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Abstract

Using bijections between pattern-avoiding permutations and certain full
rook placements on Ferrers boards, we give short proofs of two enumer-
ative results. The first is a simplified enumeration of the 3124, 1234-
avoiding permutations, obtained recently by Callan via a complicated de-
composition. The second is a streamlined bijection between 1342-avoiding
permutations and permutations which can be sorted by two increasing
stacks in series, originally due to Atkinson, Murphy, and Ruškuc.

1 Introduction

This note concerns bijections between pattern-avoiding permutations and pattern-
avoiding full rook placements (frps) on Ferrers boards. The first is quite simple
to define: the permutation (or pattern) σ is contained in the permutation π (both
thought of in one-line notation) if π has a subsequence which is order isomorphic to
σ (that is, has the same pairwise comparisons as). In this case we write σ ≤ π. If
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σ �≤ π, we say that π avoids σ. Given a set B of permutations we denote by Av(B)
the class of all permutations which avoid every permutation in B and refer to

∑

π∈Av(B)

x|π|

as the generating function of Av(B); here |π| denotes the length of π. By construct-
ing a bijection between Av(1342) and “β(0, 1) trees”, Bóna [5] established that the
generating function of Av(1342) is

8x2 + 12x− 1 + (1− 8x)3/2

32x
. (†)

Recently, the first author and Elizalde [3] reproved this result by constructing a much
simpler bijection between a symmetry of this class, Av(3124), and certain frps. To
define the latter takes a bit of preparation.

We use French/Cartesian indexing throughout, so for us, a Ferrers board is a left-
justified array of cells in which the number of cells in each row is at least the number
of cells in the row above. A full rook placement (frp) on a Ferrers board consists of a
Ferrers board with a designated set of cells, called rooks, so that each row and column
contains precisely one rook. For example, the left-most two objects in Figure 1 are
both frps with rooks marked by crosses.

There is a natural partial order on the set of all frps: given two frps R and S, we say
that R is contained in S if R can be obtained from S by deleting rows and columns.
Furthermore, this partial order generalizes the permutation containment order. To
make this precise, we call an frp square if the underlying Ferrers board is square.
There is an obvious correspondence between permutations and square frps (π maps
to the square frp with rooks in the cells (i, π(i)) for every i). When restricted to
square frps, the partial order on frps is equivalent to the permutation containment
order on the corresponding permutations.

Because of this correspondence between permutations and square frps, we say that
an frp avoids the permutation σ if it avoids the square frp corresponding to σ. We
denote by R(B) the set of frps that avoid every permutation in B (herein we are
only interested in B = {312}). If we need to stratify this set by number of rooks we
use a subscript, so Rn(B) consists of the B-avoiding frps with precisely n rooks.

A frp is board minimal if its rooks do not lie in any smaller Ferrers board, or equiv-
alently, if it has a rook in each of its upper-right corners (such rooks correspond to
right-to-left maxima). We denote by R×(B) the set of B-avoiding board minimal
frps. Clearly there is a bijection, which we denote by χ, between permutations and
board minimal frps. As observed in [3], because 3124 ends with its greatest entry
and its second-to-last entry is not its second greatest entry, χ restricts to a bijection
from Av(3124) to R×(312).

In [4], the first author and Saracino constructed a bijection, which we call Π, from
R×(312) to a certain set of labeled Dyck paths denoted by L×(312). The combination
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Figure 1: An example of the bijections χ and Π.

of χ and Π is illustrated in Figure 1. To construct Π(R), we first (as indicated in
the third object of Figure 1) label every vertex on the northwest-southeast border
of the Ferrers board by the length of the longest increasing sequence of rooks lying
below and to the left of that vertex. Finally, we rotate this border together with its
labels to form a labeled Dyck path.

As shown in [3, 4], the labeled Dyck paths in L×(312) are completely characterized
by four properties. To state these we need a final definition. A weak tunnel in a
Dyck path is a horizontal segment between two vertices of the path which stays at
or below the path. (As originally defined by Elizalde [7], a tunnel may only intersect
the path at its endpoints, but we have relaxed this condition.) The properties which
characterize L×(312) are then:

• Monotone property: labels increase by at most 1 after an up step and decrease
by at most 1 after a down step.

• Zero property: the 0 labels are precisely those on the x-axis.

• Tunnel property: given two vertices at the same height connected by a weak
tunnel, the label of the rightmost vertex is at most the label of the leftmost
vertex. (This was called the “diagonal property” in [3].)

• Peak property: the labels rounding any peak (an up step followed by a down
step) are �, �+ 1, �.

While not immediately obvious, the mapping Π : R×(312) → L×(312) is shown
in [3, 4] to be bijective. Thus the problem of enumerating Av(3124), and thus also
Av(1342), is reduced to the problem of enumerating L×(312). Bloom and Elizalde [3]
were able to show that (†) is indeed the generating function of L×(312).

2 Av(3124, 1234)

Permutation classes defined by avoiding two permutations of length four (the “2× 4
classes”) have proved to be an interesting test bed for comparing enumerative tech-
niques. There are 56 such classes up to symmetry, and it has been shown that these
56 classes have 38 different generating functions (thus some pairs of classes which
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are inequivalent by symmetry nevertheless lead to the same generating functions, a
phenomenon known as Wilf-equivalence). Over the past fifteen or so years, authors
employing a variety of different approaches have found all but about a dozen of these
generating functions (see Wikipedia [13] for an up-to-date account).

One of the most recent additions to this catalog is the enumeration of Av(3241, 4321).
Verifying a conjecture of Kotesovec, Callan [6] showed that the generating function
of this class is

1

1− xC(xC(x))
,

where C(x) is the generating function for the Catalan numbers. The enumeration
this class is given by sequence A165543 in the OEIS [11]. While Callan’s proof is
bijective, he concludes his paper by writing “the bijection presented above works
but is hardly intuitive” and asking “is there a better proof?” We provide a positive
answer to Callan’s question by using frps to enumerate a symmetry of this class,
Av(3124, 1234). To do so, we use the mapping Π ◦ χ.
For concreteness, let us denote an element of L×

n (312) by (D,α), where D is a Dyck
path with semilength n (which we denote by |D|) and α is the sequence of labels
along D, ordered from left to right as α0, . . . , α2n. It is easy to see that the image
of Av(3124, 1234) under the mapping Π ◦ χ consists of those labeled Dyck paths in
L×(312) in which every label is at most 3. Denoting this set by L≤3, we see that

∑

π∈Av(3124,1234)

x|π| =
∑

(D,α)∈L≤3

x|D|.

The form of the desired generating function suggests that we should decompose
labeled Dyck paths in L≤3 based on their returns to the x-axis. Suppose that (D,α) ∈
L≤3 and write it as uD(1)duD(2)d . . . where each D(i) is a (possibly empty) Dyck path.
Provided D(i) �= ∅, we let α(i) denote the sequence of labels along D(i), decremented
by 1. Otherwise, we set α(1) = ∅. It now follows that the labeled Dyck path (D(i), α(i))
satisfies the monotone, tunnel, and peak properties, that every (nonempty) label
is between 0 and 2, inclusive, and that the zero labels include, but are no longer
exclusive to, the x-axis. Consequently, we define the set A to consist of all labeled
Dyck paths that arise in this fashion. From the decomposition into returns, it now
follows that ∑

(D,α)∈L≤3

x|D| =
1

1− xA(x)
,

where A(x) =
∑

x|D|, the sum taken over all (D,α) ∈ A. It only remains to show

that A(x) = C(xC(x)), or equivalently, that A(x) = 1 + A(x)2C(x).

We begin by fixing (D,α) ∈ A so that D �= ∅ and decompose it based on its
first return to the x-axis as D = uD(1)dD(2), where α(1) (respectively, α(2)) is the
sequence of labels along D(1) (respectively, D(2)). (As before, we define α(i) = ∅
when D(i) = ∅.) Certainly, (D(2), α(2)) ∈ A. To characterize (D(1), α(1)), note that

http://www.research.att.com/projects/OEIS?Anum=A165543
http://www.research.att.com/~njas/sequences/
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Figure 2: An example of the bijection φ : A×C+ → B. We denote the segments
of D′ that come from E(1) and uE(2)d with dashed lines.

if α
(1)
0 = 0 or α(1) = ∅ then (D(1), α(1)) ∈ A. On the other hand, if we let B be

the set of all such labeled paths (D(1), α(1)) that arise from this decomposition when

|D(1)| > 0 and α
(1)
0 = 1, i.e., B has the same characterization as A except here we

insist that its leftmost label is 1, then it (trivially) follows that

A(x) = 1 + x(A(x) +B(x))A(x),

where B(x) =
∑

x|D|, the sum taken over all (D,α) ∈ B. To finish the proof it now

suffices to show that B(x) = A(x)(C(x)− 1).

To this end we construct a bijection φ : A × C+ → B, where C+ is the set of all
non empty Dyck paths, i.e., those with positive semilength, which are labeled with
all 1s except at the peaks where we place 2s. (For reference, we call such a labeling
trivial.) To define φ, fix ((D,α), E) ∈ A × C and let i be the smallest index so that
αi = 1; consequently, Dj = u for all j ≤ i. We now decompose E as uE(1)dE(2) and
define φ((D,α), E)) to be the Dyck path

D′ = E(2)D1 . . .DiuE
(1)dDi+1Di+2 . . . ,

labeled by

(a) placing 1s along the segment D1 . . . Di,

(b) giving uE(1)d and E(2) the trivial labeling, and

(c) placing the labels αiαi+1 . . . along the segment Di+1Di+2 . . ..

The reader may wish to consult Figure 2 for an example of the mapping ϕ.

To see that φ is bijective first note that D = ∅ if and only if the rightmost label on
D′ is 1. In this case we may recover uE1d by decomposing D′ by returns. On the
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other hand, if D �= ∅ then we may recover uE(1)d by first decomposing D′ into Dyck
paths D(1)D(2) so that every label on the x-axis in D(1) is labeled with a 1 and every
label on the x-axis in D(2), except the first, is labeled with a 0. It now follows that
D(1) = E(2) and D(2) = D1 . . .DiuE

(1)dDi+1Di+2 . . .. To see that we may recover
uE(1)d, note that D1 . . .Di is a sequence of up-steps that are labeled 0, . . . , 0, 1 in
(D,α). Consequently, uE(1)d is the largest trivially labeled sub-Dyck path in D(2)

that contains the leftmost peak of D(2), and has only one return.

Note that this method could — in principle — be applied to all classes of the form
Av(3124, 12 · · ·k) by considering the labeled Dyck paths in L×(312) with labels at
most k−1. However, enumerating those families would become increasingly difficult.

3 Sorting with Two Increasing Stacks in Series

A stack is a last-in first-out sorting device with push (move the next entry from
the input to the top of the stack) and pop (move the entry on top of the stack
to the output) operations. In Volume 1 of The Art of Computer Programming [8,
Section 2.2.1], Knuth showed that the permutation π can be sorted (meaning that
by applying push and pop operations to the sequence of entries π(1), . . . , π(n) one
can output the sequence 1, . . . , n) if and only if π avoids 231.

Following The Art of Computer Programming, several authors, including Knuth him-
self in Volume 3 [9, Section 5.2.4], have studied networks of sorting machines. In
particular, the machine consisting of two stacks in series has been intensely analyzed,
albeit with limited success. This machine1 allows three operations:

• push the next entry from the input to the top of the first stack, denoted by s,

• transfer the top entry on the first stack to the top of the second stack, denoted
by t, and

• pop the top entry from the second stack to the output, denoted by p.

Even the problem of determining whether a given permutation can be sorted by this
machine has proved to be difficult; Pierrot and Rossin [10] have only very recently
showed that this problem lies in P (the amount of time required to determine the
answer is bounded by a polynomial in the length of the permutation). For the
enumeration problem only rough bounds are known, the most recent of which are
due to Albert, Atkinson, and Linton [1].

Given the apparent difficulty of analyzing this machine, several authors have con-
sidered restricted variants. In particular, Atkinson, Murphy, and Ruškuc [2] studied

1It should be noted that another, much more restricted, definition of sorting with stacks in series
has been given by West [12]. Under this definition, the permutations sortable by two stacks in series
do not form a permutation class. These permutations were first counted by Zeilberger [14].
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Figure 3: Sorting the permutation 24153 with two increasing stacks in series.

sorting with two increasing stacks in series, i.e., two stacks whose entries must be in
increasing order when read from top to bottom2. An example of sorting with this
machine is shown in Figure 3. They proved that this class is characterized by an
infinite set of minimal avoided permutations, but is nevertheless in bijection with
Av(1342), the strangest Wilf-equivalence known to date. In this section we describe
a simple bijection between these permutations and L×(312).

In [2], Atkinson, Murphy, and Ruškuc associated permutations sortable by two in-
creasing stacks with greedy stack words. As our bijection is between L×(312) and
these words, we briefly review their definition. First, a valid stack word is a word aris-
ing from a two-stack sorting (here we do not require that both stacks be increasing —
this condition is imposed later) in which the ith letter is s, t, or p, corresponding to
whether the ith operation is a push, transfer, or pop, respectively. For example, the
sorting shown in Figure 3 corresponds to the valid stack word stsstpptsstpptp. It is
easy to see that the set of valid stack words (again, for two not-necessarily increasing
stacks in series) are characterized by two rules:

(W1) the word contains an equal number of letters equal to s, t, and p, and

(W2) in every prefix of the word, there are at least as many occurrences of s as there
are of t, and at least as many occurrences of t as there are of p.

To restrict to increasing stacks in series, we must impose a further condition:

(W3) the word cannot contain a factor (contiguous subsequence) of the form tut
where u is a (possibly empty) valid stack word.

2Even without this restriction, the final stack must be increasing from top to bottom if the
sorting is to be successful.
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Finally, these rules allow multiple sortings of some permutations, so we imply two
greediness conditions :

(W4) the word cannot contain an sp factor, and

(W5) the word cannot contain a ut factor where u is a nonempty valid stack word.
(The only restriction imposed by (W3) but not by (W5) is that a greedy word
representing a sorting by two increasing stacks in series cannot contain a tt
factor.)

Our goal, then, is to construct a bijection, which we call Φ, from labeled Dyck
paths in L×(312) to stack words satisfying (W1)–(W5). To explain this bijection we
introduce a bit of new terminology: a step is positive (resp., neutral, negative) if the
label of the vertex it leads to is greater than (resp., equal to, less than) the label
of the preceding vertex. The monotone property shows that labels can change by
at most 1 during a step, and that there are only four types of steps: positive and
neutral up steps and neutral and negative down steps. We map each of these four
types of steps to one or two letters in Φ(D,α). The four cases are shown in Figure 4,
while a complete example of the bijection is given in Figure 5.

positive up step neutral up step neutral down step negative down step

�

�+ 1

st

�

�

s

�

�

pt

�

�− 1
p

Figure 4: The four types of steps.

Note that by the construction of Φ — assuming Φ(D,α) corresponds to a valid stack
word — the label of a vertex of (D,α) will equal the number of entries in the second
stack at the corresponding point in the sorting.

Let (D,α) ∈ L×
n (312) be arbitrary. We aim to show that the word w = Φ(D,α)

satisfies (W1)–(W5). First, note that w contains n occurrences of both s and p
because D is a Dyck path. Suppose that (D,α) contains a+ positive up steps. By the

0
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sts stp pts stp ptp

↓Φ

Figure 5: An example of the bijection between L×(312) and greedy stack
words.
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zero property, it must then contain precisely a+ negative down steps, or equivalently,
n − a+ neutral down steps. This shows that w also contains n occurrences of the
letter t, so w satisfies property (W1).

To check that Φ(D,α) satisfies (W2), consider an arbitrary prefix u of w. This prefix
corresponds to an initial segment of (D,α), which we denote by (E, β). While not
necessarily a Dyck path, (E, β) still satisfies the monotone, zero, tunnel, and peak
properties. Suppose that u contains a occurrences of s, b occurrences of t, and c
occurrences of p, so we want to show that a ≥ b ≥ c. If (D,α) has a+ positive up
steps then by the zero property, it contains at most a+ negative down steps, and thus
it contains at least c− a+ neutral down steps. This shows that b ≥ a+ + c− a+ = c,
which is one of the inequalities needed for (W2).

The other inequality we need to show is a ≥ b. Suppose to the contrary that this
inequality fails for some prefix u of w and choose u to be as short as possible subject
to this constraint. By the minimality of u, it must end in pt, and thus the last step in
(E, β) is a neutral down step. Suppose that this final step ends at the vertex y and
let x denote the rightmost vertex to the left of y at the same level as y. We break
(E, β) into two pieces at x; suppose that there are a1 up steps and c1 down steps in
(E, β) to the left of x (so a1 ≥ c1) and a2 up steps and c2 down steps between x and
y (so a2 = c2). Further suppose there are a total of b1 positive up steps and neutral
down steps (these are precisely the steps which correspond to a t in u) to the left of
x (so, by the minimality of y, a1 ≥ b1) and b2 positive up steps and neutral down
steps between x and y. Now if there are a+2 positive up steps between x and y, the
tunnel property implies that there are at least a+2 negative down steps between x
and y. This shows that

b2 ≤ a+2 + (c2 − a+2 ) = a+2 + (a2 − a+2 ) = a2,

so the number of occurrences of t in u is at most b1 + b2 ≤ a1 + a2, a contradiction.

To see that (W3) holds, first note that by the construction of Φ it is clearly impossible
for w to contain a tt factor. Next we establish (W5), and thus the rest of (W3).
Suppose to the contrary that w does contain a ut factor for a valid stack word u.
Then the letters of ut correspond to a Dyck subpath of (D,α), and thus the leftmost
and rightmost vertices of this subpath are connected by a weak tunnel. Assume that
there are a up steps in this subpath (so there are also a down steps in the subpath),
and that a+ of these are positive up steps. By the tunnel property, the label of the
rightmost vertex is at most the label of the leftmost vertex, so this subpath contains
at least a+ negative down steps, and thus at most a− a+ neutral down steps. Thus
u contains at most a occurrences of the letter t. However, because this subpath
corresponds to a ut factor, the final t must correspond to a final neutral down step.
But then u can contain at most a− 1 occurrences of t, and thus is not a valid stack
word.

The final property, (W4), follows quickly. Were w to contain an sp factor, it could
only be the result of an up step followed immediately by a down step, i.e., a peak.
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However, the peak property states that peaks can only occur as positive up steps
followed by negative down steps, and thus peaks correspond to stp factors, not sp
factors.

The inverse of Φ is easier to describe. To construct Φ−1(w) = (D,α), we build a
Dyck path in which pushes correspond to up steps and pops correspond to down
steps. We then label the vertices of this path by the number of entries in the second
stack before the next push or pop. (W1) and (W2) ensure that we do indeed obtain
a Dyck path. Because of (W3), w cannot contain consecutive occurrences of t, so
the labels can increase or decrease by at most 1 at each step. Clearly labels can only
decrease on down steps (w cannot contain a ptt factor by (W3)), while (W4) ensures
that labels can only increase on up steps, thereby verifying that (D,α) satisfies the
monotone property. This labeled Dyck path also satisfies the zero property because
at the end of the sorting described by w, nothing remains in the second stack. The
peak property follows because w cannot contain an sp factor by (W4).

It remains only to check the tunnel property. Suppose to the contrary that (D,α)
fails the tunnel property, and choose vertices x and y connected by a weak tunnel
with x to the left of y such that the label of y is greater than the label of x. Subject
to these constraints, further choose x and y to be as close to each other as possible.
Clearly if the tunnel connecting x and y touches the path in its interior, then there
will be a violation of the tunnel property strictly between x and y, a contradiction
to our choice of these vertices. Because x and y are connected by a weak tunnel, x
must be followed by an up step and y must follow a down step. If the vertex before y
is connected to y by a negative down step, then it and the vertex after x violate the
tunnel property (they are connected by a weak tunnel because the tunnel between
x and y does not touch the path in its interior), contradicting our choice of x and
y. Thus the vertex before y must be connected to y by a neutral down step, which
corresponds to a pt factor in w. However, this shows that w contains a ut factor for
a valid stack word u, contradicting (W5).
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