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Abstract

A permutation class is said to be deflatable if its simple permutations are
contained within a proper subclass. Deflatable classes are often easier to
describe, analyze and enumerate than their non-deflatable counterparts.
This paper presents theorems guaranteeing the non-deflatability of prin-
cipal classes, constructs an infinite family of deflatable principal classes,
and provides examples of each.

1 Introduction

A series of recent enumerative and structural results in the theory of permutation
classes make use of a common technique, relying on a sparseness property of the
simple permutations in a permutation class. If this property holds, we call the class
deflatable (formal definitions follow below). Much of the analysis of a deflatable class
can be carried out in a substantially smaller, and therefore in principle more easily
understood, permutation class. This raises the question, interesting in its own right,
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Figure 1: The diagram of the
permutation 2531647. The
three gray points represent
the pattern 312 contained in
2531647.

Figure 2: The permutation
4371265 “ 2413r21, 1, 12, 21s.
The shaded square represents
a box which is cut by two cut
points, one by position and one
by value.

of characterising deflatable classes. This paper answers that question, at least in
part, for principal permutation classes.

The fundamental concept in permutation class theory is the relation of permuta-
tion containment. A permutation α is contained as a pattern (or subpermutation)
in another permutation β (denoted α ď β) if, when both are written in one line
notation, β has a subsequence whose terms are ordered in the same relative manner
as the terms of α. For instance, 312 ď 2531647 because the entries of the subse-
quence 514 follow the same relative order as the permutation 312. This relation is
more clearly displayed in the diagrams of the permutations where we plot the points
pi, βpiqq of a permutation β in the px, yq plane. For example, the diagram of 2531647
is shown in Figure 1.

Such diagrams will be used extensively, and we now define some associated terms.
A box in a permutation diagram is a rectangular region containing a nonempty subset
of the points. A cut point of a box is a point of the permutation outside the box
but whose position is between the leftmost and rightmost points of the box (cut by
position), or whose value is between the maximum and minimum points of the box
(cut by value). An interval of a permutation is a box which is not cut by position
nor by value. Equivalently, an interval in a permutation is a set of entries whose
indices and values each form a contiguous set, i.e, an interval of the domain and the
range. For convenience, we use the convention that the entire permutation is not
itself an interval.

Intervals of permutations arise naturally through the process of inflation: an
inflation of a permutation π is a permutation formed by replacing some of the points
of π by other permutations (with appropriate adjustments of values so that the result
is a permutation). The permutation resulting from the inflation of a permutation
α of length k by permutations τ1, . . . , τk is denoted by αrτ1, . . . , τks. For example,
4371265 “ 2413r21, 1, 12, 21s, as shown in Figure 2.

The pattern containment relation is a partial order on the set of all permutations.
It admits eight automorphisms corresponding to the isometries of the square; for ex-
ample, group-theoretical inversion of permutations corresponds to reflection over the
line y “ x (see [11] for a more comprehensive discussion). Note that these auto-
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morphisms also act on the intervals of a permutation, i.e., the image of any interval
of a permutation π is an interval in the image of π. The partial order is studied
through its lower ideals, i.e., sets of permutations which are closed downwards under
pattern containment. These sets are called permutation classes (or sometimes just
classes). Commonly, a permutation class C is described by specifying the (unique)
set of minimal permutations that do not belong to C. This set B is called the basis
and we write C “ AvpBq to signify that C is the set of permutations that avoid (do
not contain) any of the permutations of the basis B. Note again that, if a is one of
the eight automorphisms mentioned above, and C is a permutation class then apCq,
i.e., the set of images under a of the permutations in C is also a permutation class,
and that if B is the basis of C then apBq is the basis of apCq.

The first permutation classes to be studied were the so-called principal classes —
those whose basis consists of a single permutation. All of our results will be confined
to this case. Despite their simple definition, the structure of principal permutation
classes is not very well understood. In particular the vast majority of permutation
classes which have been enumerated are not principal.

Recent successes in permutation class enumeration (for example: [3, 4,7,8,9,10])
have relied heavily on the notion of simplicity. A permutation σ is simple if it
has no intervals other than those consisting of single points. Unsurprisingly, given
the remarks above, simple permutations are also invariant under the actions of the
automorphisms of the containment order. The significance of simple permutations
to the theory of permutation classes is due in large part to the following result.

Proposition 1.1 (Albert and Atkinson [2]). Every permutation π is the inflation
of a unique simple permutation σ. If |σ| ą 2 then the maximal intervals of π are
disjoint and π is obtained from σ by inflating its points with these maximal intervals.

To see that the requirement |σ| ą 2 in the second part of the proposition is
necessary, consider π “ 21354. Its maximal intervals are 213 and 354 and these are
not disjoint. However, this can only occur when π is an inflation of either 12 or
21. We consider this special case briefly now. When π is an inflation of 12 we say
that π is sum-decomposable, and when π is an inflation of 21 we say that π is skew-
decomposable. We refer to an inflation of 12 as a sum and write 12rα, βs “ α ‘ β,
while we refer to an inflation of 21 as a skew-sum and write 21rα, βs “ αa β. These
notations extend naturally as follows for any k ě 2:

α1 ‘ α2 ‘ ¨ ¨ ¨ ‘ αk “ 12 ¨ ¨ ¨ krα1, α2, . . . , αks

β1 a β2 a ¨ ¨ ¨ a βk “ k pk ´ 1q ¨ ¨ ¨ 1rβ1, β2, . . . , βks

If π is not sum-decomposable then we say that it is sum-indecomposable and if it is
not skew-decomposable then we say it is skew-indecomposable. A permutation that
is both sum- and skew- indecomposable will simply be called indecomposable. It is to
exactly these permutations that the second sentence of the proposition above applies.
If a permutation, π is sum-decomposable, then there is a maximum k such that π
is an inflation of 12 ¨ ¨ ¨ k, say π “ α1 ‘ α2 ‘ ¨ ¨ ¨ ‘ αk. In this case the sequence α1,
α2, . . . , αk consists of the maximal sum-indecomposable intervals of π (which are
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disjoint), and these intervals will be called the sum-components (or just components)
of π. Of course analogous terminology applies when π is skew-decomposable.

Simple permutations are quite common: Albert, Atkinson, and Klazar [6] showed
that the number of them of length n is equal to pn!{e2qp1`op1qq, i.e., they have limit-
ing density 1{e2. However, it is often the case that within any particular permutation
class (apart from the set of all permutations) their density is far lower; no satisfactory
explanation of this phenomenon is known. Indeed there is no known permutation
class whose simple permutations have positive density within the class as a whole
(i.e., a class for which the ratio of the number of simple permutations of length n
to the number of all permutations of length n in the class does not go to zero as n
goes to infinity). The unexpected low density of simple permutations in a permuta-
tion class C is frequently a consequence of the simple permutations lying in a proper
subclass C 1 of C. This property may enable the structure of C to be determined and
thereby its enumeration: briefly, C 1 is an easier class to work with and the entirety
of C can be recovered by suitably restricted inflations.

Rather than think about the simple permutations of a given class, one can think
about classes which contain a given set S of simple permutations. For ease of expo-
sition, we assume that S is closed under taking simple subpermutations, i.e., that if
σ P S and if τ is simple with τ ď σ then τ P S. At one extreme is the downward
closure of S, i.e., the set of all subpermutations of elements of S, denoted ClpSq,
which of course is the smallest class containing S. At the other extreme we en-
counter the notion of the substitution closure of a class: the substitution closure of
C, denoted xCy, is the largest class containing the same simple permutations – it is
formed from C by taking the closure under inflation. With this notation, the largest
class containing exactly the simple permutations in S is xClpSqy.

As mentioned above, it is frequently easier to enumerate and describe a class
if its simple permutations are actually contained in a smaller class. This leads us
to our key definition. A permutation class C is said to be deflatable if its simple
permutations lie in a smaller class, i.e., if C Ď xDy for some proper subclass D of
C. This term is intended to convey that the proper subclass D can be obtained by,
in a sense, reversing the operation of inflating simple permutations. Moreover, it
follows that C is not deflatable if and only if C is equal to the downward closure of
its simple permutations. That is, a class C is not deflatable if and only if, for every
permutation π P C there is a simple permutation σ P C with π ď σ. From this it
follows that deflatability is also invariant under the automorphisms of the pattern
containment relation.

Examples of deflatable and non-deflatable classes are readily given. The class
Avp231q is deflatable since 12 and 21 are its only simple permutations. On the
other hand Avp321q is not deflatable, a result which is more or less folkloric, but
appears (essentially) in a paper by Albert, Atkinson, Brignall, Ruškuc, Smith, and
West [5, Proposition 6].

Now we can pose our central question: for which permutations π is Avpπq deflat-
able?

We can only provide partial answers to this question. In particular, for indecom-
posable π we can only show that Avp2413q and symmetrically (or rather “automorphi-
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cally” but we will use the more common term) Avp3142q are not deflatable. However,
for decomposable π we can say much more. Considering the sum-decomposable case
only (which by symmetry is sufficient) we can say that Avpπq is not deflatable unless
π has exactly two components, one of which has length 1. Even more holds: even
in this case, if |π| ě 4 unless the non-trivial component contains both an increasing
and decreasing consecutive pair of consecutive values (like 34 and 65 in 134652), then
Avpπq is still not deflatable. These results are proven in Section 3. In the converse
direction, Section 4 presents a test for deflatability and uses this test to provide sev-
eral examples of deflatable principal permutation classes, including an infinite family.
Finally, we summarize some remaining open questions in Section 5.

2 Preliminary Lemmas

In the following sections, we will sometimes restrict our focus to indecomposable
permutations. The next lemma shows that this does not lose us much generality.

Lemma 2.1. Every permutation in Avpπq can be embedded into an indecomposable
permutation in Avpπq unless π P t1, 12, 21, 132, 213, 231, 312u.

Proof. Let ω P Avpπq. We first handle the case where π has a corner point, i.e., π
has one of the forms 1‘ τ , τ ‘ 1, 1a τ , or τ a 1. Assume further that π starts with
1, i.e., the first case applies; the other three cases follow symmetrical arguments.

We first embed ω into the sum-indecomposable permutation ω̂ “ ω a 1. By the
assumption that π has the form 1‘ τ , it is clear that ω̂ P Avpπq. Let us be explicit,
just once, about this sort of remark. Suppose that 1 ‘ τ ď ω a 1. Then there is a
subset of ωa1 whose elements have pattern 1‘τ . In particular, the leftmost element
of this subset is its least element. Therefore, the last element of ω a 1 cannot be in
the set, and in fact 1‘ τ ď ω.

Consider the skew-decomposition ω̂ “ ω1a¨ ¨ ¨aωk such that each ωi is itself skew-
indecomposable. Form a new skew-indecomposable permutation sω “ Ďω1 a ¨ ¨ ¨ aĎωk,
where sωi “ 12 if ωi “ 1, and sωi “ ωi otherwise. Lastly, obtain an indecomposable
permutation ζ containing ω by taking each pair p sωi, Ěωi`1q of skew components of sω
and linking them together by inserting an entry just before the final point of sωi and
just below the topmost point of Ěωi`1. The only permutations beginning with 1 that
can be introduced by this step are 1, 12, and 132. Therefore ζ P Avpπq. Figure 3
gives an example of performing these steps to ω “ 564213. This completes the proof
in the case that π has a corner point.

Assume now that π has no corner points. It follows that the outer points (the
top- bottom- left- and right-most entries) of π form one of the patterns 2143, 2413,
3142, or 3412. By appealing to a symmetry if necessary, we can assume that these
outer points do not form a 2413 pattern. Form an indecomposable permutation ζ by
adding outer points to ω to form a 2413, as shown in Figure 4. For convenience, we
refer to these points as the 2, the 4, the 1, and the 3. Suppose toward a contradiction
that ζ contains an occurrence of π. Since ω P Avpπq, at least one of the new outer
points must be involved in the occurrence of π. We will assume that the 2 is involved,
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ω “ 564213

ùñ

pω “ 6753241

ùñ

sω “ 896743512

ùñ

ζ “ 11 9 12 8 6 10 5 4 2 7 1 3

Figure 3: The progression from ω to ζ, when π has a corner point, as
described in the proof of Lemma 2.1.

ω2
1

4
3

Figure 4: The embedding of ω into ζ in the case where ω does not have
a corner point as described in the proof of Lemma 2.1.
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and all other cases follow symmetrically. However, since we assumed that π does not
have a corner point, the outer point 1 must also be involved. Similarly, 1 would be
a corner point unless the outer point 3 were involved, and again 3 would be a corner
point unless the outer point 4 were involved. Therefore, the outer points of π form
a 2413, a contradiction.

We can now describe the general strategy that we will follow for proving that a
class Avpπq is not deflatable. Recall that an equivalent condition is that, for every
ω P Avpπq there exists a simple permutation σ P Avpπq with ω ď σ. We aim to
construct σ by forming a sequence of extensions of ω, all belonging to Avpπq and
each one being “closer to simple” than the previous one, in a sense we will make
precise shortly. The first such extension is one provided by Lemma 2.1, by means
of which we embed ω in an indecomposable permutation. We take this extension
as given, and henceforth assume throughout that ω itself is indecomposable. As
remarked in Proposition 1.1 this implies that the maximal intervals of ω are disjoint.

In a simple permutation, all the maximal intervals have length 1, so we introduce
a statistic, SD, defined for indecomposable permutations:

SDpωq “
ÿ

γ

p|γ| ´ 1q ,

where the summation is over all maximal intervals γ of ω, and |γ| denotes the number
of elements in γ. We take SD as a measure of “how close” a permutation is to being
simple, noting that SDpωq “ 0 if and only if ω is simple. Note also that SD is
invariant under symmetries.

To establish the non-deflatability of Avpπq it is clearly sufficient to show that for
any indecomposable ω P Avpπq we can find an indecomposable extension ω` P Avpπq
of ω with SDpω`q ă SDpωq. In fact, the extensions we form will always use just a
single additional element (which we generally call x) and the type of extension will
be as described in the next lemma.

Lemma 2.2. Suppose that ω is an indecomposable permutation with an interval α of
maximum length ` ą 1. Suppose that ω` is an extension of ω by a point x that cuts
α and that α Y txu does not form an interval in ω`. Then, ω` is indecomposable
and SDpω`q ă SDpωq.

Proof. It is evident that ω` is indecomposable because x cuts α and so the new point
x is not a corner point.

We compare the maximal intervals of ω with the maximal intervals of ω`. Because
of the invariance of SD under symmetry we may assume that x cuts α by position so,
since αYtxu does not form an interval in ω`, α is separated from x by value. Then,
x cuts no other maximal interval of ω by position, and cuts at most one maximal
interval of ω by value.

The maximal interval µ of ω` that contains x is just the singleton txu, for if
there were another point in this interval, the interval would have to include at least
one positional neighbor u in α. Take v to be a point separating x from α by value.
Then v must lie in µ since µ contains points of value less than v and greater than
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v. Now, µztxu would be an interval of ω that contains points from two distinct
maximal intervals, a contradiction. Clearly, the maximal interval txu contributes 0
to SDpω`q.

Now consider a maximal interval µ of ω` that does not contain x. Then, µ is also
an interval of ω and so µ is contained in a maximal interval ν of ω. If x does not
cut ν, then ν is also an interval of ω` and hence, by the maximality of µ, we have
µ “ ν. Thus, such intervals contribute equal amounts to both SDpωq and SDpω`q.
However, if x cuts ν (which certainly happens if ν “ α), then ν is not an interval of
ω` and so ν will be a proper union µ1Y ¨ ¨ ¨ Yµk of more than one maximal interval.
Since the union is proper,

k
ÿ

i“1
p|µi| ´ 1q “ |ν| ´ k ă |ν| ´ 1.

It follows that SDpω`q ă SDpωq, as desired.

Given a class C a non-simple but indecomposable permutation ω P C which has
an extension of the form described in the lemma above will be called breakable. If we
also wish to specify which interval is broken, we will say that ω is breakable through
α.

Lemma 2.1 and Lemma 2.2 set the stage for all of our proofs that a principal class
Avpπq is not deflatable. Call a class, C, extendible if every indecomposable non-simple
permutation ω of C is breakable. By our previous remarks, any extendible class is
non-deflatable and, extendibility is actually the property that we will establish for
all the cases that we consider. For future reference we record the key property of
extendibility for our purposes:

Lemma 2.3. If a class C is extendible, then it is not deflatable.

3 Non-Deflatable Permutation Classes

This section is mainly devoted to identifying families of permutations π for which
Avpπq is non-deflatable. We have had little success in this endeavour for indecom-
posable permutations π and so we focus here on decomposable permutations. Then,
using the usual symmetries, we may further assume that π is sum-decomposable. We
provide here a sequence of results showing that Avpπq is not deflatable if any of the
following conditions are met:

• π can be written as a sum of three or more permutations (Theorem 3.2),

• π can be written as the sum of two permutations, each of size greater than 1
(Theorem 3.3), and

• π “ 1 ‘ ρ where |ρ| ě 3 and ρ contains either no decreasing bond, or no
increasing bond, where a bond is an interval of size 2 (Theorems 3.4 through
3.8).
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β ε

δγ

α

Figure 5: Diagram of an in-
decomposable ω with a longest
maximal interval α. We label
the four corner regions as β, γ,
δ, and ε.

a

b

x

β ε

δγ

α

Figure 6: The permutation ω`
formed by inserting the entry x
into ω just to the left of b and
just above a.

Taken together, and taking symmetry into account this means that for any de-
composable permutation π of length at least four, Avpπq is not deflatable unless
possibly when π has exactly two components, one of which has length 1, and the
other of which contains both an increasing and a decreasing bond.

For the remainder of this section, with the exception of the final result, we shall
be considering sum-decomposable permutations π, and we begin by setting some
notation and standing assumptions. We suppose that ω P Avpπq is indecomposable
and non-simple. Let α be a longest maximal interval of ω. Then, ω can be depicted
as in Figure 5, where the shaded regions signify that no entries cut α by either
position or value. We will always refer to the regions α, β, γ, δ, and ε as shown in
Figure 5.

Lemma 3.1. Suppose that π “ λ ‘ µ ‘ ρ (where we allow µ to be possibly empty).
If λ ď β or ρ ď δ, then ω is breakable through α.

Proof. Suppose that λ ď β. Let b be the rightmost point of the leftmost occurrence
of λ in β. Let a be the bottommost point of α. Insert a new entry x just to the left
of b and just above a to form ω`, as in Figure 6. It is clear that α Y txu is not an
interval because they are separated by b. Furthermore, suppose that the insertion of
x introduced an occurrence of π in ω`. Then, x itself must be involved, otherwise
ω would have contained an occurrence of π. However, x cannot play a role in the λ
part of π, for otherwise there would be an occurrence of µ‘ρ above and to the right
of x, and hence above and to the right of the occurrence of λ which ends with b.
This would imply that ω contained an occurrence of π, a contradiction. Moreover,
if x played the role in the µ‘ ρ part of π in ω`, then there would be an occurrence
of λ below and to the left of x, contradicting our choice of b. Thus, ω` P Avpπq.

Therefore, if λ ď β, it follows that ω is breakable. A symmetric argument shows
that ω is breakable if ρ ď δ.

The above lemma shows that for π “ λ ‘ µ ‘ ρ (with µ possibly empty), when
trying to show that ω P Avpπq is breakable, we may always assume that β P Avpλq
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a

c

x
α

β ε

δγ

Figure 7: The permutation ω`
formed by inserting the entry
x into ω just to the left of c
and just below a, in the proof
of Theorem 3.2

α

β ε

δγ

c

a

x

Figure 8: The diagram for
Case 1 in the proof of Theo-
rem 3.3.

and δ P Avpρq. Additionally, the indecomposability of ω implies that γ and ε are not
both empty.

We can now begin to investigate which decomposable permutations π lead to
non-deflatable classes Avpπq as outlined at the beginning of this section.

Theorem 3.2. Let π “ λ‘µ‘ ρ with all three summands non-empty. Then, Avpπq
is not deflatable.

Proof. Let ω P Avpπq be indecomposable and not simple, and choose α to be a
maximal non-singleton interval. We can assume that β P Avpλq, δ P Avpρq or else
ω is breakable through α by the preceding lemma. Since ω is indecomposable, at
least one of γ and ε is non-empty. Since π satisfies the conditions of the hypothesis if
and only if π´1 does, we can assume without loss of generality that γ is non-empty.
Let c be the rightmost entry of γ and let a be the topmost entry of α. Form ω`

by inserting an entry x into ω that lies just to the left of c and just below a, as in
Figure 7.

Suppose that x is part of an occurrence of π in ω`. If x plays a role in the ρ part
of π, then λ ď β, a contradiction. If x plays a role in the λ part of π, then the µ‘ ρ
part of the occurrence of π lies among ta, cu Y δ. At least one of a or c must belong
to the ρ part of this occurrence, since otherwise we would have ρ ď δ. However, a P ρ
and c P ρ are each impossible since µ is non-empty and a and c are, respectively,
the first and lowest elements of ta, cu Y δ. Hence, x is not part of an occurrence
of π, which shows that ω is breakable. Since ω was an arbitrary indecomposable
permutation, Avpπq is extendible, and so, by Lemma 2.3, is not deflatable.

As the above theorem did not require λ, µ, and ρ to be sum-indecomposable, it
handles all sum-decomposable permutations except for those of the form π “ λ ‘ ρ
with λ and ρ sum-indecomposable. The next theorem begins to handle this case.

Theorem 3.3. Let π “ λ‘ ρ, with |λ|, |ρ| ě 2. Then, Avpπq is not deflatable.
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Proof. Theorem 3.2 allows us to assume that λ and ρ are sum-indecomposable. Sup-
pose that ω P Avpπq is indecomposable. We wish to show that ω is breakable. To
this end, choose a largest maximal interval α of ω and let β, γ, δ and ε be as in Figure
5. Let c be the smallest entry of γ. By our previous arguments we may also suppose
that β P Avpλq and δ P Avpρq. We can assume by symmetry that γ is non-empty (for
the same reason as in the previous theorem). Furthermore, at least one of β and δ is
non-empty, as otherwise ω is skew-decomposable. We consider a division into cases.

Case 1: β is empty, or the last entry of β precedes the smallest entry of γ
Suppose that all entries of β lie to the left of c (it is permissible that β be empty).

Let a be the leftmost entry in α. We will show that α can be split by an entry x
placed just above c and just to the right of a, as in Figure 8.

Suppose that the placement of x introduces an occurrence of π. If x were an
entry of the λ part of π, then the ρ part of π would lie entirely above it and to its
right. This would force ρ to be entirely contained in δ, a contradiction to an earlier
assumption. Therefore, x must be an entry in the ρ part of π. It follows that the λ
part of π occurs in ta, cu Y β.

If the occurrence of λ contains the point c, then the occurrence of ρ contains
x as its first and least entry, a contradiction to the assumption that ρ is sum-
indecomposable. If the occurrence of λ contains the point a (but not the point c), then
a is the last and greatest entry of λ, contradicting that λ is sum-indecomposable.
Hence the occurrence of λ is contained entirely within β, contradicting that β P
Avpλq.

Case 2: The smallest entry of γ precedes the last entry of β
Let b be the rightmost entry of β and let c1 be the rightmost entry of γ. We

handle two cases: either c1 precedes b or b precedes c1.
Case 2a: The last entry of γ precedes the last entry of β
Let a1 be the topmost entry of α. Consider a splitting entry x which lies just

to the right of c1 and just below a1, as in Figure 9. If the insertion of x creates an
occurrence of π, then x lies in the λ part of π – otherwise the λ part of π lies entirely
in β, a contradiction. Hence, the occurrence of the ρ part is contained in ta1u Y δ.
Since δ P Avpρq, the occurrence of ρ must contain the point a1, implying that ρ is
sum-decomposable. This contradicts our previous assumption. Therefore, x splits
α without introducing an occurrence of π. Note that this case did not require that
c ‰ c1 nor a ‰ a1.

Case 2b: The last entry of β precedes the last entry of γ
Assume now that b precedes c1. Let x be a splitting entry which lies just to the

right of a and just above c. (See Figure 10.)
Suppose that the insertion of the entry x creates an occurrence of π. Since x

cannot lie in the λ part of π (as δ avoids ρ), x must lie in the ρ part of π. Hence, the
λ part of π is contained in ta, cu Y β. The point c must be part of the occurrence
of λ, since otherwise λ is sum-decomposable. In fact, the point a cannot be part
of the λ occurrence because this, together with c also lying in the λ part would
force x to be both the first and smallest entry of ρ, once again implying that ρ
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α

c

c1

a
x

b

a1

β ε

δγ

Figure 9: The diagram for
Case 2a in the proof of The-
orem 3.3.

α

c

c1

a

b

a1
x

β ε

δγ

Figure 10: The first diagram
for Case 2b in the proof of The-
orem 3.3.

α

c

c1

ax1

b

d
a1

λ

Figure 11: A diagram showing
the existence of an occurrence
of λ in ω as in Case 2b of The-
orem 3.3.

α

c

c1

a

b

d

a1

λ

ρ

Figure 12: A diagram showing
the existence of an occurrence
of π in ω as in Case 2b of The-
orem 3.3.

is sum-decomposable. Therefore, there is an occurrence of λ within tcu Y β that
contains c.

Now consider an alternative splitting point x1 placed just to the left of c1 and just
below a1. Let d be the lowest point of δ. If d is lower than c, then we can proceed
by an argument symmetrical to Case 2a, and if d ą c1, then we can proceed by an
argument symmetrical to Case 1. Therefore, we may assume that c is lower than d
and that d is lower than c1. Figure 11 shows the new splitting point x1, along with
the occurrence of λ which caused x to fail as a splitting point. Assume also that x1
creates an occurrence of π. An argument symmetric to that of the previous paragraph
by a reflection over the antidiagonal shows that there must be an occurrence of ρ
involving c1 and some points of δ, as shown in Figure 12.

Thus π “ λ‘ ρ is contained in ω, a contradiction.

For the remainder of this section we concern ourselves largely with the remaining
case for decomposable π, namely π “ 1 ‘ ρ, with ρ of length at least three (as we
know that Avp132q is deflatable, and Avp123q is not). We will at times need to refer
to specific elements of this permutation and may do so either by position, e.g., “the
leftmost element of ρ”, or by value – here keep in mind that for instance “2” would
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refer to the least element of ρ. Also, we assume |π| “ n, so n is always the maximum
value (and of course occurs somewhere in the ρ part of π).

An ascent of a permutation is a pair of entries in consecutive positions that form
a 12 pattern, and a descent of a permutation is a pair of entries in consecutive
positions that form a 21 pattern. An increasing bond is an ascent whose entries
are also consecutive in value (in other words an interval whose elements form a 12
pattern), and a decreasing bond is a descent whose entries are also consecutive in value
(an interval of pattern 21). For example, in the permutation 134652 the entries 13
form an ascent but not an increasing bond, the entries 34 form an increasing bond
(and an ascent), the entries 65 form a decreasing bond (and a descent), and the
entries 52 form a descent but not a decreasing bond.

The presence of bonds in ρ plays an important role in the deflatability of π “ 1‘ρ.
In particular, if ρ lacks either an increasing bond or a decreasing bond, then Avpπq
is not deflatable. We prove this in two parts, depending on whether ρ starts with an
ascent or starts with a descent. In the arguments to follow we will frequently make
use of the principle of “substitution” when we are breaking an interval α of ω. We
now describe this idea informally. We will add an element x, breaking the interval
α. The problem will be to show that in doing so we do not create a copy of 1 ‘ ρ.
If we had created such a copy, then obviously it would need to contain the element
x (since there was no such copy in the original permutation). But, the position and
value of x will have been chosen in just such a way, that in that case there is some
other element of the original permutation (call it c just for the moment) which we
can now argue could not occur in the copy (because of some property of ρ), and
moreover which sits in the same relative position to the remaining elements of the
copy as x does. Then we could “substitute c for x”, i.e, remove x in the copy and
replace it with c, and thereby obtain a copy of 1‘ρ in the original permutation, and
hence a contradiction.

Theorem 3.4. Let π “ 1 ‘ ρ, where ρ is sum-indecomposable and starts with an
ascent. If ρ lacks either an increasing bond or a decreasing bond, then Avpπq is not
deflatable.

Proof. This proof is split into two separate cases in which ρ either has no increasing
bond or has no decreasing bond. As always, we assume ω P Avpπq is indecomposable,
and that α is a largest maximal interval of ω with β, γ, δ and ε as in Figure 5. Since
λ “ 1, we can assume that β is empty in addition to assuming that δ P Avpρq.
Further δ is non-empty else ω would be skew-decomposable.

Case 1: ρ has no decreasing bond
Let a be the leftmost entry of α and let d be the leftmost entry of δ. Form a

one-point extension ω` of ω by inserting a point x just to the right of a and just
above d as in Figure 13. If ω` contains an occurrence of π, then it is immediately
clear that x must play a role in the ρ part; otherwise x plays the role of 1 which
would force ρ ď δ. Therefore, the 1 of π either lies in γ or is equal to a.

If the 1 of π lies in γ, then no entry in α can play a role in ρ. Hence, d also
cannot play a role in ρ, as then it would be the entry immediately following x and
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α

β ε

δγ

a

x
d

Figure 13: The diagram cor-
responding to Case 1 in the
proof of Theorem 3.4.

α

β ε

δγ

a

x
d

Figure 14: The diagram cor-
responding to the first part of
Case 2 in the proof of Theo-
rem 3.4.

tx, du would form a decreasing bond. From this it follows that we could substitute
d for x and obtain a contradiction.

If the 1 of π lies in α, then a priori it may be possible for other entries of α to
play a role in an occurrence of π. However, now x must be the first entry of ρ, and so
the presence of any other entry in α (other than a) in ρ would force ρ to start with
a descent. So in fact, no other elements of α are used. Hence d again substitutes for
x, as again d cannot play a role in the occurrence of π and d and x are split neither
by value nor by position by any other entry involved in the occurrence of π.

Case 2: ρ has no increasing bond
Let a be the leftmost entry of α and let d be the leftmost entry of δ. We consider

two separate cases: either d is lower in value than all entries that lie in γ, or else
there is some entry c P γ which is lower in value than d.

Case 2a: d is lower in value than all entries in γ
Form ω` by inserting an entry x just to the right of a and just above d, as in

Figure 14. Note that this is the same placement as in Case 1. As in the first part, if
an occurrence of π in ω` contained any entry of α other than a, this would violate
the assumption that ρ started with an ascent. Moreover, the 1 of π cannot lie in γ,
as there is no entry of γ lower than x. As before, d substitutes for x. This completes
the proof under this assumption.

Case 2b: There exists an entry c P γ which is lower in value than d
Here we form ω` in a different way, by placing the new entry x just below d

instead of just above d. See Figure 15 for a diagram of this placement. Suppose ω`
contains an occurrence of π. Then, x must play a role in the ρ part of π, otherwise
ρ ď δ. We proceed as in Case 1. If the 1 of π is in γ, then both x and d cannot be
involved as they would form an increasing bond. Since no entry of α can be involved,
d substitutes for x. Otherwise, if the 1 of π is a, then x is the second entry in the
occurrence of π and the third entry lies above and to the right of d (because ρ starts
with an ascent). So, again, d substitutes for x. This completes the proof of Case 2.
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α

β ε

δγ

a

x d
c

Figure 15: The diagram corre-
sponding to the second part of
Case 2 in the proof of Theo-
rem 3.4.

e
a

x
α

β ε

δγ

Figure 16: The diagram cor-
responding to an initial place-
ment of x in Theorem 3.5.

The above theorem handles all cases in which π “ 1‘ ρ, where ρ starts with an
ascent and does not simultaneously have both kinds of bonds. We next handle the
case in which ρ starts with a descent and has no increasing bond. For convenience,
we say that π satisfies condition p;q if:

there is at least one entry to the right of 2 that is less than the leftmost entry of ρ
(;)

In other words π satisfies condition p;q if, in one line notation, π “ 1c . . . 2 . . . b . . .
for some b ă c.

Theorem 3.5. Suppose that π “ 1 ‘ ρ satisfies condition p;q, starts with a descent
and has no increasing bond. Then, Avpπq is not deflatable.

Proof. Note that π´1 “ 1‘ ρ´1. If ρ´1 starts with an ascent, then we can appeal to
the previous cases (as Avpπq is deflatable if and only if Avpπ´1q is). Thus, we can
assume that ρ´1 starts with a descent. In terms of π, this implies that 3 precedes
2. If 2 is the third entry of π, it follows that the first three entries of π are 132, and
since |π| ą 3, this implies that π is a three-component sum, and thus is handled by
Theorem 3.2. Therefore, we can assume that π has at least three entries preceding
2 (at least two of which are part of ρ).

Let ω P Avpπq be indecomposable, under the same assumptions as in previous
proofs. Suppose that ε is non-empty. Let e be the topmost entry in ε and let a
be the bottommost entry in α. Form ω` by inserting an entry x just to the right
of e and just above a as in Figure 16. Suppose this introduces an occurrence of π.
It follows that x plays a role in the ρ part of π. If the 1 of π is in ε then the e
cannot be involved, otherwise e and x form an increasing bond. This would allow e
to substitute for x. So, the 1 must be in α, and in fact the only possibility is that a
plays the role of the 1.

Since a plays the role of the 1, the role of the 2 (the least element of ρ) must
be played by x. If an occurrence of π is created, condition p;q forces all entries of π
other than 1 and 2 to be in δ. Pick the leftmost (lexicographically least by position)
possibilities for these entries of π. An example is given in Figure 17 with π “ 153264.
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5
3

6
4

e
a

1 x2α

β ε

γ

Figure 17: A diagram showing
a possible occurrence of π in
Theorem 3.5.

d

e
a

x1
α

β ε

δγ

Figure 18: The new placement
of a splitting entry in the proof
of Theorem 3.5.

In this case, there can be no entry in ε which lies to the left of the entry which
played the role of the first entry of ρ (in the example above, ε has no entry which lies
to the left of the entry marked “5”): otherwise that entry would have played the 1
in an occurrence of π in ω which involved e as the 2 and the same remaining entries
in δ. Let d be the leftmost entry of δ and place a new splitting entry x1 just above a
and just to the right d (which may or may not be one of the entries in the occurrence
of π), as in Figure 18.

Now, we have forced a to play the role of the 1 in any occurrence of π which
involves x1. Again, x1 must play the role of the 2 and the remaining entries of π
would have to be in δ. However, since we have already shown that three entries
of π must precede 2, this is impossible. Therefore, the introduction of x1 does not
introduce an occurrence of π, and indeed ω` P Avpπq.

If ε were actually empty, then the splitting created by x1 works for the same
reason.

We continue under the assumption that π “ 1‘ ρ where ρ starts with a descent
and has no increasing bond. Assume that π does not satisfy condition p;q; that is,
assume that the first entry of ρ is less than every entry to the right of the entry 2.
Moreover, we can assume that π´1 also fails p;q. In terms of π, this translates to the
property that the entry 2 precedes every entry which has value greater than the first
entry of ρ.

After a little inspection, one can see if π and π´1 both fail condition p;q, then
either π is a sum of three or more components or π has the form 1n ¨ ¨ ¨ 2 (by this, we
do not mean that ρ is decreasing, just that ρ starts with its greates entry and ends
with its least entry). The former case is already proved, so we only need to prove
the latter.

Theorem 3.6. Suppose that π “ 1‘ρ is of the form 1n ¨ ¨ ¨ 2 and ρ has no increasing
bond. Then Avpπq is not deflatable.

Proof. Let ω P Avpπq be indecomposable, under the same assumptions as in previous
proofs. Let a be the topmost entry of α, let d be the leftmost entry of δ, and let e
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d

e

a

x
α

β ε

δγ

Figure 19: A diagram corre-
sponding to ω` in the first case
of Theorem 3.6.

d

e

d1
a

x
α

β ε

δγ

Figure 20: A diagram corre-
sponding to ω` in the second
case of Theorem 3.6.

be the leftmost entry of ε (if it exists). We proceed in two cases. Suppose first that
ε is empty or that d precedes e. Place a splitting entry x just to the right of d and
just below a, as in Figure 19.

In this case, x must play a role in the ρ part of π. Therefore the 1 of any
occurrence of π is in α (and is not a). If x is not the 2, then there is no place for the
2. Only a and d can be entries of π other than the 1 or 2. Therefore, π “ 132 (a
known case) or π “ 1342 (not of the form 1n ¨ ¨ ¨ 2). Hence, this case is complete.

Suppose instead that e precedes d. Let d1 be the bottommost entry in δ (it is
possible that d “ d1). Place the splitting entry x just below a and just to the left of
d1, as in Figure 20. Suppose there is an occurrence of π. Then, x must play a role in
the ρ of such an occurrence.

If the 1 of this occurrence is in α and a is not involved, then since x and d1 cannot
both be involved, d1 can substitute for x. Thus a must be involved. If x is not the
2, then there is no place to put the 2. This forces x to be the 2 and a to be the 3.
However, unless π “ 132, there is no place now for the biggest entry of π.

If the 1 of this occurrence is in ε, the we can substitute d1 for x. This completes
the second case, and the proof.

We have now disposed of the case π “ 1 ‘ ρ where ρ starts with a descent and
has no increasing bond. The last case we handle is π “ 1 ‘ ρ where ρ starts with
a descent and has no decreasing bond. As before, we can further assume that ρ´1

starts with a descent, i.e., that 3 precedes 2 in π. The two proofs below largely
mirror the previous two proofs, with some small changes in the easy cases.

Theorem 3.7. Suppose that π “ 1‘ ρ satisfies condition p;q, and that ρ starts with
a descent and has no decreasing bond. Then Avpπq is not deflatable.

Proof. Let ω P Avpπq be indecomposable, under the same assumptions as in previous
proofs. If ε is empty we can use the same splitting construction as in the proof of
Theorem 3.5. So, assume now that ε is non-empty. Let a be the bottommost entry
of α, let d be the leftmost entry of δ, and let e be the topmost entry of ε. We handle
two separate cases. First assume that e precedes d. In this case, we must have that
e is not also the leftmost entry of ε (which we call e1), or else α is not a maximal
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x
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β ε

δγ

Figure 21: A diagram corre-
sponding to ω` in the first case
of Theorem 3.7.

d

e
a

x
α

β ε

δγ

Figure 22: A diagram corre-
sponding to ω` in the second
case of Theorem 3.7.

π̂d

d̂

e
a

x
α

Figure 23: A diagram corre-
sponding to ω` in the second
case of Theorem 3.7.

π̂d

d̂

e
a

x1
α

Figure 24: A diagram corre-
sponding to ω` in the second
case of Theorem 3.7.

interval. Place a splitting entry x just above a and just to the left of e, as shown in
Figure 21.

If there is an occurrence of π in ω`, then the 1 of π either lies in α or ε. If the 1
of π lies in ε, then we can substitute e for x since both cannot be involved. If the 1
is in α, then a is the 1 of π and x is the 2 of π. Since π satisfies condition p;q, all
other entries must be in δ, but then the first two entries π are 12, a contradiction.

Suppose instead that d precedes e. Place a splitting entry x just above a and just
to the left of e, as in Figure 22. Again, if the 1 of an occurrence of π is in ε, then we
can substitute e for x. Thus, the 1 is in α, and a is the 1 of π and x is the 2 of π.
Since π satisfies condition p;q, all other entries of π lie in δ. Define π̂ “ π r ta, xu
and let d̂ be the leftmost entry of π̂. It is possible that d̂ “ d. See Figure 23.

If there is an entry z in ε that precedes d̂, then z and e can together play the
same roles as a and x, creating an occurrence of π in ω. If not, then place a splitting
entry x1 just to the right of d and just above a, as in Figure 24. If x1 creates another
occurrence of π, then we must have that a is the 1 of π and x1 is the 2 of π. Since
we know that 3 precedes 2, it follows that π is a three-component sum, and we can
appeal to Theorem 3.2.

Lastly, we consider the case in which π fails condition p;q. As before, we may
also assume that π´1 fails condition p;q, leaving us only with the case π “ 1n ¨ ¨ ¨ 2,
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δγ

Figure 25: A diagram cor-
responding to ω` in Theo-
rem 3.8.

x d

a

c

α

β ε

δγ

Figure 26: A diagram of the
first case in the proof of The-
orem 3.9

where π has no decreasing bond.

Theorem 3.8. Let π have the form 1n ¨ ¨ ¨ 2, such that π has no decreasing bond.
Then Avpπq is not deflatable.

Proof. Let ω P Avpπq be indecomposable, under the same assumptions as in previous
proofs. Let a be the topmost entry in α and let d be the bottommost entry of δ.
Place a splitting point x just below a and just to the right of d, as in Figure 25.

If there is an occurrence of π and a is not involved, then d can substitute for x,
as both cannot be involved simultaneously. Hence, a must be involved, and there is
no entry of π in ε. Moreover, a cannot be the 1 in an occurrence of π, since x must
be involved. Therefore, a must be the n, forcing x to be the n ´ 1. It follows there
is no allowed location for any other entries which play a role in π. Hence π “ 132.
As 132 is known to be deflatable, this is a contradiction.

Theorems 3.2-3.8 tell us that if a principal class Avpπq is deflatable for sum-
decomposable π, then π must have the form 1 ‘ ρ, where ρ is sum-indecomposable
and contains both an increasing and decreasing bond. However, as the next theorem
shows, it is possible that π can have these properties and Avpπq still be non-deflatable.

Theorem 3.9. Let π “ 1 ‘ ρ for ρ of the form x ¨ ¨ ¨ 1 with x ‰ 2 and x ‰ |ρ|, i.e.,
π “ 1z ¨ ¨ ¨ 2 with z ‰ 3 and z ‰ |π|. Then, Avpπq is not deflatable.

Proof. Let ω P Avpπq be indecomposable, under the same assumptions as in previous
proofs. Let a be the leftmost entry of α and let d be the bottommost entry in δ. We
proceed in two separate cases.

First suppose that there is an entry c in γ which lies below d. In this case, insert
an entry x just to the right of a and just below d (see Figure 26). Suppose that an
occurrence of π is created. If x is the last entry of this π, then d substitutes for x,
contradicting the assumption that ω P Avpπq. So suppose that x is not the last entry
of the occurrence of π.

If a is the 1 of π, then x must be the second entry of π, which is not the biggest
entry of π. Therefore, π must contain an entry larger than x to the right, and hence
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x d

a α

β ε

δγ

Figure 27: A diagram of the
second case in the proof of The-
orem 3.9

Figure 28: The permutation
diagram of the permutation
25173486 P Avp251364q.

larger than d and to the right of α. However, the final entry of π must be smaller
than x and larger than a, and there is no such entry. If π starts with an entry in γ,
then since x is not the last entry of an occurrence of π, there is no place for the last
entry of π anywhere. This completes the first case.

Now assume otherwise, that no entry in γ lies below d, as in Figure 27. Place a
new entry x just to the right of a and just above d. An occurrence of π cannot involve
x as the 1, since otherwise the remainder of the pattern would lie in the upper right
quadrant, and so the entry a must play the role of the 1.

Thus, x plays the role of the first entry of ρ, which is neither the biggest nor the
smallest entry in ρ. However, the last entry of π is 2, and now we see that there is
no place for the 2.

The theorems above combine to prove the non-deflatability of all classes Avpπq
for |π| “ 4 (up to symmetry) with the exception of Avp2413q, a special case which
we now prove.

Proposition 3.10. The principal class Avp2413q is not deflatable.

Proof. Let ω P Avp2413q be indecomposable and not simple. Let α be a longest
maximal interval.

We would like to make the assumption that the entry immediately following α
by position has value greater than all entries in α, i.e, belongs to δ. First we observe
that the permutation 2413 is invariant under the four symmetries of the square
corresponding to rotations – so to make this assumption without loss of generality
it suffices to show that we can find an image of ω under one of those rotations for
which it is satisfied.

If any of β, γ, δ and ε are empty, then by rotation we can ensure that ε is empty
and δ is not. If all four regions are occupied, then if it were never the case that for
any one of the four rotations the element immediately following (the image of) α
belonged to δ then those four elements of ω whose images did immediately follow the
image of α under one of those rotations would form a copy of 2413, a contradiction.

So we may assume that the entry immediately following α by position, which we
denote by d, has value greater than all entries in α. Define d1 to be the rightmost
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x

d

a

d1

α

Figure 29: The permutation diagram of ω` in Proposition 3.10.

entry of ω which is to the right of d and separates α from d (by value). If there is
no such entry, set d1 “ d. Let a be the least entry of α.

Form ω` by inserting an entry x into ω that lies just above a and just to the
right of d1, as in Figure 29. We need to show that ω` P Avp2413q, so suppose toward
a contradiction that the entry x plays a role in an occurrence of π.

If x played the role of the 2 in an occurrence of 2413, then a substitutes for x.
If x played the role of the 4 in an occurrence of 2413, then d1 substitutes for x. If
x plays the role of the 3 in an occurrence of 2413, then the 1 must lie to the left of
α (otherwise it acts as the 1 in an occurrence of 2413 using a, d, and d1), and so a
substitutes for x.

Therefore, x must play the role of the 1 in some occurrence of 2413. The entry d
cannot play the role of the 4, because then there are no entries that can play the role
of the 3. The role of 4 also cannot be played by any entry to the left of α, because
then a could substitute for x. Therefore, the role of 4 must be played by an entry,
say y, above d and positionally between d and d1. However, this would imply that
the role of 3 was played by an entry, say z above d and to the right of x. This in
turn implies that d, y, d1, and z form a copy of 2413, a contradiction.

4 Deflatable Permutation Classes

Given the results of the previous section, one may wonder whether any principal
classes are deflatable other than Avp12q, Avp231q and their symmetries. For the
larger group of finitely-based classes, the answer is clear: any class with finitely
many simple permutations (and infinitely many permutations) must be deflatable,
and there are infinitely many such classes. Moreover, the recent successes referred to
in the introduction make use of the fact that many classes Avpα, βq with |α| “ |β| “ 4
turn out to be deflatable. In this section, we first provide a criterion by which we
may prove deflatability of Avpπq. We use this criterion to show examples of deflatable
classes Avpπq for which π is decomposable, simple, or neither.

In any deflatable class C, there are permutations τ which cannot be extended to
a simple permutation, i.e., there exists no simple σ P C such that σ ě τ . Therefore,
if we find a τ with this property in a class C, it follows that C is deflatable. We call
such a τ a witness of deflatability.

In this section, we represent permutations by their diagrams, as shown in Section 1
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and as produced by PermLab [1]. A square in a permutation diagram is shaded gray
if inserting an entry in that square would create a forbidden pattern.

The lemma we now prove aids in finding witnesses of deflatability.

Lemma 4.1. Let ω P C contain a bond which is not breakable. Then, ω cannot be
extended to a simple permutation in C.

Proof. The figure below gives an example of the configuration ω in question, where
the diagonally shaded quadrants may contain entries. The result is not entirely
trivial for, though the bond cannot be broken by a single additional element it is not
immediately clear that one might not place a sequence of elements splitting it, but
not separated from it (e.g., in the square immediately above it) leading eventually
to a configuration in which the interval they define could be broken.

Let ω P C be as in the statement of the lemma. Assume without loss of generality
that the bond of interest is an increasing bond; the proof follows, mutatis mutandis,
when the bond is a decreasing bond. Let pω P C contain ω, and fix an occurrence of ω
in pω. In the rest of the proof we refer to this occurrence as ω. Let ν be the maximal
box in pω which contains the two points from the bond of ω, and which is cut by no
other point of ω. Note that we could replace these two points by any pair of points
that form the pattern 12 inside ν and still have an occurrence of ω.

Since ν has at least one pair of increasing entries, we know that its skew-decomp-
osition (which may have only one summand) has at least one non-trivial skew-
indecomposable summand, which we will call θ. Note that it is possible that θ “ ν.
We show that pω is not simple by showing that θ is an interval of pω

Suppose toward a contradiction that pω has an entry x which cuts θ. Then, x
does not lie in ν because θ was chosen as an interval of ν. So x must lie in one of the
four regions adjacent to ν, and separated from ν by an element of ω; without loss of
generality, we assume that x lies in the region above ν. It follows that every entry of
θ which lies to the left of x is greater in value than every entry of θ which lies to the
right of x; otherwise, x would lie in the forbidden region defined by the embedded
occurrence of ω. This contradicts the assumption that θ is skew-indecomposable.
Hence, θ is an interval of length greater than 1 and thus pω is not simple.

We can now proceed to identify a number of deflatable principal classes. For
example, consider the diagram of the permutation 25173486 P Avp251364q, as shown
in Figure 28. By Lemma 4.1, the permutation 25173486 is a witness of deflatability
for the class Avp251364q, proving that Avp251364q is deflatable. We list below a
sporadic collection of deflatable classes and witnesses which prove their deflatability.
These witnesses were found through a mixture of computer search and “by hand”
construction.
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Permutation Class Witness of Deflatability

Avp134652q 6 8 9 3 4 1 10 14 7 13 5 12 11 2
Avp246135q 4 7 2 9 11 5 6 1 10 3 8
Avp246513q 5 9 3 11 8 2 10 6 7 1 4
Avp251364q 2 5 1 7 3 4 8 6
Avp251463q 2 6 1 8 4 3 7 9 5
Avp254613q 5 9 3 11 2 8 10 6 7 1 4
Avp256413q 4 7 9 2 10 8 5 6 1 3
Avp1523764q 11 18 14 16 8 19 6 7 22 13 1 10 5 24 2 3 9 17 23 4 21 20 15 12
Avp2613475q 2 6 1 3 9 4 5 7 10 8
Avp2631574q 2 6 3 1 9 5 4 8 10 7

One should first note that the classes Avp134652q and Avp1523764q are listed in
the above table. That these classes are deflatable proves that, in fact, not all classes
of the form Avpπq for decomposable π are non-deflatable. But of course the basis
elements of both classes have both increasing and decreasing bonds.

Many of the other basis elements of classes in the list are simple. It is of particular
interest that the class Avp246135q is deflatable, as it is a special type of simple permu-
tation: a parallel alternation, i.e., a permutation of the form 246 ¨ ¨ ¨ p2nq135 ¨ ¨ ¨ p2n´
1q or a symmetry of such a permutation. In fact, the classes Avp2 4 6 8 1 3 5 7q,
Avp2 4 6 8 10 1 3 5 7 9q, Avp2 4 6 8 10 12 1 3 5 7 9 11q, and Avp2 4 6 8 10 12 14 1 3 5
7 9 11 13q are also deflatable, as shown by the witnesses

5 8 11 2 13 4 14 16 18 9 10 6 1 15 17 3 7 12,
2 7 10 13 4 16 9 18 6 20 8 22 24 14 15 11 1 19 21 3 23 5 12 17,
3 8 13 16 5 19 9 12 21 2 7 23 11 25 27 29 17 18 14 1 22 24 4 26 6 28 10 15 20, and
3 8 12 16 20 5 23 9 13 18 25 2 7 27 11 29 14 31 33 35 21 22 17 1 26 28 4 30 6 32 10

15 34 19 24,

respectively. This leads to the following conjecture.

Conjecture 4.2. Let π be a parallel alternation with |π| ě 6. Then, Avpπq is
deflatable.

There is one parallel alternation (up to symmetry) of length less than 6: the
permutation 2413. We showed in Section 3 that Avp2413q is not deflatable.

We conclude this section by generalizing the deflatable class Avp251364q to an
infinite family of deflatable classes. Set π “ 251364 and consider the inflation π˚ “
πr1, θ, 1, 1, 1, 1s for any permutation θ. Set ω “ 25173486 (the witness of deflatability
for the class Avpπq) and further define ω˚ “ ωr1, θ, 1, θ, 1, 1, 1, 1s for the same θ as
before. Both π˚ and ω˚ are shown in Figure 30.

It is fairly straight-forward to see that ω˚ P Avpπ˚q, and it is routine to check
that any one-point extension of ω˚ by an entry x which splits the interval formed by
the entries 3 and 4 (without becoming a part of this interval) contains π˚. Hence,
Avpπ˚q is deflatable by Lemma 4.1, proving the following theorem.

Theorem 4.3. There are infinitely many deflatable principal classes.
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θ

π˚

θ

θ

ω˚

Figure 30: The permutations π˚ (on the left) and ω˚ (on the right).

5 Open Questions

Although we have shown that there are both infinitely many deflatable principal
classes and infinitely many non-deflatable principal classes, the task of classifying
exactly which principal classes are deflatable, to say nothing of non-principal classes,
remains unfinished.

The results of Section 3 prove the non-deflatability of all classes Avpπq for |π| “ 4.
Of the classes Avpπq for |π| “ 5, we have shown that Avpπq is not deflatable for
all decomposable π. The remaining classes Avpπq to be checked are Avp25314q,
Avp24153q, Avp23514q, and Avp24513q. Note that the former two bases consist of
simple permutations while the latter two consist of inflations of 2413. This raises the
following question:

Question 5.1. Are the classes Avp25314q, Avp24153q, Avp23514q, and Avp24513q
deflatable?

It is already known that π “ 134652 is a minimal length decomposable π such
that Avpπq is deflatable. The resolution to Question 5.1 would determine whether
or not π is a minimal length such π among all permutations. Moreover, there are
three other length 6 decomposable permutations π (up to symmetry) such that the
deflatability of Avpπq is unknown. The answer to the Question 5.2 might be helpful
in determining a broader classification of deflatable and non-deflatable classes.

Question 5.2. Are the classes Avp146523q, Avp154623q, and Avp164532q deflatable?

The reader may have noticed that, despite proving that, for many principal
classes, their set of simple permutations is actually contained in a proper subclass,
we have not once specified what that proper subclass is. This is not out of neglect;
rather, the only way currently known to conjecture the smallest proper subclass
D Ă C for which C Ď xDy is by direct calculation. For the time being, computational
power is not sufficient to perform this calculation for the classes in question.
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