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Abstract

We extend the reciprocity method of Jones and Remmel ([Discrete Math.
313 (2013), 2712–2729] and [Pure Math. Appl. 24 (2013), 151–178]) to
study generating functions of the form

∑
n≥0

tn

n!

∑
σ∈NMn(Γ)

xLRmin(σ)y1+des(σ)

where Γ is a set of permutations which start with 1 and have at most
one descent, NMn(Γ) is the set of permutations σ in the symmetric
group Sn which have no Γ-matches, des(σ) is the number of descents of
σ and LRmin(σ) is the number of left-to-right minima of σ. We show

that this generating function is of the form
(

1
UΓ(t,y)

)x
where UΓ(t, y) =∑

n≥0 UΓ,n(y)
tn

n!
and the coefficients UΓ,n(y) satisfy some simple recursions

in the case where Γ equals {1324, 123}, {1324 · · ·p, 12 · · · (p − 1)} and
p ≥ 5, or Γ is the set of permutations σ = σ1 · · ·σn of length n = k1 + k2
where k1, k2 ≥ 2, σ1 = 1, σk1+1 = 2, and des(σ) = 1.

1 Introduction

Let Sn denote the symmetric group of all permutations of {1, . . . , n}. If σ =
σ1 · · ·σn ∈ Sn, we say that i is a descent of σ if σi > σi+1 and σj is a left-to-
right minimum of σ if σj < σi for all i < j. We let des(σ) be the number of descents
of σ and LRmin(σ) be the number of left-to-right minima of σ. Given a sequence
α = α1 · · ·αn of distinct integers, the reduction of α, red(α), is the permutation in
Sn found by replacing the ith smallest integer that appears in α by i. For example,
if α = 9 2 7 4 5, then red(α) = 51423. Let Γ be a set of permutations. We say
that a permutation σ = σ1 · · ·σn ∈ Sn has a Γ-match starting at position i if there
is a j ≥ 1 such that red(σiσi+1 · · ·σi+j) ∈ Γ. We let Γ-mch(σ) denote the number
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of Γ-matches in σ. We let NMn(Γ) be the set of permutations σ in the symmetric
group Sn such that Γ-mch(σ) = 0.

The main goal of this paper is to study the generating function

NMΓ(t, x, y) =
∑
n≥0

tn

n!

∑
σ∈NMn(Γ)

xLRmin(σ)y1+des(σ)

in the case where Γ is a set of permutations such that for each α ∈ Γ, α starts with
1 and des(α) ≤ 1. In the special case where Γ consists of a single permutation τ , we
will denote NMΓ(t, x, y) simply as NMτ(t, x, y). Jones and Remmel [11] showed that
if every permutation in Γ starts with 1, then we can write NMΓ(t, x, y) in the form(

1
UΓ(t,y)

)x
where

UΓ(t, y) =
∑
n≥0

UΓ,n(y)
tn

n!
.

There is a considerable literature on the generating function NMΓ(t, 1, 1) of per-
mutations that consecutively avoid a pattern or set of patterns. See for example,[1–
5,7–10,15–17]. For the most part, these papers do not consider generating functions
of the form NMτ(t, 1, y) or NMτ(t, x, y). An exception is the work on enumeration
schemes of Baxter [2, 3], who gave general methods to enumerate patterns avoiding
vincular patterns according to various permutations statistics. Our approach is to
use the reciprocity method of Jones and Remmel.

Jones and Remmel [12–14] developed what they called the reciprocity method to
compute the generating function NMτ(t, x, y) for certain families of permutations τ
such that τ starts with 1 and des(τ) = 1. The basic idea of their approach is as
follows. First one writes

Uτ (t, y) =
1

1 +
∑

n≥1NMτ,n(1, y)
tn

n!

. (1)

One can then use the homomorphism method to give a combinatorial interpretation
of the right-hand side of (1) which can be used to find simple recursions for the
coefficients Uτ,n(y). The homomorphism method derives generating functions for
various permutation statistics by applying a ring homomorphism defined on the ring
of symmetric functions Λ in infinitely many variables x1, x2, . . . to simple symmetric
function identities such as

H(t) = 1/E(−t),

where H(t) and E(t) are the generating functions for the homogeneous and elemen-
tary symmetric functions, respectively:

H(t) =
∑
n≥0

hnt
n =

∏
i≥1

1

1− xit
, E(t) =

∑
n≥0

ent
n =

∏
i≥1

1 + xit. (2)

In their case, Jones and Remmel defined a homomorphism θ on Λ by setting

θ(en) =
(−1)n

n!
NMτ,n(1, y).
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Then

θ(E(−t)) =
∑
n≥0

NMτ,n(1, y)
tn

n!
=

1

Uτ (t, y)
.

Hence

Uτ (t, y) =
1

θ(E(−t))
= θ(H(t)),

which implies that
n!θ(hn) = Uτ,n(y).

Thus if we can compute n!θ(hn) for all n ≥ 1, then we can compute the polynomials
Uτ,n(y) and the generating function Uτ (t, y), which in turn allows us to compute the
generating function NMτ (t, x, y). Jones and Remmel [13, 14] showed that one can
interpret n!θ(hn) as a certain signed sum of weights of filled labeled brick tabloids
when τ starts with 1 and des(τ) = 1. Then they showed how such a combinatorial
interpretation allowed them to prove that for certain families of such permutations
τ , the Uτ,n(y)’s satisfied certain simple recursions.

The main purpose of this paper is to extend the methods of Jones and Remmel
[13, 14] so that one can compute UΓ,n(y). In our case we assume that if τ ∈ Γ, then
τ starts with 1 and des(τ) ≤ 1. One of the most interesting cases from our point of
view is the case when Γ contains an identity permutation 12 · · · (k+1) where k ≥ 2.
In such a case, the underlying set of weighted filled labeled brick tabloids which we
use to interpret UΓ,n(y) has the property that all the bricks have size less than or
equal to k. This results in a significant difference between the recursions satisfied by
Uτ,n(y) and the recursions satisfied by U{τ,12···(k+1)},n(y).

For example, in [13], Jones and Remmel studied the generating functions NMτ (t,
x, y) for permutations τ of the form τ = 1324 · · ·p where p ≥ 4. That is, τ arises
from the identity permutation by transposing 2 and 3. Using the reciprocity method,
they proved that U1324,1(y) = −y and for n ≥ 2,

U1324,n(y) = (1− y)U1324,n−1(y) +

�n/2�∑
k=2

(−y)k−1Ck−1U1324,n−2k+1(y)

where Ck =
1

k+1

(
2k
k

)
is the kth Catalan number. They also proved that for any p ≥ 5,

U1324···p,n(y) = −y and for n ≥ 2,

U1324···p,n(y) = (1− y)U1324···p,n−1(y) +

�n−2
p−2

�+1∑
k=2

(−y)k−1U1324···p,n−((k−1)(p−2)+1)(y).

We will prove the following two theorems.

Theorem 1. Let Γ = {1324, 123}. Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x

where UΓ(t, y) = 1 +
∑
n≥1

UΓ,n(y)
tn

n!
,
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UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = −yUΓ,n−1(y)− yUΓ,n−2(y) +

�n/2�∑
k=2

(−y)kCk−1UΓ,n−2k(y).

Theorem 2. Let Γ = {1324 . . . p, 123 . . . p− 1} where p ≥ 5. Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x

where UΓ(t, y) = 1 +
∑
n≥1

UΓ,n(y)
tn

n!
,

UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) =

p−2∑
k=1

(−y)UΓ,n−k(y) +

p−2∑
k=1

�n−k
p−2

�∑
m=2

(−y)mUΓ,n−k−(m−1)(p−2)(y).

Note that both Theorems 1 and 2 show that the reciprocity method applies even
in cases where Γ is a family that contains permutations of different lengths. In
the case of Theorem 1, the polynomials U{1324,123},n(−y) are the polynomials in the
sequences A039598 and A039599 in On-line Encyclopedia of Integer Sequences [18]
up to a power of y. The polynomials in sequences A039598 and A039599 are related
to the expansions of the powers of x in terms of the Chebyshev polynomials of the
second kind. We will give a bijection between our combinatorial interpretation of
U{1324,123},2n(−y) and one of the known combinatorial interpretations for A039599,
and a bijection between our combinatorial interpretation of U{1324,123},2n+1(−y) and
one of the known combinatorial interpretations for A039598. This will allow us to
give closed expressions for the polynomials U{1324,123},n(y). That is, we will prove
that for all n ≥ 0,

U{1324,123},2n(y) =

n∑
k=0

(2k + 1)
(

2n
n−k

)
n+ k + 1

(−y)n+k+1 and

U{1324,123},2n+1(y) =

n∑
k=0

2(k + 1)
(
2n+1
n−k

)
n+ k + 2

(−y)n+k.

Another example is the following. Let k1, k2 ≥ 2 and p = k1 + k2. We consider
the family of permutations Γk1,k2 in Sp defined as

Γk1,k2 = {σ ∈ Sp : σ1 = 1, σk1+1 = 2, σ1 < σ2 < · · · < σk1 & σk1+1 < σk1+2 < · · · < σp}.

That is, Γk1,k2 consists of all permutations σ of length p where 1 is in position 1, 2
is in position k1 + 1, and σ consists of two increasing sequences, one starting at 1
and the other starting at 2. Then we shall prove the following theorem.

Theorem 3. Let Γ = Γk1,k2 where k1, k2 ≥ 2, m = min{k1, k2}, and M = max{k1,
k2}. Then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x

where UΓ(t, y) = 1 +
∑
n≥1

UΓ,n(y)
tn

n!
,
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UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y

(
n− 2

k1 − 1

)(
UΓ,n−M(y) + y

m−1∑
i=1

UΓ,n−M−i(y)

)
.

When k1 = k2 = 2, Theorem 3 gives us the following corollary.

Corollary 4. For Γ = {1324, 1423}, then

NMΓ(t, x, y) =

(
1

UΓ(t, y)

)x

where UΓ(t, y) = 1 +
∑
n≥1

UΓ,n(y)
tn

n!
,

UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y(n− 2) (UΓ,n−2(y) + yUΓ,n−3(y)) .

Finally, we shall consider families of the form Γk1,k2,s = Γk1,k2 ∪ {1 · · · s(s + 1)}
for some s ≥ max(k1, k2). For example, we will show that

NMΓ2,2,s(t, x, y) =
1

1 +
∑

n≥1 UΓ2,2,s,n(y)
tn

n!

where UΓ2,2,s ,1(y) = −y, and for n ≥ 2,

UΓ2,2,s,n(y) = −yUΓ2,2,s,n−1(y)−
s−2∑
k=0

(
(n− k − 1)yUΓ2,2,s,n−k−2(y) + (n− k − 2)y2UΓ2,2,s ,n−k−3(y)

)
.

On the surface, it seems that these recursions are more complicated than the
recursions for the U{1324,1423},n(y)’s, but it turns out that the resulting polynomials
are considerably simpler to analyze. For example, we shall give explicit formulas for
UΓ2,2,2,n(y) for all n ≥ 1. That is, we will show that

UΓ2,2,2,2n(y) =

n∑
i=0

(2n− 1) ↓↓n−i (−y)n+i and

UΓ2,2,2,2n+1(y) =
n∑

i=0

(2n) ↓↓n−i (−y)n+1+i

where for any x, (x) ↓↓0= 1 and (x) ↓↓k= x(x− 2)(x− 4) · · · (x− 2k − 2) for k ≥ 1.
The outline of this paper is as follows. In Section 2, we will show how to extend the

reciprocity method of Jones and Remmel [13,14] to give combinatorial interpretations
to the polynomials UΓ,n(y) in the case where all the permutations in Γ start with 1
and have at most one descent. In Section 3, we will prove Theorem 3 and show how
to modify it when we add the identity permutation in Sk+1 to the corresponding
families in the case where k1 = k2. In Section 4, we will prove Theorems 1 and 2 and
give bijections that will prove our closed expressions for the U{1324,123},n(y)’s. Finally,
in Section 5, we will state some open problems and areas for further research.
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2 Symmetric Functions

In this section, we give the necessary background on symmetric functions that will
be used in our proofs.

A partition of n is a sequence of positive integers λ = (λ1, . . . , λs) such that
0 < λ1 ≤ · · · ≤ λs and n = λ1 + · · ·+ λs. We shall write λ � n to denote that λ is
partition of n and we let �(λ) denote the number of parts of λ. When a partition of
n involves repeated parts, we shall often use exponents in the partition notation to
indicate these repeated parts. For example, we will write (12, 45) for the partition
(1, 1, 4, 4, 4, 4, 4).

Let Λ denote the ring of symmetric functions in infinitely many variables
x1, x2, . . .. The nth elementary symmetric function en = en(x1, x2, . . .) and nth ho-
mogeneous symmetric function hn = hn(x1, x2, . . .) are defined by the generating
functions given in (2). For any partition λ = (λ1, . . . , λ�), let eλ = eλ1 · · · eλ�

and
hλ = hλ1 · · ·hλ�

. It is well known that e0, e1, . . . is an algebraically independent set of
generators for Λ, and hence, a ring homomorphism θ on Λ can be defined by simply
specifying θ(en) for all n.

If λ = (λ1, . . . , λk) is a partition of n, then a λ-brick tabloid of shape (n) is a
filling of a rectangle consisting of n cells with bricks of sizes λ1, . . . , λk in such a
way that no two bricks overlap. For example, Figure 1 shows the six (12, 22)-brick
tabloids of shape (6).

Figure 1: The six (12, 22)-brick tabloids of shape (6).

Let Bλ,n denote the set of λ-brick tabloids of shape (n) and let Bλ,n be the number
of λ-brick tabloids of shape (n). If B ∈ Bλ,n, we will write B = (b1, . . . , b�(λ)) if the
lengths of the bricks in B, reading from left to right, are b1, . . . , b�(λ). For example, the
brick tabloid in the top right position in Figure 1 is denoted as (1, 2, 2, 1). Eğecioğlu
and the second author [6] proved that

hn =
∑
λ�n

(−1)n−�(λ)Bλ,n eλ. (3)

This interpretation of hn in terms of en will aid us in describing the coefficients of
ΘΓ(H(t)) = UΓ(t, y) described in the next section, which will in turn allow us to
compute the coefficients NMΓ,n(x, y).

3 Extending the reciprocity method

In this section, we will show that one can easily extend the reciprocity method of
[12–14] to find a combinatorial interpretation for UΓ,n(y) in the case where Γ is a set
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of permutations which all start with 1 and have at most one descent. We can assume
that Γ contains at most one permutation σ which is an identity permutation. That is,
if 12 · · · s and 12 · · · t are in Γ for some s < t, then if we consecutively avoid 12 · · · s,
we automatically consecutively avoid 12 · · · t. Thus NMn(Γ) = NMn(Γ−{12 · · · t})
for all n.

We want give a combinatorial interpretation to

UΓ(t, y) =
1

NMΓ(t, 1, y)
=

1

1 +
∑

n≥1
tn

n!
NMΓ,n(1, y)

,

where
NMΓ,n(1, y) =

∑
σ∈NMn(Γ)

y1+des(σ).

We define a homomorphism ΘΓ on the ring of symmetric functions Λ by setting
ΘΓ(e0) = 1 and, for n ≥ 1,

ΘΓ(en) =
(−1)n

n!
NMΓ,n(1, y).

It follows that

ΘΓ(H(t)) =
∑
n≥0

ΘΓ(hn)t
n =

1

Θτ (E(−t))
=

1

1 +
∑

n≥1(−t)nΘΓ(en)

=
1

1 +
∑

n≥1
tn

n!
NMΓ,n(1, y)

= UΓ(t, y).

By (3), we have

n!ΘΓ(hn) = n!
∑
λ�n

(−1)n−�(λ)Bλ,n ΘΓ(eλ)

= n!
∑
λ�n

(−1)n−�(λ)
∑

(b1,...,b�(λ))∈Bλ,n

�(λ)∏
i=1

(−1)bi

bi!
NMΓ,bi(1, y)

=
∑
λ�n

(−1)�(λ)
∑

(b1,...,b�(λ))∈Bλ,n

(
n

b1, . . . , b�(λ)

) �(λ)∏
i=1

NMΓ,bi(1, y). (4)

Next, we want to give a combinatorial interpretation to the right hand side of
(4). We select a brick tabloid B = (b1, b2, . . . , b�(λ)) of shape (n) filled with bricks
whose sizes induce the partition λ. We interpret the multinomial coefficient

(
n

b1,...,b�(λ)

)
as the number of ways to choose an ordered set partition S = (S1, S2, . . . , S�(λ)) of
{1, 2, . . . , n} such that |Si| = bi for i = 1, . . . , �(λ). For each brick bi, we then fill
the cells of bi with numbers from Si such that the entries in the brick reduce to a
permutation σ(i) = σ1 · · ·σbi in NMbi(Γ). We label each descent of σ that occurs
within each brick as well as the last cell of each brick by y. This accounts for the
factor ydes(σ

(i))+1 within each brick. Finally, we use the factor (−1)�(λ) to change the
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label of the last cell of each brick from y to −y. We will denote the filled labeled
brick tabloid constructed in this way as 〈B,S, (σ(1), . . . , σ(�(λ)))〉.

For example, when n = 17,Γ = {1324, 1423, 12345}, and B = (9, 3, 5, 2), consider
the ordered set partition S = (S1, S2, S3, S4) of {1, 2, . . . , 17}, where

S1 = {2, 5, 6, 9, 11, 15, 16, 17, 19}, S2 = {7, 8, 14}, S3 = {1, 3, 10, 13, 18}, S4 = {4, 12},

and the permutations σ(1) = 1 2 4 6 5 3 7 9 8 ∈ NM9(Γ), σ
(2) = 1 3 2 ∈

NM7(Γ), σ
(3) = 5 1 2 4 3 ∈ NM5(Γ), and σ(4) = 2 1 ∈ NM2(Γ). The construction

of 〈B,S, (σ(1), . . . , σ(4))〉 is then pictured in Figure 2.

= 2 1σ(4)= 1 3 2(2)σ = 5 1 2 4 3(3)σ

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} {4,12} 

σ(1)

2 7 814 18 1 3 1013 12 4

y −y y y y −y y −y

= 1 2 4 6 5 3 7 9 8 

65 9 1115 1916 17

y y −y

Figure 2: The construction of a filled-labeled-brick tabloid.

It is easy to see that we can recover the triple 〈B, (S1, . . . , S�(λ)), (σ
(1), . . . , σ(�(λ)))〉

from B and the permutation σ which is obtained by reading the entries in the cells
from right to left. We let OΓ,n denote the set of all filled labeled brick tabloids
created this way. That is, OΓ,n consists of all pairs O = (B, σ) where

1. B = (b1, b2, . . . , b�(λ)) is a brick tabloid of shape n,

2. σ = σ1 · · ·σn is a permutation in Sn such that there is no Γ-match of σ which
lies entirely in a single brick of B, and

3. if there is a cell c such that a brick bi contains both cells c and c + 1 and
σc > σc+1, then cell c is labeled with a y and the last cell of any brick is labeled
with −y.

We define the sign of each O to be sgn(O) = (−1)�(λ). The weight W (O) of O is
defined to be the product of all the labels y used in the brick. Thus, the weight of
the filled labeled brick tabloid from Figure 2 above is W (O) = y11. It follows that

n!ΘΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O). (5)

Following [13], we next define a sign-reversing, weight-preserving involution I :
OΓ,n → OΓ,n. Given a filled labeled brick tabloid (B, σ) ∈ OΓ,n where B =
(b1, . . . , bk), we read the cells of (B, σ) from left to right, looking for the first cell c
for which either

(i) cell c is labeled with a y, or
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(ii) cell c is at the end of brick bi where σc > σc+1 and there is no Γ-match of σ
that lies entirely in the cells of the bricks bi and bi+1.

In case (i), we define IΓ(B, σ) to be the filled labeled brick tabloid obtained from
(B, σ) by breaking the brick bj that contains cell c into two bricks b′j and b′′j where b′j
contains the cells of bj up to and including the cell c while b′′j contains the remaining
cells of bj . In addition, we change the labeling of cell c from y to −y. In case (ii),
IΓ(B, σ) is obtained by combining the two bricks bi and bi+1 into a single brick b
and changing the label of cell c from −y to y. If neither case occurs, then we let
IΓ(B, σ) = (B, σ).

For instance, the image of the filled labeled brick tabloid from the Figure 2 under
this involution is shown below in Figure 3.

2 7 814 18 1 3 1013 12 4

−y y y y −y y −y

65 9 11 1916 17

y y

15

−y −y

Figure 3: IΓ(O) for O in Figure 2.

We claim that as long as each permutation in Γ has at most one descent, then
IΓ is an involution. Let (B, σ) be an element of Oγ,n which is not a fixed point of
I. Suppose that I(B, σ) is defined using case (i) where we split a brick bj at cell c
which is labeled with a y. In that case, we let a be the number in cell c and a′ be
the number in cell c+1 which must also be in brick bj . Since cell c is labeled with y,
it must be the case that a > a′. Moreover, there can be no cell labeled y that occurs
before cell c since otherwise we would not use cell c to define I(B, σ). In this case,
we must ensure that when we split bj into b′j and b′′j , we cannot combine the brick
bj−1 with b′j because the number in that last cell of bj−1 is greater than the number
in the first cell of b′j and there is no Γ-match in the cells of bj−1 and b′j since in such
a situation, IΓ(IΓ(B, σ)) �= (B, σ). However, since we always take an action on the
leftmost cell possible when defining IΓ(B, σ), we know that we cannot combine bj−1

and bj so that there must be a Γ-match in the cells of bj−1 and bj . Moreover, if we
could now combine bricks bj−1 and b′j , then that Γ-match must have involved the
number a′ and the number in cell d which is the last cell in brick bj−1. But that is
impossible because then there would be two descents among the numbers between
cell d and cell c+1 which would violate our assumption that the elements of Γ have
at most one descent. Thus whenever we apply case (i) to define IΓ(B, σ), the first
action that we can take is to combine bricks b′j and b′′j so that I2Γ(B, σ) = (B, σ).

If we are in case (ii), then again we can assume that there are no cells labeled
y that occur before cell c. When we combine brick bi and bi+1, then we will label
cell c with a y. It is clear that combining the cells of bi and bi+1 cannot help us
combine the resulting brick b with bj−1 since, if there were a Γ-match that prevented
us from combining bricks bj−1 and bj , then that same Γ-match will prevent us from
combining bj−1 and b. Thus, the first place where we can apply the involution will
again be cell c which is now labeled with a y so that I2Γ(B, σ) = (B, σ).

It is clear that if IΓ(B, σ) �= (B, σ), then

sgn(B, σ)W (B, σ) = −sgn(IΓ(B, σ))W (IΓ(B, σ)).
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Thus it follows from (5) that

n!ΘΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O).

Hence if all permutations in Γ have at most one descent, then

UΓ,n(y) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O). (6)

Thus to compute UΓ,n(y), we must analyze the fixed points of IΓ.
If (B, σ) where B = (b1, . . . , bk) and σ = σ1 · · ·σn is a fixed point of the involution

IΓ, then (B, σ) cannot have any cell labeled y which means that the elements of σ
that lie within any brick bj of B must be increasing. If it is the case that an identity
permutation 12 · · · (k + 1) is in Γ, then no brick of B can have length greater than
k. Next, consider any two consecutive bricks bi and bi+1 in B. Let c be the last cell
of bi and c + 1 be the first cell of bi+1. Then either σc < σc+1 in which case we say
there is an increase between bricks bi and bi+1, or σc > σc+1 in which case we say
there is a decrease between bricks bi and bi+1. In the latter case, there must be a
Γ-match of σ that lies in the cells of bi and bi+1 which must necessarily involve σc

and σc+1. Finally, we claim that since all the permutations in Γ start with 1, the
minimal elements within the bricks of B must increase from left to right. That is,
consider two consecutive bricks bi and bi+1 and let ci and ci+1 be the first cells of bi
and bi+1, respectively. Suppose that σci > σci+1

. Let di be the last cell of bi. Then
clearly σci+1

< σci ≤ σdi so that there is a decrease between brick bi and brick bi+1

and hence there must be a Γ-match of σ that lies in the cells of bi and bi+1 that
involves the elements of σdi and σci+1

. But this is impossible since our assumptions
ensure that σci+1

is the smallest element that lies in the bricks bi and bi+1 so that it
can only play the role of 1 in any Γ-match. But since every element of Γ starts with
1, then any Γ-match that lies in bi and bi+1 that involves σci+1

must lie entirely in
brick bi+1 which contradicts the fact that (B, σ) was a fixed point of IΓ.

Thus, we have the following lemma describing the fixed points of the involution
IΓ.

Lemma 5. Let Γ be a set of permutations which all start with 1 and have at most one
descent. Let Q(y) be the set of rational functions in the variable y over the rationals
Q and let ΘΓ : Λ → Q(y) be the ring homomorphism defined by setting ΘΓ(e0) = 1,

and ΘΓ(en) =
(−1)n

n!
NMΓ,n(1, y) for n ≥ 1. Then

n!ΘΓ(hn) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O)

where OΓ,n is the set of objects and IΓ is the involution defined above. Moreover,
O = (B, σ) ∈ OΓ,n where B = (b1, . . . , bk) and σ = σ1 · · ·σn is a fixed point of IΓ if
and only if O satisfies the following four properties:

1. there are no cells labeled with y in O, i.e., the elements in each brick of O are
increasing,
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2. the first elements in each brick of O form an increasing sequence, reading from
left to right,

3. if bi and bi+1 are two consecutive bricks in B, then either (a) there is increase
between bi and bi+1, i.e., σ∑i

j=1 bj
< σ1+

∑i
j=1 bj

, or (b) there is a decrease between

bi and bi+1, i.e., σ∑i
j=1 bj

> σ1+
∑i

j=1 bj
, and there is a Γ-match contained in the

elements of the cells of bi and bi+1 which must necessarily involve σ∑i
j=1 bj

and

σ1+
∑i

j=1 bj
, and

4. if Γ contains an identity permutation 12 · · · (k + 1), then bi ≤ k for all i.

Note that since UΓ,n(y) = n!ΘΓ(hn), Lemma 5 gives us a combinatorial interpre-
tation of UΓ,n(y). Since the weight of of any fixed point (B, σ) of IΓ is −y raised
to the number of bricks in B, it follows that UΓ,n(−y) is always a polynomial with
non-negative integer coefficients. We will exploit this combinatorial interpretation
to prove the main results of this paper.

4 Proof of Theorem 3

Let k1, k2 ≥ 2 and p = k1+ k2. We consider the family of permutations Γ = Γk1,k2 in
Sp where

Γk1,k2 =

{σ ∈ Sp : σ1 = 1, σk1+1 = 2, σ1 < σ2 < · · · < σk1 & σk1+1 < σk1+2 < · · · < σp}.

We start this section by giving a proof of Theorem 3. At the end of this section, we
shall consider how to compute UΓk1,k1,s

(y, t) where

Γk1,k1,s = Γk1,k1 ∪ {12 · · ·s(s+ 1)}.

By (6), we must show that the coefficients

UΓ,n(y) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O)

have the following properties:

1. UΓ,1(y) = −y, and

2. for n > 1,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y

(
n− 2

k1 − 1

)(
UΓ,n−M(y) + y

m−1∑
i=1

UΓ,n−M−i(y)

)
,

where m = min{k1, k2} and M = max{k1, k2}.
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We will divide the proof into two cases, one where k1 ≥ k2 and the other where
k1 < k2.

Case I. k1 ≥ k2.

Let (B, σ) be a fixed point of IΓ where B = (b1, . . . , bk) and σ = σ1 · · ·σn. We
know that 1 is in the first cell of (B, σ). We claim that 2 must be in cell 2 or cell k1+1
of (B, σ). To see this, suppose that 2 is in cell c where c �= 2 and c �= k1 + 1. Since
there is no descent within any brick, 2 must be the first cell of its brick. Moreover,
since the minimal elements of the bricks form an increasing sequence, reading from
left to right, 2 must be in the first cell of the second brick b2. Thus, 1 is in the first
cell of the first brick b1 and 2 is in the first cell of the second brick b2. Since c > 2,
there is a decrease between bricks b1 and b2 and, hence, there must be a Γ-match of
σ contained cells of b1 and b2 which involves 2 and the last cell of b1. Since all the
elements of Γ start with 1, this Γ-match must also involve 1 since only 1 can play
the role of 1 in a Γ-match that involves 2 and the last cell of b1. But in all such
Γ-matches, 2 must be in cell k1 + 1. Since c �= k1 + 1, this means that there can be
no Γ-match contained in the cells of b1 and b2 which contradicts the fact that (B, σ)
is a fixed point of IΓ.

Thus, we have two subcases.

Subcase 1. 2 is in cell 2 of (B, σ).

In this case there are two possibilities, namely, either (i) 1 and 2 are both in the first
brick b1 of (B, σ) or (ii) brick b1 is a single cell filled with 1 and 2 is in the first cell of
the second brick b2 of (B, σ). In either case, we know that 1 is not part of a Γ-match
in (B, σ). So if we remove cell 1 from (B, σ) and subtract 1 from the elements in the
remaining cells, we will obtain a fixed point O′ of IΓ in OΓ,n−1.

Moreover, we can create a fixed point O = (B, σ) ∈ On satisfying conditions
(1), (2), (3) and (4) of Lemma 5 where σ2 = 2 by starting with a fixed point
(B′, σ′) ∈ OΓ,n−1 of IΓ, where B′ = (b′1, . . . , b

′
r) and σ′ = σ′

1 · · ·σ′
n−1, and then

letting σ = 1(σ′
1 + 1) · · · (σ′

n−1 + 1), and setting B = (1, b′1, . . . , b
′
r) or setting B =

(1 + b′1, . . . , b
′
r).

It follows that fixed points in Case 1 will contribute (1− y)UΓ,n−1(y) to UΓ,n(y).

Subcase 2. 2 is in cell k1 + 1 of (B, σ).

Since there is no decrease within the bricks of (B, σ) and the first numbers of the
bricks are increasing, reading from left to right, it must be the case that 2 is in the
first cell of b2. Thus b1 has exactly k1 cells. In addition, b2 has at least k2 cells since
otherwise, there could be no Γ-match contained in the cells of b1 and b2 and we could
combine the bricks b1 and b2, which would mean that (B, σ) is not a fixed point of
IΓ. By our argument above, it must be the case that the Γ-match of σ contained in
the cells of b1 and b2 must start in the first cell. We first choose k1−1 numbers to fill
in the remaining cells of b1. There are

(
n−2
k1−1

)
ways to do this. For each such choice,

we let O′ be the result by removing the first k1 cells from (B, σ) and replacing the
ith largest remaining number by i for i = 1, . . . , n− k1, then O′ will be a fixed point
in OΓ,n−k1 whose first brick is of size greater than or equal to k2.
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On the other hand, suppose that we start with O′ ∈ OΓ,n−k1 which is a fixed
point of IΓ and whose first brick is of size greater than or equal to k2. Then we can
take any k1 − 1 numbers 1 < a1 < a2 < · · · < ak1−1 ≤ n and add a new brick at the
start which contains 1, a1, . . . ak1−1 followed by O′′ which is the result of replacing
the numbers in O′ by the numbers in {1, . . . , n} − {1, a1, . . . ak1−1} maintaining the
same relative order, then we will create a fixed point O of IΓ of size n whose first
brick is of size k1 and whose second brick starts with 2.

Thus we need to count the number of fixed points in OΓ,n−k1whose first brick
has size at least k2. Suppose that V = (D, τ) is a fixed point of OΓ,n−k1 where
D = (d1, . . . , dk) and τ = τ1 · · · τn−k1. Now if d1 = j < k2, then there cannot be
a decrease between bricks d1 and d2 because otherwise there would have been a Γ-
match starting at cell 1 contained in the bricks d1 and d2 which is impossible since
all permutations in Γ have their only descent at position k1 > j. This means that
the first brick d1 must be filled with 1, . . . j. That is, since the minimal elements
of the bricks are increasing reading from left to right, we must have that the first
element of d2, namely τj+1, is less than all the elements to its right and we have
shown that all the elements in the first brick are less than τj+1. It follows that
τ1 · · · τj+1 = 12 · · · j(j + 1). Therefore, if we let V ′ be the result of removing the
entire first brick of V and subtracting j from the remaining numbers, then V ′ is a
fixed point in OΓ,n−k1−j.

It follows that

UΓ,n−k1(y)−
k2−1∑
j=1

(−y)UΓ,n−k1−j(y)

equals the sum over all fixed points of IΓ,n−k1 whose first brick has size at least k2.
Hence the contribution of fixed points in Case 2 to UΓ,n(y) is

(−y)

(
n− 2

k1 − 1

)(
UΓ,n−k1(y) +

k2−1∑
j=1

yUΓ,n−k1−j(y)

)
.

Combining the two cases, we see that for n > 1,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y

(
n− 2

k1 − 1

)(
UΓ,n−k1(y) + y

k2−1∑
j=1

UΓ,n−k1−i(y)

)
. (7)

Case II. k1 < k2.

Let O = (B, σ) be a fixed point of IΓ where B = (b1, . . . , bk) and σ = σ1 · · ·σn.
We know that 1 is in the first cell of O. By the same argument as in Case I, we know
that 2 must be in cell 2 or cell k1 + 1 of O. We now consider two cases depending
on the position of 2 in O.

Subcase A. 2 is in cell 2 of (B, σ).

By the same argument that we used in Subcase 1 of Case I, we can conclude that
the fixed points of IΓ in Subcase A will contribute (1− y)UΓ,n−1(y) to UΓ,n(y).
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Subcase B. 2 is in cell k1 + 1 of (B, σ).

Since the minimal elements of the bricks are increasing, reading from left to right, it
must be the case that 2 is in the first cell of b2. Thus, b1 has exactly k1 cells, b2 has
at least k2 cells, and there is a Γk1,k2-match in the cells of b1 and b2 which must start
at cell 1.

We first choose k1 − 1 numbers to fill in the remaining cells of b1. There are(
n−2
k1−1

)
ways to do this. For each of such choice, let d1 < · · · < dk2−k1−1 be the

smallest k2 − k1 − 1 numbers in {1, 2, . . . , n} − {σ1, . . . , σk1+1}. We claim that it
must be the case that σk1+1+i = di for i = 1, . . . , k2 − k1 − 1. If not, let j be the
least i such that σk1+1+i �= di. Then di cannot be in brick b2 so that it must be
the first element in brick b3. But then there will be a decrease between bricks b2
and b3 which means that there must be a Γk1,k2-match contained in the cells of b2
and b3. Note that there is only one descent in each permutation of Γk1,k2 and this
descent must occur at position k1. It follows that this Γk1,k2-match must start at the
(k2 − k1)

th cell of b2. But this is impossible since our assumption will ensure that
σk1+1+(k2−k1−1) = σk2 > di.

It then follows that if we let O′ be the result by removing the first k2 cells from
O and adjusting the remaining numbers in the cells, then O′ will be a fixed point in
OΓ,n−k2 that starts with at least k1 cells in the first brick. Then we can argue exactly
as we did in Subcase 2 of Case I the contribution of fixed points in Case B to UΓ,n(y)
is

−y

(
n− 2

k1 − 1

)(
UΓ,n−k2(y) +

k1−1∑
j=1

yUΓ,n−k2−j(y)

)
.

It follows that in Case II

UΓk1,k2
,n(y) = (1−y)UΓk1,k2

,n(y)−y

(
n− 2

k1 − 1

)(
UΓ,n−k2(y) +

k1−1∑
j=1

yUΓ,n−k2−j(y)

)
(8)

for n > 1.

Comparing equations (7) and (8), it is easy to see that if m = min(k1, k2) and
M = max(k1, k2), then

UΓk1,k2
,n(y) = (1− y)UΓk1,k2

,n−1(y)− y

(
n− 2

k1 − 1

)(
UΓ,n−M(y) + y

m−1∑
i=1

UΓ,n−M−i(y)

)

for all n > 1 which proves Theorem 3.
For example, consider the special case where k1 = k2 = 2. Then by Corollary 4,

UΓ2,2,n(y) = (1− y)UΓ2,2,n−1(y)− y(n− 2)
(
UΓ2,2,n−2(y) + yUΓ2,2,n−3(y)

)
.

In Table 1, we computed UΓ2,2,n(y) for n ≤ 14.
We observe that the polynomials UΓ2,2,n(−y) in Table 1 are all log-concave. Here,

a polynomial P (y) = a0 + a1y + · · ·+ any
n is called log-concave if ai−1ai+1 < a2i , for

all i = 2, . . . , n − 1, and it is called unimodal if there exists an index k such that
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n UΓ2,2,n(−y)
1 y
2 y + y2

3 y + 2y2 + y3

4 y + 5y2 + 3y3 + y4

5 y + 9y2 + 11y3 + 4y4 + y5

6 y + 14y2 + 36y3 + 19y4 + 5y5 + y6

7 y + 20y2 + 90y3 + 85y4 + 29y5 + 6y6 + y7

8 y + 27y2 + 188y3 + 337y4 + 162y5 + 41y6 + 7y7 + y8

9 y + 35y2 + 348y3 + 1057y4 + 842y5 + 273y6 + 55y7 + 8y8 + y9

10 y + 44y2 + 591y3 + 2749y4 + 3875y5 + 1731y6 + 424y7 + 71y8 + 9y9 + y10

11 y + 54y2 + 941y3 + 6229y4 + 14445y5 + 10151y6 + 3154y7 + 621y8

+89y9 + 10y10 + y11

12 y + 65y2 + 1425y3 + 12730y4 + 44684y5 + 52776y6 + 22195y7 + 5285y8

+870y9 + 109y10 + 11y11 + y12

13 y + 77y2 + 2073y3 + 24022y4 + 119432y5 + 226116y6 + 144007y7 + 43133y8

+8322y9 + 1177y10 + 131y11 + 12y12 + y13

14 y + 90y2 + 2918y3 + 42547y4 + 284922y5 + 807008y6 + 830095y7 + 331668y8

+77027y9 + 12487y10 + 1548y11 + 155y12 + 13y13 + y14

Table 1: The polynomials UΓ2,2,n(−y) for Γ2,2 = {1324, 1423}

ai ≤ ai+1 for 1 ≤ i ≤ k − 1 and ai ≥ ai+1 for k ≤ i ≤ n− 1. We conjecture that the
polynomials UΓ2,2,n(−y) are log-concave and, hence, unimodal for all n. We checked
this holds for n ≤ 21.

One might hope to prove the unimodality of the polynomials UΓ2,2,n(−y) by using
the recursion

UΓ2,2,n(−y) = (1+y)UΓ2,2,n−1(−y)+(n−2)yUΓ2,2,n2(−y)+(n−2)y2UΓ2,2,n−3(−y) (9)

and showing that for large enough n, the polynomials on the right hand side of (9)
are all unimodal polynomials whose maximum coefficients occur at the same power
of y. There are two problems with this idea. First, assuming that UΓ2,2,n(−y) is a
unimodal polynomial whose maximum coefficient occurs that yj, then we know that
(1+y)UΓ2,2,n(−y) is a unimodal polynomial. However, it could be that the maximum
coefficient of (1+y)UΓ2,2,n(−y) occurs at yj or at yj+1. That is, if P (y) is a unimodal
polynomial whose maximum coefficient occurs at yk, then (1+ y)P (y) could have its
maximum coefficient occur at either yk or yk+1. For example,

(1 + y)(1 + 5y + 2y2) = 1 + 6y + 7y2 + 2y3

while
(1 + y)(2 + 5y + y2) = 2 + 7y + 6y2 + y3.

Thus where the maximum coefficient of (1+y)UΓ2,2,n(−y) occurs depends on the rela-
tive values of the coefficients on either side of the maximum coefficient of UΓ2,2,n(−y).
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For n ≤ 20, the maximum coefficient of (1 + y)UΓ2,2,n(−y) occurs at the same power
of y where the maximum coefficient of UΓ2,2,n(−y) occurs, but it is not obvious that
this holds for all n.

Second, it is not clear where to conjecture the maximum coefficients in the poly-
nomials occur. That is, one might think from the table that for n ≥ 6, the maximum
coefficient in UΓ2,2,n(−y) occurs at y�n/2�+1, but this does not hold up. For exam-
ple, the maximum coefficient UΓ2,2,18(−y) occurs at y8 and the maximum coefficient
UΓ2,2,19(−y) occurs at y9. Moreover, the maximum coefficient UΓ2,2,26(−y) occurs at
y12 and the maximum coefficient UΓ2,2,27(−y) occurs at y12. Thus it is not clear how
to use the recursion (9) to even prove the unimodality of the polynomials UΓ2,2,n(−y)
much less prove that such polynomials are log concave.

When k1 is larger than k2, the polynomials UΓk1,k2
,n(−y) are not always unimodal.

For example, consider the case where k1 = 6 and k2 = 4. Mathematica once again
allows us to compute UΓ6,4,n(−y) for n = 10 and 11. It is quite easy to see from Table
2 that neither polynomial is unimodal.

n UΓ6,4,n(−y)
10 y + 65y2 + 36y3 + 84y4 + 126y5 + 126y6 + 84y7 + 36y8 + 9y9 + y10

11 y + 192y2 + 227y3 +120y4 +210y5 +252y6+ 210y7+ 120y8+ 45y9+ 10y10+ y11

Table 2: The polynomials UΓ6,4,n(−y)

4.1 Adding an identity permutation to Γk1,k2

In this subsection, we want to consider the effect of adding an identity permutation
to Γk1,k2. To simplify our analysis, we shall consider only the case where k1 = k2,
but the same type of analysis can be carried out in general. Thus assume that
s ≥ k1 = k2 ≥ 2 and let Γk1,k1,s = Γk1,k1 ∪ {12 · · · s(s+ 1)}. Then we know that

UΓk1,k1,s
,n(y) =

∑
O∈OΓk1,k1,s

,n, IΓk1,k1,s
(O)=O

sgn(O)W (O).

We want to classify the fixed points of IΓk1,k1,s
by the size of the first brick. By

Lemma 5, it must be the case that the size of the first brick is less than or equal to
s. We let U

(r)
Γk1,k1,s

,n(y) denote the sum of sgn(O)W (O) over all fixed points of IΓk1,k1,s

whose first brick is of size r. Thus,

UΓk1,k1,s
,n(y) =

s∑
r=1

U
(r)
Γk1,k1,s

,n(y). (10)

Now let O = (B, σ) be a fixed point of IΓk1,k1,s
where B = (b1, . . . , bk) and σ =

σ1 · · ·σn. By our arguments above, if b1 < k1, then the elements in the first brick of
(B, σ) are 1, . . . , b1 so that for 1 ≤ r < k1,

U
(r)
Γk1,k1,s

,n(y) = −yUΓk1,k1,s
,n−r(y). (11)
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Let

U
(≥k1)
Γk1,k1,s

,n(y) =

s∑
r=k1

U
(r)
Γk1,k1,s

,n(y)

be the sum of sgn(O)W (O) over all fixed points of IΓk1,k1,s
whose first brick has size

greater than or equal to k1. Clearly,

UΓk1,k1,s
,n(y) = U

(≥k1)
Γk1,k1,s

,n(y) +

k1−1∑
r=1

U
(r)
Γk1,k1,s

,n(y)

= U
(≥k1)
Γk1,k1,s

,n(y) +

k1−1∑
r=1

(−y)UΓk1,k1,s
,n−r(y)

so that

U
(≥k1)
Γk1,k1,s

,n(y) = UΓk1,k1,s
,n(y) +

k1−1∑
r=1

yUΓk1,k1,s
,n−r(y). (12)

Now suppose that r > k1. Then we claim that σi = i for i = 1, . . . , r−k1+1. That
is, we know that σ1 = 1 so that if it is not the case that σi = i for i = 1, . . . , r−k1+1,
there must be a least i ≤ r−k1+1 which is not in the first brick of (B, σ). Since there
are no descents of σ within bricks and the minimal elements of the bricks of (B, σ)
are increasing, reading from left to right, it must be that i is the first element of brick
b2 and there is a decrease between bricks b1 and b2. Thus there is a Γk1,k1,s-match
that lies in the cells of b1 and b2 and the only place that such a match can start is
at cell r − k1 + 1. But this is impossible since we would have σr−k1+1 > i which is
incompatible with having a Γk1,k1,s-match starting at cell r−k1+1. It follows that we
can remove the first r − k1 elements from (B, σ) and reduce the remaining elements
by r− k1 to produce a fixed point of IΓk1,k1,s

of size n− (r− k1) whose first brick has
size k1. Vice versa, if we start with a fixed point (D, τ) of IΓk1,k1,s

of size n− (r− k1)
where D = (d1, . . . , dk), τ = τ1 · · · τn−(r−k1), and d1 = k1, then if we add 1, . . . , r− k1
to the first brick and raise the remaining numbers by r− k1, we will produce a fixed
point of IΓk1,k1,s

whose first brick is of size r. It follows that for k1 < r ≤ s,

U
(r)
Γk1,k1,s

,n(y) = U
(k1)
Γk1,k1,s

,n−(r−k1)
(y). (13)

Thus

U
(≥k1)
Γk1,k1,s

,n(y) =

s−k1∑
p=0

U
(k1)
Γk1,k1,s

,n−p(y). (14)

Finally consider U
(k1)
Γk1,k1,s

,n(y). Let (B, σ) be a fixed point of IΓk1,k1,s
where B =

(b1, . . . , bk), b1 = k1, and σ = σ1 · · ·σn. We then have two cases.

Case 1. 2 is in brick b1.

In this case, we claim that the first brick must contain the elements 1, . . . , k1. That
is, in such a situation 1 cannot be involved in a Γk1,k1,s-match in σ which means that
there is not enough room for a Γk1,k1,s-match that involves any elements from the
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first brick. Thus as before, we can remove the first brick from (B, σ) and subtract k1
from the remaining elements of σ to produce a fixed point (D, τ) of IΓk1,k1,s

of size

n− k1. Such fixed points contribute (−y)UΓk1,k1,s
,n−k1(y) to U

(k1)
Γk1,k1,s

,n(y).

Case 2. 2 is in brick b2.

In this case, we can argue as above that 2 be the first cell of the second brick b2 and
b2 starts at cell k1 + 1. Then we have

(
n−2
k1−1

)
ways to choose the remaining elements

in the first brick and if we remove the first brick and adjust the remaining elements,
we will produce a fixed point (D, τ) of IΓk1,k1,s

of size n−k1 whose first brick is of size

greater than or equal to k1. Such fixed points contribute (−y)
(
n−2
k1−1

)
U

(≥k1)
Γk1,k1,s

,n−k1
(y)

to U
(k1)
Γk1,k1,s

,n(y).

It follows that

U
(k1)
Γk1,k1,s

,n(y) = −yUΓk1,k1,s
,n−k1(y)− y

(
n− 2

k1 − 1

)
U

(≥k1)
Γk1,k1,s

,n−k1
(y)

= −yUΓk1,k1,s
,n−k1(y)−

y

(
n− 2

k1 − 1

)(
UΓk1,k1,s

,n−k1(y) + y

k1−1∑
r=1

UΓk1,k1,s
,n−k1−r(y)

)
. (15)

Putting equations (10), (11), (12), (13), (14), and (15) together, we see that

UΓk1,k1,s
,n(y)

= −y

k1−1∑
r=1

UΓk1,k1,s
,n−r(y) +

s−k1∑
p=0

U
(k1)
Γk1,k1,s

,n−p(y)

= −y

k1−1∑
r=1

UΓk1,k1,s
,n−r(y)− y

s−k1∑
p=0

UΓk1,k1,s
,n−p−k1(y)

+

(
n− p− 2

k1 − 1

)(
UΓk1,k1,s

,n−p−k1(y) + y

k1−1∑
a=1

UΓk1,k1,s
,n−p−k1−a(y)

)

= −y

k1−1∑
r=1

UΓk1,k1,s
,n−r(y)− y

(
s−k1∑
p=0

(
1 +

(
n− p− 2

k1 − 1

))
UΓk1,k1,s

,n−p−k1(y)

+ y

(
n− p− 2

k1 − 1

) k1−1∑
a=1

UΓk1,k1,s
,n−p−k1−a(y)

)
.

Thus we have the following theorem.

Theorem 6. Let Γk1,k1,s = Γk1,k1∪{12 · · · s(s+1)} where s ≥ k1. Then UΓk1,k1,s
,1(y) =



Q.T. BACH ET AL. /AUSTRALAS. J. COMBIN. 64 (1) (2016), 194–231 212

−y and for n ≥ 2,

UΓk1,k1,s
,n(y) =

− y

k1−1∑
r=1

UΓk1,k1,s
,n−r(y)− y

(
s−k1∑
p=0

(
1 +

(
n− p− 2

k1 − 1

))
UΓk1,k1,s

,n−p−k1(y)

+ y

(
n− p− 2

k1 − 1

) k1−1∑
a=1

UΓk1,k1,s
,n−p−k1−a(y)

)
.

For example, if k1 = 2, then

UΓ2,2,s,n(y) = −yUΓ2,2,s,n−1(y)

− y

(
s−2∑
p=0

(n− p− 1)UΓ2,2,s,n−2−p(y) + (n− p− 2)yUΓ2,2,s,n−3−p(y)

)
.

We shall further explore two special cases, namely, k1 = k2 = s = 2 where the
recursion becomes

UΓ2,2,2,n(y) = −yUΓ2,2,2,n−1(y)− y(n− 1)UΓ2,2,2,n−2(y)− y2(n− 2)UΓ2,2,2,n−3(y) (16)

for n > 1, and k1 = k2 = 2, s = 3 where the recursion becomes

UΓ2,2,3,n(y) =− yUΓ2,2,3,n−1(y)− y(n− 1)UΓ2,2,3,n−2(y)− y2(n− 2)UΓ2,2,3,n−3(y)−
y(n− 2)UΓ2,2,3,n−3(y)− y2(n− 3)UΓ2,2,3,n−4(y). (17)

Tables 3 and 4 below give the polynomials UΓ2,2,2,n(−y) for even and odd values
of n, respectively.

k n UΓ2,2,2,2k(−y)
1 2 y + y2

2 4 3y2 + 3y3 + y4

3 6 15y3 + 15y4 + 5y5 + y6

4 8 105y4 + 105y5 + 35y6 + 7y7 + y8

5 10 945y5 + 945y6 + 315y7 + 63y8 + 9y9 + y10

6 12 10395y6 + 10395y7 + 3465y8 + 693y9 + 99y10 + 11y11 + y12

7 14 135135y7 + 135135y8 + 45045y9 + 9009y10 + 1287y11 + 143y12 + 13y13 + y14

Table 3: The polynomials UΓ2,2,2,2k(−y) for Γ2,2,2 = {1324, 1423, 123}

This data leads us to conjecture the following explicit formulas:

UΓ2,2,2,2k(−y) =

k∑
i=0

(2k − 1) ↓↓k−i y
k+i (18)

UΓ2,2,2,2k+1(−y) =

k∑
i=0

(2k) ↓↓k−i y
k+1+i (19)



Q.T. BACH ET AL. /AUSTRALAS. J. COMBIN. 64 (1) (2016), 194–231 213

k n UΓ2,2,2,2k+1(−y)
1 3 2y2 + y3

2 5 8y3 + 4y4 + y5

3 7 48y4 + 24y5 + 6y6 + y7

4 9 384y5 + 192y6 + 48y7 + 8y8 + y9

5 11 3840y6 + 1920y7 + 480y8 + 80y9 + 10y10 + y11

6 13 46080y7 + 230408 + 57609 + 960y10 + 120y11 + 12y12 + y13

7 15 645120y8 + 322560y9 + 80640y10 + 13440y11+ 1680y12+ 168y13 + 14y14+ y15

Table 4: The polynomials UΓ2,2,2,2k+1(−y) for Γ2,2,2 = {1324, 1423, 123}

where (x) ↓↓0= 1 and (x) ↓↓k= x(x− 2)(x− 4) · · · (x− 2k − 2) for k ≥ 1.
These formulas can be proved by induction. Note that it follows from (16) that

for n > 1,

UΓ2,2,2,n(−y) = yUΓ2,2,2,n−1(−y) + y(n− 1)UΓ2,2,2,n−2(−y)− y2(n− 2)UΓ2,2,2,n−3(−y).
(20)

One can directly check these formulas for n ≤ 3. For n > 3, let UΓ2,2,2,n(−y)|yk be
the coefficient of yk in UΓ2,2,2,n(−y). Equation (20) allows us to write the coefficient
of yk+1+i, for 0 ≤ i ≤ k, in UΓ2,2,2,2k+1(−y) as

UΓ2,2,2,2k+1(−y)|yk+1+i = UΓ2,2,2,2k(−y)|yk+i + (2k)UΓ2,2,2,2k−1(−y)|yk+i

− (2k − 1)UΓ2,2,2,2k−2(−y)|yk+i−1

= (2k−1) ↓↓k−i+(2k)(2k−2) ↓↓k−i −(2k−1)·(2k−3) ↓↓k−i

= (2k) ↓↓k−i .

For the even case when n = 2k, the coefficient of yk+i, for 0 ≤ i ≤ k, in
UΓ2,2,2,2k(−y) is

UΓ2,2,2,2k(−y)|yk+i = UΓ2,2,2,2k−1(−y)|yk+i−1 + (2k − 1)UΓ2,2,2,2k−2(−y)|yk+i−1

− (2k − 2)UΓ2,2,2,2k−3(−y)|yk+i−2

= (2k − 2) ↓↓k−i +(2k−1)(2k−3) ↓↓k−i −(2k−2)·(2k−4) ↓↓k−i

= (2k − 1) ↓↓k−i .

This proves equations (18) and (19).
Hence, we can give a closed formula for NMΓ2,2,2(t, x, y). That is, we have the

following theorem.

Theorem 7.

NMΓ2,2,2(t, x, y) =⎛
⎝ 1

1 +
(∑

n≥1
tn

n!

∑k
i=0(2k − 1) ↓↓k−i yk+i

)
+
(∑

n≥0
tn

n!

∑k
i=0(2k) ↓↓k−i yk+1+i

)
⎞
⎠

x

.
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It follows from (17) that

UΓ2,2,3,n(−y) = yUΓ2,2,3,n−1(−y) + y(n− 1)UΓ2,2,3,n−2(−y) + y(n− 2)UΓ,n−3(−y)

− y2(n− 2)UΓ2,2,3,n−3(−y)− y2(n− 3)UΓ2,2,3,n−4(−y).

The next three tables below give the polynomials UΓ2,2,3,n(y) for n = 3k, n =
3k + 1, and n = 3k + 2, respectively.

k n UΓ2,2,3,3k(−y)
1 3 y + 2y2 + y3

2 6 4y2 + 33y3 + 19y4 + 5y5 + y6

3 9 28y3 + 767y4 + 781y5 + 267y6 + 55y7 + 8y8 + y9

4 12 280y4 + 20496y5 + 44341y6 + 20765y7 + 5137y8 + 861y9

+109y10 + 11y11 + y12

5 15 3640y5 + 598892y6 + 2825491y7 + 2072739y8 + 641551y9 + 125111y10

+17755y11 + 1977y12181y13 + 14y14 + y15

Table 5: The polynomials UΓ2,2,3,3k(−y) for Γ2,2,3 = {1324, 1423, 1234}

k n UΓ2,2,3,3k+1(−y)
1 4 5y2 + 3y3 + y4

2 7 67y3 + 81y4 + 29y5 + 6y6 + y7

3 10 1166y4 + 3321y5 + 1645y6 + 417y7 + 71y8 + 9y9 + y10

4 13 23746y5 + 160647y6 + 128771y7 + 41055y8 + 8137y9 + 1167y10

+131y11 + 12y12 + y13

5 16 550844y6 + 8107518y7 + 12109429y8 + 5170965y9 + 1225973y10

+200253y11 + 24889y12 + 2493y13 + 209y14 + 15y15 + y16

Table 6: The polynomials UΓ2,2,3,3k+1(−y) for Γ2,2,3 = {1324, 1423, 1234}

k n UΓ2,2,3,3k+2(−y)
1 5 7y2 + 11y3 + 4y4 + y5

2 8 70y3 + 297y4 + 157y5 + 41y6 + 7y7 + y8

3 11 910y4 + 10343y5 + 9223y6 + 3069y7 + 613y8 + 89y9 + 10y10 + y11

4 14 14560y5 + 390564y6 + 687109y7 + 306413y8 + 74137y9 + 12261y10

+1537y11 + 155y12 + 13y13 + y14

Table 7: The polynomials UΓ2,2,3,3k+2(−y) for Γ2,2,3 = {1324, 1423, 1234}

For any s ≥ 3, it is easy to see that the lowest power of y that occurs in
UΓ2,2,s ,n(−y) corresponds to brick tabloids where we use the minimum number of
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bricks. Since the maximum size of brick in a fixed point of IΓ2,2,s is s, we see that the
minimum number of bricks that we can use for a fixed point of IΓ2,2,s of length sn is
n while the minimum number of bricks that we can use for a fixed point of IΓ2,2,s of
length sn+ j for 1 ≤ j ≤ s− 1 is n+1. We can prove the following general theorem
for the coefficients of the lowest power of y that appears in UΓ2,2,s,n(−y).

Theorem 8. For n ≥ 1,

UΓ2,2,s,sn(−y)|yn =
n∏

i=1

((i− 1)s+ 1) (21)

and

UΓ2,2,s,sn+s−1(−y)|yn+1 =
n∏

i=1

((i+ 1)s+ 1). (22)

Proof. For (21), we first notice that any fixed point (B, σ) of IΓ2,2,s that contributes
to UΓ2,2,s ,sn(−y)|yn must have only bricks of size s. Thus B = (s, . . . , s). We shall
prove (21) by induction on n. Clearly, UΓ2,2,s,s(−y)|y = 1. Now suppose (B, σ) is a
fixed point of IΓ2,2,s of size sn where σ = σ1 · · ·σsn. By our arguments above, the
first s−1 elements of the first brick must be 1, 2, . . . , s−1, reading from left to right.
The element in the next cell σs can be arbitrary. That is, if it is equal to s, then
there will be an increase between the first two bricks and if σs > s, then it must
be the case that σs+1 = s in which case there will by Γ2,2,s-match that involves the
last two cells of the first brick and the first two cells of the next brick. We can then
remove the first brick and adjust the remaining numbers to produce a fixed point O′

of IΓ2,2,s of length s(n − 1) in which every brick is of size s. It follows by induction
that

UΓ2,2,s,sn(−y)|yn = ((n− 1)s+ 1)UΓ2,2,s,s(n−1)(−y)|yn−1

= ((n− 1)s+ 1)

n−1∏
i=1

((i− 1)s+ 1)

=
n∏

i=1

((i− 1)s+ 1) .

Next consider UΓ2,2,s,2s−1(−y)|y2. In this case, either the first brick of size s − 1
or the first brick is of size s. If the first brick is of size s, then we can argue as above
that the first s− 1 elements of the first brick are 1, . . . , s− 1, and we have s choices
for the last element of the first brick. If the first brick is of size s − 1, then we can
argue as above that the first s− 2 elements of the first brick are 1, . . . , s− 2, and we
have s+ 1 choices for the last element of the first brick. Thus

UΓ2,2,s ,2s−1(−y)|y2 = 2s+ 1.

Next consider UΓ2,2,s ,(ns+s−1)(−y)|yn+1. In such a situation, any fixed point (B, σ)
of IΓ2,2,s that can contribute to UΓ2,2,s,(ns+s−1)(−y)|yn+1 must have n bricks of size s



Q.T. BACH ET AL. /AUSTRALAS. J. COMBIN. 64 (1) (2016), 194–231 216

and one brick of size s− 1. If the first brick is of size s, then we can argue as above
that the first s−1 elements of the first brick are 1, . . . , s−1, and we have sn choices
for the last element of the first brick. Then we can remove this first brick and adjust
the remaining numbers to produce a fixed point O′ in IΓ2,2,s of size (n− 1)s+ s− 1
which has n− 1 bricks of size s and one brick of size s− 1. If the first brick is of size
s− 1, then we can argue as above that the first s− 2 elements of the first brick are
1, . . . , s− 2, and we have sn+ 1 choices for the last element of the first brick. Then
we can remove this first brick and adjust the remaining numbers to produce a fixed
point O′ in IΓ2,2,s of size ns which has n bricks of size s

Thus if n ≥ 2,

UΓ2,2,s ,(ns+s−1)(−y)|yn+1 = (sn+ 1)UΓ2,2,s,ns(−y)|yn + (sn)UΓ2,2,s ,((n−1)s+s−1)(−y)|yn

= (sn+ 1)

n∏
i=1

((i− 1)s+ 1) + (sn)

n−1∏
i=1

((i+ 1)s+ 1)

= (s+ 1)
n−1∏
i=1

((i+ 1)s+ 1) + (sn)
n−1∏
i=1

((i+ 1)s+ 1)

= ((n+ 1)s+ 1)
n−1∏
i=1

((i+ 1)s+ 1)

=

n∏
i=1

((i+ 1)s+ 1).

Unfortunately, we cannot extend this type of argument to compute
UΓ2,2,s ,ns+k(−y)|yn+1 where 1 ≤ k ≤ s − 2. The problem is that we have more
than one choice for the sizes of the bricks in such cases. For example, to compute
UΓ2,2,3,4(−y)|y3, the brick sizes could be some rearrangement of (3,1) or (2,2). One
can use our recursions to compute UΓ2,2,s,ns+k(−y)|yn+1 for small values of s. For
example, we can find all the coefficients of the lowest power of UΓ2,2,3,n(−y). That is,
we claim

(i) UΓ2,2,3,3k(−y)|yk =
∏k

i=1(3(i− 1) + 1),

(ii) UΓ2,2,3,3k+2(−y)|yk+1 =
∏k

i=1(3(i+ 1) + 1), and

(iii) if Ak = UΓ,3k+1(−y)|yk+1 then A1 = 5 and Ak = (3k−1)Ak−1+(3k)
∏k−1

i=1 (3i+4)
for all k ≥ 2.
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Clearly, (i) and (ii) follow from our previous theorem. To prove (iii), note that

Ak=UΓ,3k+1(−y)|yk+1=UΓ,3k(−y)|yk + (3k)UΓ,3k−1(−y)|yk + (3k − 1)UΓ,3k−2(−y)|yk
− (3k − 1)UΓ,3k−2(−y)|yk−1 − (3k − 2)UΓ,3k−3(−y)|yk−1

=

k∏
i=1

(3i− 2) + (3k)

k−1∏
i=1

(3i+ 4) + (3k − 1)UΓ,3k−2(−y)|yk

− (3k − 2)

k−1∏
i=1

(3i− 2)

= (3k)

k−1∏
i=1

(3i+ 4) + (3k − 1)UΓ,3k−2(−y)|yk

= (3k − 1)Ak−1 + (3k)
k−1∏
i=1

(3i+ 4).

This explains all the coefficients for the smallest power of y in the polynomials
UΓ2,2,3,n(−y) for the family Γ2,2,3 = {1324, 1423, 1234}.

5 The Proofs of Theorem 1 and Theorem 2

In this section, we will study two more examples of the differences between the
recursions for UΓ,n(y)’s and the recursions for UΓ∪{12···s(s+1)},n(y)’s. In particular, we
will prove Theorems 1 and 2.

Proof of Theorem 1

Let Γ = {1324, 123}. Let (B, σ) be a fixed point IΓ where B = (b1, . . . , bk) and
σ = σ1 · · ·σn. By Lemma 5, we know that all the bricks bi must be of size 1 or 2.
Since the minimal elements in bricks of B must weakly increase, we see that 1 must
be in cell 1 and 2 must be either in b1 or it is in the first cell of b2. Thus we have
three possibilities.

Case 1. 2 is in b1.

In this case, b1 must be of size 2 and we can remove b1 from (B, σ) are reduce the
remaining numbers by 2 to get a fixed point of IΓ of size n− 2. It then easily follows
that the fixed points in Case 1 contribute −yUΓ,n−2(y) to UΓ,n(y).

Case 2. 2 is in b2 and b1 = 1.

In this case, it is easy to see that 1 cannot be involved in any Γ-match so that we can
remove b1 from (B, σ) are reduce the remaining numbers by 1 to get a fixed point of
IΓ of size n− 1. It follows that the fixed points in Case 2 contribute −yUΓ,n−1(y) to
UΓ,n(y).

Case 3. 2 is in b2 and b1 = 2.
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In this case, there is descent between bricks b1 and b2 so that there must be a 1324-
match in σ contained in the cells of b1 and b2. In particular, this means b2 = 2 and
there is 1324-match starting at 1 in σ. We then have two subcases.

Subcase 3.a. There is no 1324-match in (B, σ) starting at cell 3

We claim that{σ1, . . . , σ4} = {1, 2, 3, 4}. If not, let d =min({1, 2, 3, 4}−{σ1, . . . , σ4}).
Then d must be in cell 5, the first cell of brick b3 and there is a decrease between
bricks b2 and b3 since d ≤ 4 < σ4. Thus, in order to avoid combining bricks b2 and b3,
we need a 1324-match among the cells of these two bricks. However, the only possible
1324-match among the cells of b2 and b3 would have to start at cell 3 where σ3 = 2.
This contradicts the assumption that there is no 1324-match in (B, σ) starting at
cell 3. As a result, it must be the case that the first four numbers must occupy the
first four cells of (B, σ) so we must have σ1 = 1, σ2 = 3, σ3 = 2, σ4 = 4, and σ5 = 5.
It then follows that if we let O′ be the result by removing the first four cells from
(B, σ) and then subtract 4 from the remaining entries in the cells, then O′ will be a
fixed point in OΓ,n−4. It then easily follows that the contribution of fixed points in
subcase 3.a to UΓ,n(y) is (−y)2UΓ,n−4(y).

Subcase 3.b. There is a 1324-match in O starting at cell 3

In this case, there is decrease between bricks b2 and b3. Hence, the 1324-match
starting at cell 3 must be contained in the cells of b2 and b3 so that b3 must be of
size 2. In general, suppose that the bricks b2, . . . , bk−1 all have exactly two cells and
there are 1324-matches starting at cells 1, 3, . . . , 2k − 3 but there is no 1324-match
starting at cell 2k − 1 in O.

Similar to Subcase 3.a, we will show that {σ1, . . . , σ2k} = {1, 2, . . . , 2k}. That
is, the first 2k numbers must occupy the first 2k cells in O. If not, let d =
min({1, 2, . . . , 2k} − {σ1, . . . , σ2k}). Since the minimal elements of the bricks are
weakly increasing, it must be the case that d is in the first cell of bk+1. Next, the fact
that there are 1324-matches starting in cells 1, 3, . . . , 2k−1 easily implies that σ2k is
the largest element in {σ1, . . . , σ2k} which means that σ2k > d. But then there is a
decrease between bricks bk and bk+1 which means that there must be a 1324-match
contained in the cells of bk and bk+1. This implies that there is a 1324-match starting
at cell 2k − 1 which contradicts our assumption.

Thus, if we remove the first 2k cells of (B, σ) and subtract 2k from the remaining
elements, we will obtain a fixed point O′ in OΓ,n−2k. Therefore, each fixed point O
in this case will contribute (−y)kUΓ,n−2k(y) to UΓ,n(y). The final task is to count the
number of permutations σ1 · · ·σ2k of S2k that has 1324-matches starting at positions
1, 3, . . . , 2k − 3. In [13], Jones and Remmel gave a bijection between the set of such
σ and the set of Dyck paths of length 2k − 2. Hence, there are Ck−1 such fixed
points, where Cn = 1

n−1

(
2n
n

)
is the nth Catalan number. It then easily follows that

the contribution of the fixed points in Subcase 3.b to UΓ,n(y) is

�n/2�∑
k=2

(−y)kCk−1UΓ,n−2k(y).
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Hence, we know that UΓ,1 = −y and for n > 1,

UΓ,n(y) = −yUΓ,n−1(y)− yUΓ,n−2(y) +

�n/2�∑
k=2

(−y)kCk−1UΓ,n−2k(y).

This proves Theorem 1.
We have computed the polynomials U{1324,123},n(−y) for small n which are given

in the Table 8 below.

n U{1324,123},n(−y)
1 y
2 y + y2

3 2y2 + y3

4 2y2 + 3y3 + y4

5 5y3 + 4y4 + y5

6 5y3 + 9y4 + 5y5 + y6

7 14y4 + 14y5 + 6y6 + y7

8 14y4 + 28y5 + 20y6 + 7y7 + y8

9 42y5 + 48y6 + 27y7 + 8y8 + y9

10 42y5 + 90y6 + 75y7 + 35y8 + 9y9 + y10

Table 8: The polynomials UΓ,n(−y) for Γ = {1324, 123}

An anonymous referee observed that up to a power of y, the odd rows are the
triangle A039598 in the OEIS and the even rows are the triangle A039599 in the
OEIS. These tables arise in expanding the powers of x in terms of the Chebyshev
polynomials of the second kind. Since there are explicit formula for entries in these
tables, we have the following theorem.

Theorem 9. Let Γ = {1324, 123}. Then for all n ≥ 0,

UΓ,2n(y) =
n∑

k=0

(2k + 1)
(

2n
n−k

)
n+ k + 1

(−y)n+k+1 (23)

and

UΓ,2n+1(y) =

n∑
k=0

2(k + 1)
(
2n+1
n−k

)
n+ k + 2

(−y)n+k (24)

Proof. First we consider the polynomials UΓ,2n+1(−y) which correspond to the entries
in the table T (n, k) for 0 ≤ k ≤ n of entry A039598 in the OEIS. T (n, k) has an
explicit formula, namely,

T (n, k) =
2(k + 1)

(
2n+1
n−k

)
n+ k + 2

for all n ≥ 0 and 0 ≤ k ≤ n. Let T (n, k) be set all of paths of length 2n + 1
consisting of either up steps (1, 1) or down steps (1,−1) that start at (0,0) and end
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at (2n + 1, 2k + 1) which stay above the x-axis. Then one of the combinatorial
interpretations of the T (n, k)’s is that T (n, k) = |T (n, k)|. Let F2n+1,2k+1 be the set
of all fixed points of IΓ with 2k+1 bricks of size 1 and n−k bricks of size 2. We will
construct a bijection θn,k from F2n+1,2k+1 onto T (n, k). Note all (B, σ) ∈ F2n+1,2k+1

have weight (−y)n+k+1 so that the bijections θn,k will prove (24).
First we must examine the fixed points of IΓ in greater detail. Note that since Γ

contains the identity permutation 123, all the bricks in any fixed point of IΓ must
be of size 1 or size 2. Next, we consider the structure of the fixed points of IΓ which
have k bricks of size 1 and � bricks of size 2. Suppose (B, σ) is such a fixed point
where B = (b1, . . . , bk+�) and that the bricks of size 1 in B are bi1 , . . . , bik where
1 ≤ i1 < · · · < ik ≤ k + �. For any s, there cannot be a decrease between brick
bij−1 and brick bij in B since otherwise we could combine bricks bij−1 and bij , which
would violate our assumption that (B, σ) is a fixed point of IΓ. Next we claim that
if there are s bricks of size 2 that come before brick bij so that bij covers cell 2s+ j
in (B, σ), then σ2s+j = 2s + j and {σ1, . . . , σ2s+j} = {1, . . . , 2s + j}. To prove this
claim, we proceed by induction. For the base case, suppose that bi1 covers cell 2s+1
so that (B, σ) starts out with s bricks of size 2. If s = 0, there is nothing to prove.
Next suppose that s = 1. Then we know that in all fixed points of IΓ, 2 must be
in cell 2 or cell 3. Since there is an increase between b1 and b2, it must be the case
that 1 and 2 lie in b1 and since the minimal elements in the brick form a weakly
increasing sequence, it must be the case that b2 is filled with 3. If s ≥ 2, then for
1 ≤ i < s, either there is an increase between bi and bi+1 in which case the elements
in bi and bi+1 must match the pattern 1234, or there is a decrease between bi and
bi+1 in which case the four elements must match the pattern 1324. This means that
if for each brick of size 2, we place the second element of the brick on the top of the
first element, then any two consecutive bricks will be one of the two forms pictured
in Figure 4. Thus if we consider the s × 2 array built from the first s bricks of size
2, we will obtain a column strict tableaux with distinct entries of shape (s, s). In
particular, it must be the case that the largest element in the array is the element
which appears at the top of the last column. That element corresponds to the second
cell of brick bs. Since there is an increase between brick bs and brick bs+1 it must
mean that the element in brick bs+1 is larger than any of the elements that appear
in bricks b1, . . . , bs. Thus σi < σ2s+1 for i ≤ 2s. Since the minimal elements in the
bricks are increasing, it follows that σ2s+1 < σj for all j > 2s + 1 so that it must be
the case that σ2s+1 = 2s + 1 and {σ1, . . . , σ2s+1} = {1, . . . , 2s + 1}. Thus the base
case of our induction holds.

1 2 3 4 1 3 2 4

1

2

3

4

1

3

2

4

Figure 4: Patterns for two consecutive brick of size 2 in a fixed point of IΓ.

We can repeat the same argument for ij where j > 1. That is, by induction,
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we can assume that if there are r bricks of size 2 that precede brick bij−1
, then

σ2r+j−1 = 2r+ j− 1 and {σ1, . . . , σ2r+j−1} = {1, . . . , 2r+ j− 1}. Hence if we remove
these elements and subtract 2r + j − 1 from the remaining elements in (B, σ), we
would end up with a fixed point of Iγ . Thus we can repeat our argument for the
base case to prove that if there are s bricks of size 2 between brick bij−1

and bij , then
σ2r+2s+j = 2r + 2s+ j and {σ1, . . . , σ2r+2s+j} = {1, . . . , 2r + 2s+ j}.

Next we note that there is a well known bijection φ between standard tableaux
of shape (n, n) and Dyck paths of length 2n, see [19]. Here a Dyck path is path
consisting of either up steps (1, 1) or down steps (1,−1) that starts at (0,0) and ends
at (2n, 0) which stays above the x-axis. Given a standard tableau T , φ(T ) is the Dyck
path whose i-th segment is an up step if i is the first row and whose i-th segment is
a down step if i is in the second row. This bijection is illustrated in Figure 5.

Tφ (    ) 

1 2
3

4 5
6 7

8
9 10

11
12

T =

=
1 2 3 4 5 6 7 8 9 10 11 12

Figure 5: The bijection φ.

We can now easily describe our desired bijection θn,k. Starting with a fixed point
(B, σ) in F2n+1,2k+1 where B = (b1, . . . , bn+k+1), we can rotate all the bricks of size 2
by −90 degrees and end up with an array consisting of bricks of size one and 2 × r
arrays corresponding to standard tableaux. For example, this step is pictured in
the second row of Figure 6. By our remarks above, each 2× r array corresponds to
standard tableaux of shape (r, r) where the entries lie in some consecutive sequence
of elements from {1, . . . , 2n+ 1}. Suppose that bi1 , . . . , bi2k+1

are the bricks of size 1
in B where i1 < · · · < i2k+1. Let Tj be the standard tableau corresponding to the
consecutive string of brick of size 2 immediately preceding brick bij and Pi be the
Dyck path φ(Ti). If there is no bricks of size 2 immediately preceding bij , then Pj

is just the empty path. Finally let T2k+2 the standard tableau corresponding to the
bricks of size 2 following bi2k+1

and P2k+2 be the Dyck path corresponding to φ(T2k+2)
where again P2k+2 is the empty path if there are no bricks of size 2 following bi2k+1

.
Then

θn,k(B, σ) = P1(1, 1)P2(1, 1) . . . P2k+1(1, 1)P2k+2.

For example, line 3 of Figure 6 illustrates this process. In fact, it easy to see that if
i is in the bottom row of intermediate diagram for (B, σ), then the i-th segment of
θn,k(B, σ) is an up step and if i is in the top row of intermediate diagram for (B, σ),
then the i-th segment of θn,k(B, σ) is an down step.

The inverse of θn,k is also easy to describe. That is, given a path P in T (n, k),
we let di be the step that corresponds to the last up step that ends at level i. Then
P can be factored as

P1d1P2d2 . . . P2k+1d2k+1P2k+2
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Figure 6: The bijection θn,k.

where each Pi is a path that corresponds to a Dyck path that starts at level i −
1 and ends at level i − 1 and stays above the line x = i − 1. Then for each i,
Ti = φ−1(Pi) is a standard tableau. Using these tableaux and being cognizant of
the restrictions on the initial segments of elements of F2n+1,2k+1 preceding bricks
of size 1, one can easily reconstruct the 2 line intermediate array corresponding to
T1d1T2d2 . . . T2k+1d2k+1T2k+2. For example, this process is pictured on line 2 of Figure
7. Then we only have to rotate all the bricks of size corresponding to a bricks of
height 2 by 90 degrees to obtain θ−1

n,k(P ). This step is pictured on line 3 of Figure 7.

1

4

2

6

3

7

5

8

9 10

11

12

13

14 15

1 4 2 6 3 7 5 8 9 10 11 1213 14 15

P1

P2
3P  = empty path

Figure 7: The bijection θ−1
n,k.

Next we consider the polynomials UΓ,2n(−y) which correspond to the entries in
the table R(n, k) for 0 ≤ k ≤ n of entry A039599 in the OEIS. R(n, k) has an explicit
formula, namely,

R(n, k) =
(2k + 1)

(
2n
n−k

)
n+ k + 1

for all n ≥ 0 and 0 ≤ k ≤ n. Let R(n, k) be set all of paths of length 2n consisting
of either up steps (1, 1) or down steps (1,−1) that start at (0,0) and end at (2n, 0)
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that have k down steps that end on the line x = 0. Here there is no requirement
that the paths stay above the x-axis. Then one of the combinatorial interpretations
of the R(n, k)s is that R(n, k) = |R(n, k)|. Let F2n,2k be the set of all fixed points of
IΓ with 2k bricks of size 1 and n − k bricks of size 2. We will construct a bijection
βn,k from F2n,2k onto R(n, k). Note all (B, σ) ∈ F2n,2k weight (−y)n+k so that the
bijections βn,k will prove (24).

We can now easily describe our desired bijection βn,k. Starting with a fixed point
(B, σ) in F2n,2k1 where B = (b1, . . . , bn+k), we can rotate all the bricks of size 2 by
−90 degrees and end up with an array consisting of bricks of size one and 2 × r
arrays corresponding to standard tableaux. For example, this step is pictured in
the second row of Figure 9. By our remarks above, each 2× r array corresponds to
standard tableaux of shape (r, r) where the entries lie in some consecutive sequence
of elements from {1, . . . , 2n}. Suppose that bi1 , . . . , bi2k are the bricks of size 1 in B
where i1 < · · · < i2k. Let Ts be the standard tableau corresponding to the bricks of
size 2 immediately preceding brick bjs for 1 ≤ s ≤ 2n and let T2k+1 be the standard
tableau corresponding to the bricks of size 2 following brick bi2k . For i = 0, . . . , 2k+1,
let Pi be the Dyck path φ(Ti). In each case j where there are no such bricks of size
2, then Pj is just the empty path. For each such i, let P i denote the flip of Pi, i.e.
the path that is obtained by flipping Pi about the x-axis. For example, the process
of flipping a Dyck path is pictured in Figure 8.

P =  

P =  

Figure 8: The flip of Dyck path.

Then

βn,k(B, σ) = P 1(1, 1)P2(1,−1)P 3(1, 1)P4(1,−1) . . . P 2k−1(1, 1)P2k(1,−1)P 2k+1.

That is, each pair bi2j−1
, bi2j will correspond to an up step starting at x = 0 followed

by a Dyck path which starts at ends a line x = 1 followed by down step ending at
x = 0. These segments are then connected by flips of Dyck path that stay below
the x-axis. Thus βn,k(B, σ) will have exactly k down steps that end at x = 0. For
example, line 3 of Figure 9 illustrates this process.

The inverse of βn,k is also easy to describe. That is, given a path P in R(n, k), let
f1, . . . , fk be the positions of the down steps that end at x = 0 and define e1, . . . , ek
so that e1 is the right most up step that starts at x = 0 and precedes f1 and for
2 ≤ i ≤ k,, ei is the right most up step that follows fi−1 and precedes fi. It is then
easy to see that the path Q1 which precedes e1 must be a path that starts at (0,0)
and ends at (e1−1, 0) and stays below the x-axis so that Q1 is the flip of some Dyck
path P1. Next, the path Q2 between (e1, 1) and (f1 − 1, 1) must either be empty or
is a path which stays above the line x = 1 and hence corresponds to the Dyck path



Q.T. BACH ET AL. /AUSTRALAS. J. COMBIN. 64 (1) (2016), 194–231 224

1 2 4 3 6 5 7 8 9 1011 12 13 1415 16

1 2

4

3

6

5

7

8 9

11

10

12

13 14

15

16

Figure 9: The bijection βn,k.

P2. In general, the path Q2j−1 that starts at (fj−1, 0) and ends at (ej − 1, 0) must
stay below the x-axis so that Q2j−1 is the flip of some Dyck path P2j−1. Similarly,
the path Q2j between (ej , 1) and (fj − 1, 1) must either be empty or is a path which
stays above the line x = 1 and hence corresponds to the Dyck path P2j . Finally, the
path Q2k+1 which follows (fk, 0) is either empty or is a path that ends at (2n, 0) and
stays below the x-axis and, hence, corresponds to the flip of a Dyck path P2k+1. In
this way, we can recover the sequence of paths P1, . . . , P2k+1, which are either empty
or Dyck paths, such that

P = P 1(1, 1)P2(1,−1)P 3(1, 1)P4(1,−1) . . . P 2k−1(1, 1)P2k(1,−1)P 2k+1.

Then for each i, Ti = φ−1(Pi) is either a standard tableau or the empty tableau.
Using these tableaux and being cognizant of the restrictions on the initial segments
of elements of F2n,2k preceding bricks of size one described above, one can easily re-
construct the 2 line intermediate arrays corresponding to T1e1T2f2 . . . T2k−1e2kT2kf2k
T2k+1. For example, this process is pictured on line 2 of Figure 10. Then we only
have to rotate all the bricks of size corresponding to a brick of height 2 by 90 degrees
to obtain β−1

n,k(P ). This step is pictured on line 3 of 10.

As a consequence of Theorem 9, we have the closed expression for
NM{1323,123}(t, x, y).

Theorem 10.

NM{1323,123}(t, x, y) =
(

1

U{1323,123}(t, y)

)x

where
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Figure 10: The bijection β−1
n,k.

U{1323,123}(t, y) = 1 +
∑
n≥1

t2n

(2n)!

(
n∑

k=0

(2k + 1)
(

2n
n−k

)
n + k + 1

(−y)n+k

)

+
∑
n≥0

t2n+1

(2n+ 1)!

(
n∑

k=0

2(k + 1)
(
2n+1
n−k

)
n + k + 2

(−y)n+k+1

)
.

The proof of Theorem 2.

Let p ≥ 5 and Γp = {1324 . . . p, 123 . . . p − 1}. It follows from Lemma 5 that any
brick in a fixed point of IΓp has size less than or equal to p− 2.

Let (B, σ) be a fixed point of IΓp where B = (b1, . . . , bt) and σ = σ1 · · ·σn.
Suppose that b1 = k where 1 ≤ k ≤ p− 2. If b1 = 1, then σ1 = 1 and we can remove
brick b1 from (B, σ) and subtract 1 from the remaining elements to obtain a fixed
point O′ of IΓp of length n − 1. It is easy to see that such fixed points contribute
−yUΓp,n−1(y) to UΓp,(y).

Next assume that 2 ≤ k ≤ p− 2. First we claim that 1, . . . , k − 1 must be in b1.
That is, since the minimal elements in the bricks increase, reading from left to right,
and the elements within each brick are increasing, it follows that the first element of
brick b2 is smaller than every element of σ to its right. Thus if there is an increase
between bricks b1 and b2, it must be the case the elements in brick b1 are the k
smallest elements. If there is a decrease between bricks b1 and b2, then there must
be a 1324 . . . p-match that lies in the cells of b1 and b2 which must start at position
k − 1. Thus σk−1 < σk+1 which means that σ1, . . . , σk−1 must be the smallest k − 1
elements. We then have two cases depending on the position of k in σ.

Case 1. k is in the kth cell of (B, σ).

In this case, if we remove the entire brick b1 from (B, σ) and subtract k from the
numbers in the remaining cells, we will obtain a fixed point O′ of IΓp,n−k. It then
easily follows that fixed points in Case 1 will contribute −yUΓp,n−k(y) to UΓp,n(y).

Case 2. k is in cell k + 1 of (B, σ).
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In this case, it is easy to see that k is in the first cell of the second brick in (B, σ)
and there must be a 1324 . . . p-match between the cells of the first two bricks. This
match must start from cell k−1 in O with the numbers k−1 and k playing the roles
of 1 and 2, respectively, in the match. This forces the brick b2 to have exactly p− 2
cells. Thus we have two subcases.

Subcase 2.a. There is no 1324 . . . p-match in (B, σ) starting at cell k + p− 3

In this case, we claim that {σ1, . . . , σk+p−2} = {1, . . . , k + p− 2}. That is, we know
that the element in the first cell of brick b3 is smaller than any of the elements of σ to
its right. Moreover, if there was a decrease between brick b2 and b3, then there must
be a 1324 . . . p-match starting in cell k + p − 3. Since we are assuming there is not
such a match this means that there is an increase between bricks b2 and b3. Since
the last element of b2 must be the largest element in either brick b1 or b2, it follows
that {σ1, . . . , σk+p−2} = {1, . . . , k + p − 2}. This forces that σi = i for i ≤ k − 1,
σk = k + 1, σk+1 = k, σk+2 = k + 2, σi = i for k + 2 < i ≤ k + p − 2. Hence, the
first two bricks of (B, σ) are completely determined. It then follows that if we let
O′ be the result by removing the first k + p − 2 cells from (B, σ) and subtracting
k + p − 2 from the numbers in the remaining cells, then O′ will be a fixed point
in OΓp,n−k−(p−2). It then easily follows that fixed points in Subcase 2.a contribute
(−y)2UΓp,n−k−(p−2)(y) to UΓp,n(y).

Subcase 2.b. There is a 1324 . . . p-match in (B, σ) starting at cell k + p− 3

In this case, it must be that σk+p−3 < σk+p−1 < σk+p−2 so that there is a decrease
between bricks b2 and b3. This means that the 1324 . . . p-match starting in cell k+p−3
must be contained in bricks b2 and b3. In particular, this means that b3 = p − 2.
In general, suppose that the bricks b2, . . . , bm−1 all have exactly p − 2 cells and let
ci = k+(i−1)(p−2)−1 for all 1 ≤ i ≤ m−1, so that ci is the second-to-last cell of brick
bi. In addition, suppose there are 1324 . . . p-matches starting at cells c1, c2, . . . , cm−1

but there are no 1324 . . . p-match starting at cell cm = k − (m− 1)(p− 2)− 1 in O.
We then have the situation pictured in Figure 11 below.

c2 cm−1 cm

−matchΓ

−matchΓ −matchΓ

−matchΓ

... ... ... ... ...
k−1

no

Figure 11: A fixed point with Γp-matches starting at ci for i = 1, . . . , m− 1.

First, we claim that {σ1, σ2, . . . , σcm+1} = {1, 2, . . . , cm+1}. Since there is no Γp-
match starting at σcm in σ, it cannot be that there is decrease between brick bm and
bm+1. Because the minimal elements in the bricks of B increase, reading from left
to right, and the elements in each brick increase, it follows that σcm+2, which is the
first element of brick bm+1, is smaller than all the elements to its right. On the other
hand, because there are 1324 · · ·p-matches starting in σ starting at c1, . . . , cm−1 it
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follows that σcm+1, which is last cell in brick bm, is greater than all elements of σ to
its left. It follows that {σ1, σ2, . . . , σcm+1} = {1, 2, . . . , cm+1}.

Next we claim that we can prove by induction that σci = ci and {σ1, . . . , σci} =
{1, . . . , ci} for 1 ≤ i ≤ m. Our arguments above show that σi = i for i =
1, . . . , k − 1 = c1. Thus the base case holds. So assume that σcj−1

= cj−1, for
1 ≤ i ≤ j, and {σ1, σ2, . . . , scj−1

} = {1, 2, . . . , cj−1}. Since there is a 132 · · ·p-
match in σ starting at position cj−1 and p ≥ 5, it must be the case that all
the numbers σcj−1

, σcj−1+1, . . . , σcj−1+p−3 are all less than σcj = σcj−1+p−2. Since
{σ1, σ2, . . . , σcj−1

} = {1, 2, . . . , cj−1}, we must have σcj ≥ cj. If σcj > cj, then let
d be the smallest number from {1, 2, . . . , cj} that does not belong to the bricks
b1, . . . , bj . Since the numbers in a brick increase and the first cells of the bricks form
an increasing sequence, it must be the case that d is in the first cell of brick bj+1,
namely σcj+2 = d. We have two possibilities for j.

1. If j < m, then σcj+2 = d < cj ≤ σcj . This contradicts the assumption that
there is a 1324 . . . p-match starting from cell cj in σ for σcj needs to play the
role of 1 in such a match.

2. If j = m, then there is a descent between the bricks bm and bm+1 and there
must be a 1324 . . . p-match that lies entirely in the cells of bm and bm+1 in O.
However, the only possible match must start from cell cm, the second-to-last
cell in bm. This contradicts our assumption that there is no match starting from
cell cm in O.

Hence, σcj = cj and {σ1, σ2, . . . , σcj} = {1, 2, . . . , cj}. for 1 ≤ j ≤ m.
We claim that the values of σi are forced for i ≤ cm + 1. That is, consider

the first 1324 · · ·p-match starting at position k − 1. Since p ≥ 5, we know that
σk+p−2 = k + p − 2 > σk+2. This forces that σk = k + 1, σk+1 = k, σk+2 =
k + 2 so that the values of σi for i ≤ k + p − 2. This type of argument can be
repeated for all the remaining 1324 · · ·p-matches starting at c2, . . . , cm−1. Thus if we
remove the first k + (m − 1)(p − 2) cells of O, we obtain a fixed point O′ of IΓp in
OΓp,n−k−(m−1)(p−2). On the other hand, suppose that we start with a fixed point (D, τ)
of IΓp in OΓp,n−k−(m−1)(p−2) where D = (d1, . . . , dr) and τ = τ1, . . . , τn−k−(m−1)(p−2).
Let τ = τ 1 · · · τn−k−(m−1)(p−2) be the result of adding n − k − (m − 1)(p − 2) to
every element of τ . Then it is easy to see that (B, σ) is a fixed point of IΓp, where
B = (k, (p− 2)m, d1, . . . , dr) and σ = σ1 · · ·σk+(m−1)p−2τ where σ1 · · ·σk+(m−1)(p−2) is
the unique permutation in Sk+(m−1)(p−2) with 1324 · · ·p-matches starting at positions
c1, . . . , cm−1. It follows that the contribution of the fixed points in Case 2.b to UΓp,n(y)
is
∑

m≥3(−y)mUΓp,n−k−(m−1)(p−2)(y).
Hence, for any fixed point Ok that has k cells in the first brick, for 1 ≤ k ≤ p−2,

the contribution of Ok to UΓp,n(y) is

(−y)UΓp,n−k(y) +

�n−k
p−2

�∑
m=2

(−y)mUΓp,n−k−(m−1)(p−2)(y).
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Therefore, we obtain the following recursion for UΓp,n(y)

UΓp,n(y) =

p−2∑
k=1

(−y)UΓp,n−k(y) +

p−2∑
k=1

�n−k
p−2

�∑
m=2

(−y)mUΓp,n−k−(m−1)(p−2)(y).

This completes the proof of Theorem 2.

6 Conclusion and Problems for Future Research

In this paper, we have shown that the reciprocal method introduced by Jones and
Remmel in [11] can be extended to a family Γ whose permutations all start with 1
and have at most one descent. Specifically, we have proved if Γ = Γk1,k2 =

{σ ∈ Sp : σ1 = 1, σk1+1 = 2, σ1 < σ2 < · · · < σk1 & σk1+1 < σk1+2 < · · · < σp}

where k1, k2 ≥ 2, Γ = Γk1,k1,s = Γk1,k2 ∪ {1 · · · s(s + 1)} where s ≥ k1 ≥ 2, or
Γ = Γp = {1324 · · ·p, 123 · · ·p−1} where p ≥ 4, then the polynomials UΓ,n(y) satisfy
simple recursions and these recursions can be used to compute the terms in the
generating function

NMΓ(t, x, y) =
∑
n≥0

tn

n!

∑
σ∈NMn(Γ)

xLRmin(σ)y1+des(σ).

From the values of the polynomials UΓ,n(y) computed through Mathematica, we
conjecture that the polynomials UΓ,n(y) are log-concave for Γ = {1324, 1423} and
Γ = {1324 · · ·p, 123 · · ·p}, where p ≥ 4. However, the polynomials UΓk1,k2

,n(−y) are
not always log-concave when k1 is larger than k2.

The next set of problems to consider is to show that the same machinery can
be extended to families Γ of permutations which all start with 1 but may have
more than one descent. This type of problem in the case where Γ consists of single
permutation τ was first mentioned by Jones and Remmel in [14], where the authors
gave a recursion for the polynomial Uτ,n(y) for τ = 15243.

The main problem when the permutations in a family Γ are allowed to have
more than one descent is that the mapping IΓ defined in Section 3 is no longer an
involution. To see this, suppose the permutations in Γ have more than one descents
and consider the case where we have a decrease between the last cell of brick bi−1 and
the first cell of brick bi, but we are unable to combine them since there is a Γ-match
that involves the cells of bricks bi−1 and bi. In this case, brick bi will have at least
one cell labeled with y. According to the current mapping, we will try to split brick
bi after some cell c labeled with y into two bricks: b′, containing all the cells of bi
up to and including c, and b′′, containing all the remaining cells of bi. Then, we will
be able to combine b′ with bi−1 because there is still a decrease between bi−1 and b′

but now there is no Γ-match that lies in the cells of bi−1 and b′. This means that we
cannot use cell c in a definition of an involution. Thus we must restrict ourselves to
cells c labeled with y which do not have this property. The result of this restriction
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is that the fixed points are more complicated than before. In particular, we can
no longer guarantee that if (B, σ) is a fixed point of such an involution, then σ is
increasing in the bricks of B. Nevertheless one can analyze the fixed points of such
an involution for certain simple permutations τ and simple families of permutations
Γ. For example, we can prove the following results.

Theorem 11. For τ = 1432, Uτ,1(y) = −y, and for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y)− y2
(
n− 2

2

)
Uτ,n−3(y).

Theorem 12. For τ = 142536, Uτ,1(y) = −y, and for n ≥ 2,

Uτ,n(y) = (1− y)UΓ,n−1(y) +

�(n−2)/6�∑
k=1

H2ky
3kUn−6k−1(y)

−
�n/6�∑
k=1

H2k−1y
3k−1 [Uτ,n−6k+2(y) + yUτ,n−6k+1(y)]

where Hi is the determinant the matrix of Catalan numbers, given by the following
formulas.

H2k−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C2 C5 C8 C11 · · · C3k−4 C3k−2

−1 C2 C4 C8 · · · C3k−7 C3k−5

0 −1 C2 C5 · · · C3k−10 C3k−8

0 0 −1 C2 · · · C3k−13 C3k−11
...

...
...

...
...

...
0 0 0 0 · · · C2 C4

0 0 0 0 · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, and

H2k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C2 C5 C8 C11 · · · C3k−4 C3k−1

−1 C2 C5 C8 · · · C3k−7 C3k−4

0 −1 C2 C5 · · · C3k−10 C3k−7

0 0 −1 C2 · · · C3k−13 C3k−10
...

...
...

...
...

...
0 0 0 0 · · · C2 C5

0 0 0 0 · · · −1 C2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Theorem 13. For τ = 162534, Uτ,1(y) = −y, and for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y)−
�n/6�∑
k=1

y3k−1

(
n− 3k − 1

3k − 1

)
Uτ,n−6k+1(y)

+

�(n−2)/6�∑
k=1

y3k
(
n− 3k − 2

3k

)
Uτ,n−6k−1(y).
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Theorem 14. For Γ = {14253, 15243}, UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y2(n− 3) (UΓ,n−4(y) + (1− y)(n− 5)UΓ,n−5(y))

− y3(n− 3)(n− 5)(n− 6)UΓ,n−6(y).

These results will appear in subsequent papers.
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