is bipartite if and only if G∗ is Eulerian (that is, every vertex has even
degree). A subset of the vertices of G (or a subgraph of G) hits a face F of G if it
contains a vertex of F . The following is our main result.

Theorem 1. Let G be a planar triangulation, whose vertices are coloured blue and
red, such that the blue vertices hit every face of G, there is no blue cycle, and every
red cycle contains a vertex of degree at most 4. Then G∗ is Hamiltonian.

Note that every Eulerian triangulation has a unique proper 3-colouring. Theo-
rem 1 implies the following corollary for Eulerian triangulations, which via duality
can be thought of as a particular case in which Barnette’s Conjecture holds. This
corollary is also implied by a recent result of Florek [10].

Corollary 2. Let G be an Eulerian planar triangulation, whose vertices are properly
coloured blue, red and green, such that every red-green cycle contains a vertex of
degree 4. Then G∗ is Hamiltonian.

Proof. Apply Theorem 1 with the red and green vertices all coloured red. There is
no blue cycle since the blue vertices are an independent set. By assumption, every
red cycle contains a vertex of degree 4.

It is interesting to note that Theorem 1 also implies the following corollary of
Florek [10, Proposition 2].

Corollary 3 (Florek). Let G be an Eulerian planar triangulation, whose vertices are
properly coloured blue, red and green. Let X and Y partition the vertices of degree
at least 6 such that all such red vertices are in X and all such blue vertices are in Y .
If the induced graphs G[X] and G[Y ] are acyclic, then G∗ is Hamiltonian.
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Proof. Let R be the red vertices of G. In order to apply Theorem 1, initially set
V1 = X ∪R and V2 = V \V1. Thus V1 hits all faces and every cycle in G[V2] contains
a vertex of degree 4 (since G[Y ] is acyclic). It is also required that G[V1] is acyclic.
Any cycle in G[V1] contains a red vertex v of degree 4. The vertex v has two green
and two blue neighbours and the blue ones are in V2. So the cycle goes through the
two green neighbours. These green neighbours touch all faces adjacent to v, so we
may move v from V1 to V2. Do this until there are no cycles in G[V1], then apply
Theorem 1.

All our results are based on the following definition. Let G be a planar triangu-
lation. A subgraph H of G permeates G if H is induced and H hits every face of
G. It is well known that G∗ is Hamiltonian if and only if G contains a permeating
subtree, and that the complement of a permeating subtree is another permeating
subtree (see Section 2). Our final result shows that any approach that, like Corol-
lary 2, constructs a permeating subtree with all or no vertices from a colour class of
the proper 3-colouring of an Eulerian triangulation, is insufficient to prove Barnette’s
Conjecture.

Theorem 4. For every integer k there is a properly 3-coloured Eulerian planar tri-
angulation G such that every permeating subtree of G contains at least k vertices
from each colour class, and excludes at least k vertices from each colour class.

Extensive surveys of the many results relating to Barnette’s Conjecture [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18] can be found in [7, 11]. One
important result due to Kelmans [14] establishes equivalence between Barnette’s
Conjecture and several apparently different statements. For example, to prove the
dual version of Barnette’s Conjecture it is sufficient to consider only triangulations
without separating triangles. Since they are of significant interest but the original
publications contained very few details, in Section 5 we take the opportunity to
explain Kelmans’ proofs.

2 A Useful Lemma

The following well-known lemma characterises when the dual of a planar triangula-
tion is Hamiltonian [9, 10, 19, 20]. We include a proof for completeness. See Figure 1
for an example.

Lemma 5. The following are equivalent for a planar triangulation G:

1. G∗ is Hamiltonian,

2. G contains a permeating subtree,

3. G contains two disjoint permeating subtrees that partition V (G).

Proof. (2) =⇒ (3): Let T be a permeating subtree, and let T ′ be the subgraph of
G induced by the vertices not in T . T ′ is permeating, otherwise T contains a whole
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facial cycle. If T ′ contains a cycle C, then T lies either inside or outside C (since T
is connected). The other side of C contains a face of G that T does not hit. Hence
T ′ is acyclic, and T ∪ T ′ is a forest.

It remains to show that T ′ is connected. Suppose G has n vertices, m edges and
f faces. For each triangle of G, T ∪T ′ contains one of its three edges, so the number
of edges is f/2. Since G is a triangulation, m = 3f/2. Combining this with Euler’s
formula yields f/2 = n−2. An n-vertex forest with n−2 edges has two components,
so T ′ is connected.

(3) =⇒ (2): Trivial.
(3) =⇒ (1): Contracting each of the two trees to a single vertex leaves all faces

intact, and the resulting multigraph has two vertices and no loops. The dual of this
graph is a cycle, which corresponds to a Hamiltonian cycle in G∗.

(1) =⇒ (3): Let C be a Hamiltonian cycle in G∗. The cycle C determines a closed
Jordan curve C ′ in the plane that avoids all the vertices of G, and only crosses the
edges of G that are dual to the edges of C. Let T1 be the subgraph of G induced by
the vertices inside of C ′, and T2 the subgraph of G induced by the vertices outside
of C ′. Clearly T1 and T2 partition V (G). If T1 or T2 contains a cycle, then that cycle
would contain a face of G not met by C, which contradicts the Hamiltonicity of C.
Hence T1 ∪ T2 is a forest. In particular, no facial cycle is contained in T1 or T2, so
both T1 and T2 are permeating.

To show that T1 and T2 are trees, suppose G has n vertices, m edges and f faces.
Then the number of edges in C is f , and the edges between T1 and T2 are precisely
the f edges dual to the edges of C. Hence by Euler’s formula T1 and T2 contain a
total of m−f = n−2 edges. An n-vertex forest with n−2 edges has two components,
so T1 and T2 are trees.

Note that the fact that G is a triangulation is only used in (2)=⇒(3). (1)⇐⇒ (3)
holds for all 2-connected planar graphs. Also note that the permeating property could
be omitted in (3) since two disjoint trees that cover all vertices must necessarily be
permeating.

3 Proof of Theorem 1

Let B be the set of blue vertices in G. Let R be the subgraph of G induced by the
red vertices. An edge of R is short if at least one of its endpoints has degree at most
4 in G, otherwise the edge is long. Let H be the planar dual of R. Note that H may
have loops or parallel edges. Each edge of H is short or long depending on whether
the dual edge in R is short or long.

Since every planar dual is connected, H is connected. Let H ′ be the spanning
subgraph of H consisting of the short edges. We now prove that H ′ is connected.
Suppose, on the contrary, that H ′ is disconnected. Since H ′ is obtained from the
connected graph H by deleting the long edges, some set C of long edges form a
minimal edge cut in H. Let C∗ be the set of edges of R that are dual to the edges in
C. By planar duality, C∗ is a cycle in R. Every edge in C∗ is long. Thus G contains a
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Hamiltonian cycle

Tree 1

Tree 2

Figure 1: A planar triangulation G with two disjoint permeating subtrees and the
corresponding Hamiltonian cycle in G∗.

red cycle all of whose vertices have degree at least 5 in G. This contradiction proves
that H ′ is connected. Let T be a spanning tree of H ′.

Construct a set S of red vertices as follows. Consider each edge vw in T in turn.
Let xy be the short edge of R that is dual with vw. At least one of x and y, say x,
has degree at most 4 in G. Add x to S.

We now prove that G[B ∪ S] is a permeating subtree of G. Since B hits every
face, B ∪ S hits every face. Since no face of G is all red, no face of R is a face of
G. Hence there is a bijection between the faces of R and the connected components
of G[B], and thus also with the vertices of T . Associated with each edge of T is
a 2-edge path in G[B ∪ S] that joins two connected components of G[B] via a red
vertex in S. Hence G[B∪S] is connected. To conclude that G[B∪S] is a permeating
subtree, we now show that B ∪ S induces no other edges.

First suppose that there is a vertex x in S with degree 3 in G. Say xy was
the short edge in R when x was added to S. Let vxy and wxy be the faces of G
incident to xy. Thus v and w are adjacent blue vertices, and vxw is a face of G (since
degG(x) = 3). Hence the edge of H dual with xy is a loop, and is in no spanning
tree of H. Therefore every vertex in S has degree 4 in G.

Consider a vertex x in S. So x is red and has degree 4. If x has four blue
neighbours, then they form a blue cycle. If x has three blue neighbours and y is
the red neighbour of x, then the blue neighbours induce a path in G, implying that
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the edge of H dual to xy is a loop, in which case x is not added to S. If x has
three red neighbours, then some face incident to x is not hit by the blue vertices.
Hence x has exactly two blue neighbours. Moreover, the blue neighbours of x are
not consecutive in the cyclic order around x, as otherwise some face incident to x is
not hit by the blue vertices. By construction, these two blue neighbours of x are in
distinct components of G[B].

Suppose that S contains two adjacent vertices x and x′. Let e be the short edge
in R incident to x when x was added to S. Let e′ be the short edge in R incident
to x′ when x′ was added to S. Let v and w be the two blue neighbours of x. Then
v, x′, w are consecutive in the cyclic ordering of neighbours of x, which implies that
v and w are also the two blue neighbours of x′. Thus the dual edge to both e and e′

is vw. Hence T contains a 2-cycle. This contradiction proves that no two vertices in
S are adjacent. Therefore G[B ∪ S] is a permeating subtree. Theorem 1 follows by
Lemma 5.

4 Proof of Theorem 4

The proof of this theorem makes use of the special graph H shown 3-coloured in
Figure 2 which can be considered as the “barycentric subdivision” of the tetrahedron.
It has the following property:

Red

Blue

Green

v0 v1

v2

v3

v4?

v4?

Figure 2: The planar triangulation H.

Claim 1. Every permeating subtree of H has at least one vertex of degree 4.
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Proof. Observe that one colour class (say blue) contains exactly the vertices of degree
4, whereas in the other two colour classes (say green and red) all vertices have degree
6. Assume that there exists a permeating subtree T of H containing no blue vertex.

We first show that T is a path. Assume to the contrary that there is a vertex v0
with three neighbours in T . Without loss of generality, v0 is green. Then its three
red neighbours v1, v2, v3 are in T . These four vertices do not hit all the faces of H.
So, without loss of generality, v1 has a green neighbour v4 6= v0 in T , as shown in
Figure 2. There are two possibilities for v4, one adjacent to v2, the other adjacent to
v3. So adding v4 creates a cycle, contradicting that T is an induced tree. Hence, T
is a path.

Each vertex of the path T has six incident faces, two of which overlap with the
faces incident to the previous vertex in T . Consequently, the number of faces incident
to the path is congruent to 2 mod 4, which cannot equal the total number of faces
(24). This contradiction proves Claim 1.

Let H1, . . . , H3k be copies of H such that the degree-4 vertices in Hi are coloured
i mod 3. For 1 ≤ i ≤ 3k, let gi be the outer face of Hi, and let fi be a face of Hi

vertex-disjoint from gi. Construct G1, . . . , G3k recursively as follows. Let G1 := H1.
Then for 2 ≤ i ≤ 3k, construct Gi by pasting Gi−1 and Hi on faces fi−1 and gi, as
illustrated in Figure 3. More precisely, each vertex in face fi−1 of Gi−1 is identified
with the vertex of the same colour in face gi of Hi. Note that after the gluing, fi
is a face of Gi (so the construction makes sense). Observe that Gi is a 3-coloured
Eulerian triangulation with 11i+3 vertices. In particular, G3k is a 3-coloured Eulerian
triangulation with 33k + 3 vertices.

Hi

fi−1

Gi−1

Figure 3: Gi is constructed by pasting a copy of H into face fi−1 of Gi−1.

We now make the following important observation:

Claim 2. For 2 ≤ i ≤ 3k, if T is a permeating subtree of Gi, then T ∩ Hi is a
permeating subtree of Hi and T ∩Gi−1 is a permeating subtree of Gi−1.

Proof. T includes at least one vertex in gi since gi separates the two disjoint faces
g1 and fi. Since T is an induced tree, T includes at most two vertices in gi, and
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if T includes two vertices in gi then they are adjacent in Gi and thus in T . Hence
T ∩Hi is a (connected) subtree of Hi. Every face of Hi except gi is a face of Gi and is
therefore hit by T . As observed above, at least one vertex of gi is in T . Thus, T ∩Hi

is a permeating subtree of Hi. By an identical argument, T ∩ Gi−1 is a permeating
subtree of Gi−1.

We continue with the proof of Theorem 4. Let T be a permeating subtree of G3k.
Then, by induction applying Claim 2 at each step, T ∩ Hi is a permeating subtree
of Hi for 1 ≤ i ≤ 3k. By Claim 1, T includes at least one degree-4 vertex in each
Hi. Thus, for j ∈ {0, 1, 2}, T contains at least one vertex coloured j in each Hi such
that i ≡ j (mod 3). Since fi and gi are vertex-disjoint, if Hi and Hi′ have a vertex
in common then |i − i′| ≤ 1. Thus these vertices coloured j are distinct. Hence, T
contains at least k vertices coloured j. This completes the proof of Theorem 4.

A separating triangle is a 3-cycle whose deletion disconnects the graph. In the
following section we will see that the most important graphs for Barnette’s conjecture
are those without separating triangles. Although the example just constructed has
many separating triangles, a similar but somewhat more complicated construction
can be used to obtain examples without separating triangles. We omit the details.

5 Kelmans’ Equivalences

In this section we explain some important results obtained by Kelmans [14], for which
detailed self-contained proofs have not been published. We hope that this will be
of help to those who investigate Barnette’s Conjecture in the future. Our aim here
is to clearly present the main ideas of the proofs. Some details are still left to the
reader to verify.

A cubic 3-connected planar bipartite graph will be called simply a Barnette graph.
Let x and y be edges in the same face of a Barnette graph G. Then G is (x+y−)-
Hamiltonian if it has a Hamiltonian cycle containing x and not y. Similarly, G is
(x+y+)-Hamiltonian if it has a Hamiltonian cycle containing x and y.

A graph is cyclically-k-edge-connected if it has no edge cut of size k− 1 such that
both sides of the cut contain a cycle. (In the dual, cyclic edge cuts correspond to
separating cycles.) All Barnette graphs are cyclically-3-edge-connected, but also all
have a face of size 4 so they cannot be cyclically-5-edge connected. (This may need
proof for small examples).

Given two edges x and y in the same face of a Barnette graph G, the four-pole
G′ is the graph formed by cutting x and y and adding degree one vertices to the
new ends, as illustrated in the left side of Figure 4. The new vertices are called
x1, x2, y1 and y2. We will connect four-poles together in various ways to build up
larger Barnette graphs.

If G is (x+y−)-non-Hamiltonian (i.e. has no Hamiltonian cycle containing x and
not y), then G′ − {y1, y2} has no Hamiltonian path and is said to be (x+y−)-non-
traceable. If G is (x+y+)-non-Hamiltonian (i.e. has no Hamiltonian cycle containing
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Figure 4: Creating four-poles.

x and y), then G′ can not be covered by two disjoint paths each starting in {x1, x2}
and ending in {y1, y2}. G′ is said to be (x+y+)-non-traceable.

Note that a four-pole G′ inherits its 2-colouring from the Barnette graph G. If
necessary, the colours of the terminals can be altered by extending the four-pole as
illustrated in the right side of Figure 4. It can be checked that the resulting four-pole,
while not derived from a Barnette graph, retains the essential properties of G′ when
used in the constructions that follow.

Since the number of vertices in a four-pole is even, we have the following useful
covering path property. Suppose u and v are terminals of G′ with the same colour.
Then G′ − {u, v} does not have a Hamiltonian path.

The following theorem is a summary of various results of Kelmans. The main
parts of the proof are (1) =⇒ (2) and (3) =⇒ (4), which are proved in [14],
but with most details left to the reader. The other required implications are trivial
except for (4) =⇒ (1) which is claimed by Kelmans in [15].

Theorem 6 (Kelmans). The following are equivalent:

1. Every Barnette graph is Hamiltonian (Barnette’s Conjecture).

2. Every Barnette graph is (x+y−)-Hamiltonian for every choice of x and y in the
same face.

3. Every cyclically-4-edge-connected Barnette graph is Hamiltonian.

4. Every cyclically-4-edge-connected Barnette graph is (x+y+)-Hamiltonian for ev-
ery choice of x and y in the same face.

Proof. We begin with the easiest implications. (1) =⇒ (3) requires no explanation.
(2) =⇒ (4) follows from the following observation. If a Barnette graph G is (x+y+)-
non-Hamiltonian, then there is an edge z adjacent to y and in the same face as x,
and G is (x+z−)-non-Hamiltonian. This is because G is cubic, so if a Hamiltonian
cycle avoids some edge, it passes through every adjacent edge.

(4) =⇒ (1): The proof is by induction on the number of cyclic-3-edge-cuts in G.
If there are none then G is Hamiltonian by (4). If there are some then choose one such
that one side of the cut contains no cyclic-3-edge-cut. Let G1 and G2 be the graphs
obtained by contracting one side of the cut. By a simple degree sum argument, the



HELMUT ALT ET AL. /AUSTRALAS. J. COMBIN. 64 (2) (2016), 354–365 363

vertices on each side of the cut share the same colour, so G1 and G2 are bipartite,
and hence Barnette graphs. Thus both are Hamiltonian by the induction hypothesis.
One of them, say G1, is cyclically-4-edge-connected, and hence (x+y+)-Hamiltonian
for all x and y. Therefore a Hamiltonian cycle can be found in G1 that is compatible
with the Hamiltonian cycle in G2, giving a Hamiltonian cycle in G.

(1) =⇒ (2): Suppose there is an (x+y−)-non-Hamiltonian Barnette graph G. Cre-
ate an (x+y−)-non-traceable four-pole G′1. Applying the construction of Figure 4.2 if
needed, we may assume that x1 and y1 receive different colours. Take two copies of
G′1 and connect them as shown in Figure 5 to create a new Barnette graph G2. Using
the covering path property and the (x+y−)-non-traceable property, a straightforward
case analysis shows that G2 has no Hamiltonian cycle avoiding the edge marked e.
Now take two copies of G2 and connect them as shown in Figure 6 to create the
Barnette graph G3, which has no Hamiltonian cycle containing the edge marked d.
Finally take two copies of G3 and connect them in much the same way as in Figure 6,
but using the edge d. This yields a non-Hamiltonian Barnette graph.

x
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x
1

x
2

y
1

y
2

y
1

y
2

G'
1

G'
1

e

Figure 5: Creating G2 in the proof of (1) =⇒ (2).

G
2

G
2

G
2

G
2

e

e

d

Figure 6: Creating G3 in the proof of (1) =⇒ (2).

(3) =⇒ (4): Suppose there is an (x+y+)-non-Hamiltonian cyclically-4-edge-conn-
ected Barnette graph G. Create an (x+y+)-non-traceable four-pole G′1. We may
again assume that x1 and y1 get different colours. As noted at the beginning of
the proof, G is also (x+z−)-non-Hamiltonian for an edge z adjacent to y. Thus
we may also create an (x+z−)-non-traceable four-pole G′2. Take two copies of G′1
and two of G′2 and connect them as shown in Figure 7 to create a cyclically-4-edge-
connected Barnette graph G3. Using the covering path and non-traceable properties,
a reasonably easy case analysis (based on which of the edges marked d and e are in
a supposed Hamiltonian cycle) shows that G3 is non-Hamiltonian.



HELMUT ALT ET AL. /AUSTRALAS. J. COMBIN. 64 (2) (2016), 354–365 364

x
1

x
2

x
1 x

2

y
1

y
2

y
1 y

2

G'
1

G'
1

e

y
1

y
2

G'
2

y
1

y
2

G'
2

x
1

x
2

x
1

x
2

d

Figure 7: Creating G3 in the proof of (3) =⇒ (4).
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