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Abstract

We construct narcissistic terraces for cyclic groups that have various prop-
erties which enable the construction of R-sequencings and strong half-
cycles for many non-cyclic abelian groups. Among other results, we show:
that an abelian group which is isomorphic to a direct product of cyclic
factors such that the number of factors of order congruent to 3 (mod 4) of
order at most 79 is at least as large as the number of such factors of order
greater than 79 is R-sequenceable (including all groups that are the direct
product of cyclic groups of orders congruent to 1 (mod 4)); that for any
abelian 3-group there are infinitely many R-sequenceable groups whose
Sylow 3-subgroups are of that form; and that abelian groups whose Sylow
3-subgroups are of the form Zρ

3×Zρ
9×Zσ

27×Zτ
81 or Z

ρ
3×Zρ

9×Zσ
27×Zτ

81×Z3k

where k ≡ ρ + σ (mod 2) are R-sequenceable. For strong half-cycles
we give the first constructions for non-cyclic and non-elementary-abelian
groups, including for groups that can be written as the product of cyclic
factors, all either of order congruent to 1 (mod 12) or order at most 81
with order congruent to 1 (mod 4). We also show that for composite n
with 21 ≤ n ≤ 69 there is a robust half-cycle for Zn.

1 Introduction

Complete mappings have long been studied, initially for their connection to sets of
mutually orthogonal Latin squares. In this paper we investigate two types of complete
mappings of abelian groups that have a particular cycle structure: R-sequencings,
which also have a rich history, and strong half-cycles, which have been studied less.
Our basic method involves constructing and combining narcissistic terraces and we
extend and add some results on these objects that are of interest in their own right.
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We are only concerned with abelian groups here, so we restrict our definitions to
this case and use additive notation throughout. However, many of the concepts have
natural extensions to nonabelian groups. We denote the cyclic group by Zn and take
it to be addition modulo n on the symbols {0, 1, . . . , n− 1}.
Let G be an abelian group with identity element e and let θ : G→ G be a bijection.
If the map φ : g �→ g+θ(g) is also a bijection then θ is a complete mapping of G and φ
is an orthomorphism of G. If θ(e) = e then also φ(e) = e and both the complete
mapping and the orthomorphism are normalized. From any complete mapping θ′ we
can construct a normalized complete mapping θ : g �→ θ′(g)− θ′(e).

An abelian group has a complete mapping if and only if it does not have exactly one
involution [15]. For more on complete mappings of groups (including the nonabelian
case) see the survey [6].

Viewing a normalized orthomorphism as a member of the symmetric group on the
elements of G we see that it has a cycle of length 1 as the identity element is a
fixed element. We are interested in two possibilities for the cycle structure of the
remainder of the permutation: that the elements form a single cycle of length |G|−1
(“R-sequenceability”) and that they form two cycles of equal length (|G| − 1)/2
(“strong half-cycles”). In the latter case |G| must be odd and, in fact, we limit
ourselves to groups of odd order in both cases.

We will often consider a list of elements (a1, a2, . . . , al) of a group to “wrap-around”
so that a1 is thought of as immediately following al to give a circular sequence. To em-
phasise this, we include a hooked arrow in such lists: (a1, a2, . . . , al, ←↩). When work-
ing with such sequences, subscripts of the elements are taken modulo the length of
the sequence. In particular, when working with a circular sequence (a1, a2, . . . al, ←↩)
the element al+1 is a1.

Let G be an abelian group of order n. Let a = (a1, a2, . . . , an−1, ←↩) be a circular
arrangement of the non-identity elements of G and define b = (b1, b2, . . . , bn−1, ←↩)
by bi = ai+1 − ai for each i (note that bn−1 = a1 − an−1 as an = a1 for the purposes
of this calculation). If b also consists of all of the non-identity elements of G then a
is a directed rotational terrace or directed R-terrace and b is a rotational sequencing
or R-sequencing. Several alternative but equivalent definitions appear elsewhere
[1, 7, 10, 12, 16].

To see the connection to complete mappings, given a directed rotational terrace with
this notation, define a map φ : G → G that fixes e and sends ai to ai+1 for each i.
Then φ is a normalized orthomorphism.

Example 1.1 In Z25

(2, 21, 6, 17, 10, 13, 11, 16, 7, 20, 3, 24, 23, 4, 19, 8, 15, 12, 14, 9, 18, 5, 22, 1, ←↩)

is a directed R-terrace with the R-sequencing

(19, 10, 11, 18, 3, 23, 5, 16, 13, 8, 21, 24, 6, 15, 14, 7, 22, 2, 20, 9, 12, 17, 4, 1, ←↩).
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In this paper we are only concerned with abelian groups of odd order. It is known
that abelian groups of orders congruent to 1 or 5 (mod 6) are R-sequenceable and
several infinite families of R-sequenceable groups of order congruent to 3 (mod 6)
are known. Friedlander, Gordon and Miller conjecture (as part of a wider conjecture
including the even case) that all abelian groups of odd order are R-sequenceable. We
discuss these past results further in the next section and make significant progress
with the unknown cases in Section 5, including finding R-sequencings for the following
families of abelian groups of odd order:

• those which are isomorphic to a direct product of cyclic factors such that the
number of factors of order congruent to 3 (mod 4) of order at most 79 is at
least as large as the number of such factors of order greater than 79,

• those whose Sylow 3-subgroups are of the form Zρ
3 × Zρ

9 × Zσ
27 × Zτ

81,

• those whose Sylow 3-subgroups are of the form Zρ
3 × Zρ

9 × Zσ
27 × Zτ

81 × Z3k

provided that k > 1 and k ≡ ρ+ σ (mod 2).

We also show that for any abelian 3-group S there are infinitely many R-sequenceable
abelian groups with Sylow subgroups isomorphic to S.

A half-cycle for an abelian group G of odd order n = 2m+1 is a circular sequence a =
(a1, a2, . . . , am, ←↩) of distinct elements of G such that the sequence of differences b =
(b1, b2, . . . bm, ←↩) also contains no repeated elements. If we strengthen our definition
to require that a and b each consist of exactly one occurrence from each pair {x,−x :
x �= e}, then a is a strong half-cycle.

The connection to complete mappings is similar to that for R-sequencings. Given a
strong half-cycle with this notation, define a map φ : G → G that fixes e, sends ai
to ai+1, and −ai to −ai+1 for each i. Then φ is a normalized orthomorphism.

Example 1.2 [18] In Z19

(1, 17, 3, 15, 14, 6, 12, 8, 10, ←↩)
is a strong half cycle with the differences

(16, 5, 12, 18, 11, 6, 15, 2, 10, ←↩).

Half-cycles for cyclic groups were investigated by Preece in [18], who credits the
concept to Azäıs [3] and also cites Buratti and Del Fra’s use of them as generators
of cyclic m-cycle systems [5]. However the idea for arbitrary abelian groups can be
traced back at least as far as a paper by Friedlander, Gordon and Tannenbaum [8]
where they appear as m-regular complete mappings, where m = (|G|−1)/2 as above.
Preece also introduces two notions that are stronger still: “robust” and “champion”
half-cycles. A strong half-cycle (a1, . . . , an, ←↩) with differences (b1, . . . , bn, ←↩) is
robust if the set {a1, . . . , an} is equal to either {b1, . . . , bn} or {−b1, . . . ,−bn}. A
robust half cycle is champion if when ai+c = ±bi then ai+c+j = ±bi+j for all j.
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Strong half-cycles are known to exist for cyclic groups and elementary abelian p-
groups of odd order [8]; we shall see a construction from [5] that proves this for
cyclic groups in Section 3. Friedlander, Gordon and Tannenbaum conjecture that
all abelian groups of odd order have a strong half-cycle (as part of a more general
conjecture about regular complete mappings). In the next three sections we make
the first inroads of which we are aware into other cases, including constructing strong
half-cycles for odd order abelian groups that can be written as the product of cyclic
factors, all either of order congruent to 1 (mod 12) or order at most 81 with order
congruent to 1 (mod 4).

Preece [18] shows that cyclic groups of prime order have robust (in fact, champion)
half-cycles. In Section 6 we report on computer searches for robust half-cycles, finding
that they exist in cyclic groups all composite orders n with 21 ≤ n ≤ 69. Given this,
it seems likely that robust half-cycles exist for cyclic groups of all odd orders n > 15.

The unifying tool in our constructions is the “narcissistic terrace.”

Let G be an abelian group of odd order n = 2m + 1. A terrace for G is a linear
arrangement a = (a1, a2, . . . , an) of the elements of G such that the associated se-
quence b = (b1, b2, . . . , bn−1), defined by bi = ai+1 − ai, has exactly two occurrences
from each set {x,−x : x �= e}. The sequence b is called a 2-sequencing of G. If
the 2-sequencing is equal to its reverse then it is called reflective and the terrace is
narcissistic.

Terraces were introduced by Bailey [4] in order to determine when the rows and
columns of the Cayley table of a group may be permuted to give a quasi-complete
Latin square. Similar ideas had been used earlier by Williams [20] for cyclic groups
and by Gordon [9] with the stronger condition that each non-identity element appears
exactly once in the 2-sequencing (in which case it is a sequencing, the terrace is
directed, and one may permute the rows and columns of the Cayley table to produce
a complete Latin square).

Translating all of the elements of a terrace by adding a fixed element of the group
to each produces another terrace with the same 2-sequencing. If the group has odd
order (the only case with which we are concerned in this paper) we can therefore
assume that the element in the center of the terrace is the identity and when this is
the case we call the terrace centered. It is convenient to index a centered narcissistic
terrace as (a−m, . . . , a−1, a0, a1, . . . , am). When we do this we have that a0 = e
and a−i = −ai for each i. Given this, it is sufficient when describing a centered
narcissistic terrace to list (. . . , a0, a1, . . . , am), a practice we often employ. Similarly,
the associated reflective 2-sequencing is fully captured by (. . . , b1, b2, . . . , bm−1).

Example 1.3 In Z19,

(. . . , 0, 10, 8, 12, 6, 14, 15, 3, 17, 1)

is a centered narcissistic terrace with the reflective 2-sequencing

(. . . , 10, 17, 4, 13, 8, 1, 7, 14, 3).
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“Zigzags” were explicitly defined and used in the construction of a wide array of
terraces by Preece [17]. He notes that specific zigzag terraces have previously been
constructed including the Lucas-Walecki-Williams terraces (described below), possi-
bly the first instances of terraces (although with different terminology) in 1892 [11].

A zigzag in Zn is defined by four numbers, which we list in angle brackets, 〈x, y, s, l〉
and is a sequence of length l where the ith entry is given by y−s(i−2)/2 if i is even
and x + s(i − 1)/2 if i is odd. Perhaps more intuitively, the zigzag 〈x, y, s, l〉 starts
as

x, y, x+ s, y − s, x+ 2s, y − 2s, . . .

and ends with y − s(l − 2)/2 if l is even and x+ s(l − 1)/2 if l is odd.

Example 1.4 In Z25 the zigzag 〈1, 22, 4, 6〉 is

(1, 22, 5, 18, 9, 14)

and the one given by 〈12, 15, 21, 6〉 is

(12, 15, 8, 19, 4, 23).

The ith internal difference produced by a zigzag is given by y − x − s(i − 1) if i is
odd and x− y + s(i− 1) if i is even. That is, the sequence of differences is

y − x, −(y − x− s), y − x− 2s, −(y − x− 3s), . . .

The Lucas-Walecki-Williams terrace or LWW terrace for Zn consists of the element 0
followed by a single zigzag:

(0, 〈1, n− 1, 1, n− 1〉) = (0, 1, n− 1, 2, n− 2, . . . , �n/2�).

See [18], for example, for more details.

In the next section we review the results that allow us to construct R-sequencings
from narcissistic terraces and introduce similar ones that allow us to construct strong
half-cycles. In Sections 3 and 4 we give new direct constructions of narcissistic
terraces for cyclic groups, using zigzags and number theoretic methods respectively.
These terraces are of interest in their own right, extending results in [2, 17], but our
attention here is on their usefulness in building R-sequencings and half-cycles.

In Section 5 we see what the implications are for the existence of R-sequencings and
strong half-cycles, including both the results stated in the abstract and somewhat
more general cases that are not easy to express succinctly.

2 Preliminaries

The method we will use requires finding narcissistic terraces for cyclic (or other)
groups that have various properties that allow them to be turned into R-sequencings
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or strong half-cycles. This can be used in conjunction with the product theorem
for narcissistic terraces from [13] to create narcissistic terraces with the required
properties for larger, more complicated groups. With the exception of the strong
half-cycle construction in Theorem 2.1, the material in this section is taken from [14]
and the reader is referred there for proofs and constructions.

Let G be an abelian group of order 2m + 1 and let a = (. . . , e, a1, a2, . . . , am) be a
centered narcissistic terrace for G. If am = −2a1 then we say that a has Property A
and if am = 2a1 then we say that a has Property B.

Theorem 2.1 Let G be an abelian group of odd order. If G has a centered narcissis-
tic terrace with Property A then G has a directed R-terrace and if G has a centered
narcissistic terrace with Property B then G has a strong half-cycle.

Proof. Suppose |G| = 2m + 1 and let a = (. . . , e, a1, a2, . . . , am) be a centered
narcissistic terrace for G with 2-sequencing b = (. . . , b1, b2, . . . , bm−1).

Suppose that a has Property B and consider the sequence (a1, a2, . . . , am, ←↩). We
claim that this is a strong half-cycle for G. The differences are (b2, b3 . . . , bm−1, a1 −
am, ←↩). As

a1 − am = −a1 = −b1
and b is a reflective 2-sequencing, these differences satisfy the strong half-cycle con-
straints.

If a has Property A then a similar argument shows that

(a−m, a−(m−1), . . . , a−1, am, am−1, . . . , a1, ←↩)

is a directed R-terrace for G [14]. �

If we take the centered narcissistic terrace from Example 1.3 and apply this process
to it we get the strong half-cycle from Example 1.2.

Theorem 2.2 [14] Let G1, G2, . . . , Gα and H1, H2, . . . , Hβ be abelian groups with
centered narcissistic terraces that have Property A, where |Gi| ≡ 1 (mod 4) and
|Hj| ≡ 3 (mod 4) for each i and j. Let J1, J2, . . . , Jγ and K1, K2, . . . , Kδ be abelian
groups with centered narcissistic terraces that have Property B, where |Ji| ≡ 1
(mod 4) and |Kj | ≡ 3 (mod 4) for each i and j. Let

L =

(
α∏

i=1

Gi

)
×
(

β∏
i=1

Hi

)
×
(

γ∏
i=1

Ji

)
×
(

δ∏
i=1

Ki

)
.

Then L has a terrace with Property A provided that α + β ≥ 1 and δ ∈ {β − 1, β},
subject to the extra condition that if β = 0 then γ = δ = 0. Further, L has a terrace
with Property B provided that γ + δ ≥ 1 and β ∈ {δ − 1, δ}, subject to the extra
condition that if δ = 0 then α = β = 0.
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The last sentence of Theorem 2.2 regarding L having Property B is not explicitly
stated in [14] but the argument is essentially the same as that for the Property A
clause.

Therefore, finding centered narcissistic terraces with Property A or B leads to more
constructions of R-sequencings and strong half-cycles. We might hope that the fol-
lowing corollary would reduce the problems to cyclic groups:

Corollary 2.3 [14] Let G be an abelian group of odd order and suppose

G ∼= A1 × A2 × · · · ×As.

If each Ai has both a centered narcissistic terrace with Property A and one with
Property B then G also has both a centered narcissistic terrace with Property A and
one with Property B.

However, Z3 and Z5 each have a centered narcissistic terrace with Property A but
none with Property B and Z7 has a centered narcissistic terrace with Property B but
not one with Property A. Further, elementary abelian 3-groups of order at least 9
do not have centered narcissistic terraces with either property.

If n is prime and x has multiplicative order n− 1 in Zn (considered as a ring) then x
is a primitive root of n.

Other orders of cyclic groups for which there is a centered narcissistic terrace with
Property A include: n prime with 2 as a primitive root; n ≡ 5 (mod 8) and n− 2 is
prime with 2 as a primitive root; and n with 9 ≤ n ≤ 29. For Property B the list is:
n ≡ 7 (mod 8) and n − 2 is prime with 2 as a primitive root; n ≡ 1 (mod 8) and
n−2 is prime for which 2 has multiplicative order (n−3)/2; and n with 9 ≤ n ≤ 29.
Also Z2

5 and Z9×Z3 both have centered narcissistic terraces with each property [14].

Two additional constraints that a centered narcissistic terrace might meet let us join
the approach for finding R-sequencings given here into other existing theory.

We call a sequence (a1, a2, . . . , an) or (a1, a2, . . . , an, ←↩) starry if ai = ai−1 + ai+1

for some ai in the sequence. For example, the terrace (. . . , 0, 1, 12, 5, 8, 6, 11, 2) for
Z15 is starry because 5 = 12 + 8. If a centered narcissistic terrace has Property A
(or B) and is also starry then we say it has Property A∗ (or Property B∗). The terrace
for Z15 here has Property B∗.

A centered narcissistic terrace where ai = 2ai+1 for some ai has the property of being
doublesome. A centered narcissistic terrace satisfies the doublesome property in one
half if and only if aj = 2aj−1 for some aj in the other half. For example, the terrace
(. . . , 0, 1, 10, 5, 7, 4, 11) for Z13 has this property because 2 · 5 = 10. If a centered
narcissistic terrace has Property A (or B) and is also doublesome then we say it has
Property A† (or Property B†). The terrace for Z13 here has Property A†.

The next two results show how we can combine terraces with the various properties
into ones that have Property A∗ or B∗.
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Theorem 2.4 [14] Let G1, G2, . . . , Gα and H1, H2, . . . , Hβ be abelian groups with
centered narcissistic terraces that have Property A†, where |Gi| ≡ 1 (mod 4) and
|Hj| ≡ 3 (mod 4) for each i and j. Let J1, J2, . . . , Jγ and K1, K2, . . . , Kδ be abelian
groups with centered narcissistic terraces that have Property B†, where |Ji| ≡ 1
(mod 4) and |Kj | ≡ 3 (mod 4) for each i and j. Let

L =

(
α∏

i=1

Gi

)
×
(

β∏
i=1

Hi

)
×
(

γ∏
i=1

Ji

)
×
(

δ∏
i=1

Ki

)
.

If α + β ≥ 1 and δ ∈ {β − 1, β}, subject to the extra condition that if β = 0 then
γ = δ = 0, then L has a centered narcissistic terrace with Property A†. If γ + δ ≥ 1
and β ∈ {δ − 1, δ}, subject to the extra condition that if δ = 0 then α = β = 0, then
L has a centered narcissistic terrace with Property B†.

Let M and N be abelian groups with centered narcissistic terraces that have Prop-
erty A∗ and B∗ respectively. Then

• If L has order congruent to 1 (mod 4) and its centered narcissistic terrace has
Property A†, then L×M has a centered narcissistic terrace with Property A∗.

• If L has order congruent to 3 (mod 4) and its centered narcissistic terrace has
Property A†, then L×N has a centered narcissistic terrace with Property A∗.

• If L has order congruent to 1 (mod 4) and its centered narcissistic terrace has
Property B†, then L×N has a centered narcissistic terrace with Property B∗.

• If L has order congruent to 3 (mod 4) and its centered narcissistic terrace has
Property B†, then L×M has a centered narcissistic terrace with Property B∗.

A less general but more succinct version of Theorem 2.4 is:

Corollary 2.5 [14] Let G be an abelian group of odd order and suppose

G ∼= A1 × A2 × · · · ×As.

If each Ai, for 1 ≤ i ≤ s, has both a centered narcissistic terrace with Property A† and
one with Property B† and As+1 has a centered narcissistic terrace with Property A∗

and one with Property B∗, then G has a centered narcissistic terrace with Property A∗

and one with Property B∗.

If a directed R-terrace is starry then it is called a directed R∗-terrace and its associ-
ated R-sequencing is an R∗-sequencing. The reason for the importance of Property A∗

is that from such terraces we can create directed R∗-terraces and a result of Fried-
lander, Gordon and Miller lets us then show that many more abelian groups are
R-sequenceable.

Theorem 2.6 [14] Let G be an abelian group of odd order. If G has a centered
narcissistic terrace with Property A∗ then G has a directed R∗-terrace.
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Proof. Use the method of Theorem 2.1. �

Theorem 2.7 [7] If G is an R∗-sequenceable abelian group of odd order and H is
an abelian group of order coprime to 6, then G×H is R∗-sequenceable.

We are therefore especially interested in starriness and doublesomeness when the
order of the group is a multiple of 3 in order to be able to construct R∗-sequencings
for further classes of groups.

The groups Z5 and Z7 have centered narcissistic terraces with Properties A† and B†
respectively and Z9 has both a centered narcissistic terrace with Property A∗ and
one with Property B∗. For odd n with 11 ≤ n ≤ 29 each abelian group of order n
other than Z3

3 has a centered narcissistic terrace with Property A∗
† and one with

Property B∗
† [14].

Our goal now is to construct as many narcissistic terraces with the desired properties
as we can.

3 Zigzag constructions

There are many constructions in the literature for terraces using zigzags, some de-
scribed before zigzags were codified (such as the LWW terrace) and many appear in
[17] where zigzags are explicitly introduced. Following the convention from [17] we
talk about a terrace with four zigzags as tetrazetal, one with five zigzags as pentazetal,
and so on.

In this section we present two new constructions for families of centered narcissistic
terraces using zigzags, one tetrazetal and one hexazetal. First, the tetrazetal one:

Theorem 3.1 If n ≡ 1 (mod 4) then Zn has a tetrazetal centered narcissistic ter-
race with Property A. If n ≡ 3 (mod 4) then Zn has a tetrazetal centered narcissistic
terrace with Property B.

Proof. Define a sequence as follows. This sequence will be our tetrazetal terrace.
There are slightly different formulations as n varies modulo 8. We use the zigzag
notation introduced in Section 1.

When n = 8k + 1:

(. . . 0, 〈1, 8k − 2, 4, 2k〉, 〈4k, 4k + 3,−4, 2k〉) .
When n = 8k + 3:

(. . . 0, 〈1, 8k, 4, 2k + 1〉, 〈4k + 3, 4k − 2, 4, 2k〉) .
When n = 8k + 5:

(. . . 0, 〈1, 8k + 2, 4, 2k + 1〉, 〈4k + 3, 4k, 4, 2k + 1〉) .
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When n = 8k + 7:

(. . . 0, 〈1, 8k + 5, 4, 2k + 2〉, 〈4k + 2, 4k + 7,−4, 2k + 1〉) .

These constructions produce narcissistic terraces. Considering the zigzags in all but
the n = 8k+7 case, in the first zigzag we have all of the numbers (or their negatives)
following the pattern 1,−3, . . . up to ±(n − 1)/2 or ±(n − 3)/2 and in the second
zigzag we have all of the numbers (or their negatives) from the other of ±(n− 1)/2
and ±(n− 3)/2 and ending . . . ,±4,±2. For n = 8k + 7 the situation is very similar
but the first zigzag also includes (n+1)/2 (the negative of (n−1)/2) and the second
zigzag starts at ±(n − 5)/2 instead. Hence the lists contain each element of Zn

exactly once.

Now consider the differences. In each case we have: 1 as the first difference; ±2 as the
difference that comes from the join between the first and second zigzags; ±4,±8 . . .
up to either (n−3) or (n−5) as the internal differences of the first zigzag; whichever
of (n − 3) and (n − 5) that did not appear in the first zigzag differences down to
. . .± 10,±6 as the internal differences of the second zigzag.

Therefore we do indeed have a centered narcissistic terrace for Zn.

Each of the terraces has a1 = 1. When n ≡ 1 (mod 4) the terraces have a(n−1)/2 =
−2 and so these have Property A. When n ≡ 3 (mod 4) they have a(n−1)/2 = 2 and
so have Property B. �

We refer to the terrace constructed in the proof of Theorem 3.1 as the tetrazetal
terrace for Zn.

For n ≡ 3 (mod 4) the tetrazetal terraces for Zn give strong half-cycles via Theo-
rem 2.1 that are equivalent to the direct construction of strong half-cycles in [18].
The terraces are also equivalent to the “double hiccup” terraces of [17].

When n ≡ 3 (mod 6) the tetrazetal terrace is starry: for n > 9 we have that the
entry in position (n+ 3)/6 is the sum of its neighbours. For n = 9 the terrace is

(. . . 0, 1, 6, 4, 7)

which is starry because 6 + 7 = 4.

When n ≡ 5 (mod 6) the tetrazetal terrace is doublesome: the relevant entries are
in positions (n + 1)/6 and (n + 7)/6.

The second construction gives hexazetal centered narcissistic terraces:

Theorem 3.2 If n ≡ 1 (mod 6) then Zn has a hexazetal centered narcissistic terrace
with Property B.

Proof. Define a sequence as follows. This sequence will be our hexazetal terrace. As
in the proof of Theorem 3.1, there are slightly different formulations as n varies mod-
ulo 8.
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When n = 24k + 1:

(. . . 0, 〈8k, 16k + 2,−2, 2k + 1〉,〈6k − 1, 18k + 3,−2, 6k − 1〉, 〈12k, 12k + 2,−2, 4k〉) .
When n = 24k + 7:

(. . . 0, 〈8k + 2, 18k + 6,−2, 2k + 1〉, 〈6k + 1, 18k + 7,−2, 6k + 1〉,

〈12k + 4, 12k + 2, 2, 4k + 1〉) .

When n = 24k + 13:

(. . . 0, 〈8k + 4, 16k + 10,−2, 2k + 2〉, 〈18k + 11, 6k + 1, 2, 6k + 2〉,

〈12k + 6, 12k + 8,−2, 4k + 2〉) .

When n = 24k + 19:

(. . . 0, 〈8k + 6, 16k + 14,−2, 2k + 2〉, 〈18k + 15, 6k + 3, 2, 6k + 4〉,

〈12k + 10, 12k + 8, 2, 4k + 3〉) .

The first two zigzags contain the elements

(n− 1)/3,−(n− 4)/3, . . . , 1

and the final zigzag gives us

±(n− 1)/2,±(n− 3)/2, . . . ,−(n+ 2)/3.

For the differences, in the first zigzag we get

(n− 1)/3, (n+ 5)/3, . . .± (n− 3)/2

when n ≡ 1, 13 (mod 24) and

(n− 1)/3, (n+ 5)/3, . . .± (n− 1)/2

when n ≡ 7, 19 (mod 24).

In the second zigzag we get

±(n + 5)/2,±(n+ 9)/2, . . . ,−(n− 3)

when n ≡ 1, 13 (mod 24) and

±(n + 7)/2,±(n+ 11)/2, . . . ,−(n− 3)

when n ≡ 7, 19 (mod 24).
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In the final zigzag we get
±2,±4, . . . , (n− 7)/3

and at the two joins we get 1 and then −(n + 1)/2 if n ≡ 1, 13 (mod 24) and
−(n + 3)/2 when n ≡ 7, 19 (mod 24). Hence we do have a centered narcissistic
terrace.

As −(n+2)/3 = (2n−2)/3 these centered narcissistic terraces have Property B. �

We refer to the terrace constructed in the proof of Theorem 3.2 as the hexazetal
terrace for Zn.

Example 3.3 For Z25 the tetrazetal terrace is

(. . . , 0, 1, 22, 5, 18, 9, 14, 12, 15, 8, 19, 4, 23)

and the hexazetal terrace is

(. . . , 0, 8, 18, 6, 5, 21, 3, 23, 1, 12, 14, 10, 16).

The former has Property A† and the latter has Property B.

4 Number theoretic constructions

There are many constructions in the literature for strong half-cycles and narcissistic
terraces that rely on number theoretic properties. In this section we show how one of
the longest known strong half-cycle constructions gives centered narcissistic terraces
with Property B† for many primes and see how a method for constructing narcissistic
terraces of order three times a prime can be extended to give results of use here.

An element x ∈ Zp (considered as a ring) is negating if p−1 ∈ 〈x〉 and is non-negating
otherwise.

A strong half-cycle with a doublesome point is equivalent to a centered narcissistic
terrace with Property B via the proof of Theorem 2.1 and if it has more than one
doublesome point then we have Property B†.

The theorems of [18, Section 3] give “robust chaplets” for various orders; when the
order is prime the notions of a chaplet and a half-cycle coincide, so the results give
robust (and hence strong) half-cycles in that case. Two are of use to us, although
the second does not cover any values not already covered by the first.

Theorem 4.1 Let p > 3 be an odd prime congruent to 3 (mod 4) such that 2 is a
non-negating element of Zp of order (p− 1)/2. Then Zp has a centered narcissistic
terrace with Property B†.

Proof. Theorem 3.1 of [18], where credit is given to Rees [19], with x = 2 shows
that the sequence (20, 21, . . . , 2(p−3)/2, ←↩) is a strong half-cycle for Zp. It is clearly
doublesome at every point. �
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The values covered by Theorem 4.1 up to 600 are:

7, 23, 47, 71, 79, 103, 167, 191, 199, 239, 263, 271, 311, 359, 367, 383, 463, 479, 487, 503, 599.

Theorem 3.2 of [18] gives alternative constructions of centered narcissistic terraces
with Property B† for Zp when p < 600 for the values:

71, 79, 103, 191, 199, 239, 271, 311, 367, 463, 599.

Next we turn to the methods of [2, Section 2], where narcissistic terraces for Z3p,
where p is prime, are constructed. The constructions there are all of the form
(. . . , 0,±p, . . . , 3k) for some k and so cannot have Property A or B. However, we
extract the construction of the central piece of each of their terraces, which deals
primarily with the elements that are not multiples of 3, and then build from that in
a different way.

Lemma 4.2 Let p > 3 be an odd prime and set n = 3p. If there is a non-negating λ
of order p − 1 (mod n) with λ ≡ 2 (mod 3) and λ �= 2 then there is a sequence of
elements of Zn such that

• the first and last elements, x and y, are multiples of 3 and x �= y,

• the elements other than the first and last have exactly one occurrence from each
set {g,−g : 3 � g},
• the internal differences are x + y and exactly one occurrence from each set
{g,−g : 3 � g}.

Proof. Suppose first that p ≡ 2 (mod 3). Our sequence is

x, p, λ, λ2, λ3, . . . , λp−1, y

where we set x = λ+ p− 1 and y = p+ 1. As p and λ are congruent to 2 (mod 3),
both x and y are multiples of 3. As λ �= 2 we have x �= y.

The properties of λ ensure that there is exactly one occurrence from each set of the
form {g,−g : 3 � g, p � g} in the sequence and that the other internal element is p
validates the second item.

Similarly, the properties of λ give exactly one occurrence as differences from each
set {g,−g : 3 � g, p � g}, with the exception of ±(λ − λp−1) = ±(λ − 1). The three
unaccounted for differences are

p− x = p− (λ+ p− 1) = −(λ− 1),

λ− p = (λ+ p− 1) + (p+ 1) = x+ y

and
y − λp−1 = y − 1 = p
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fulfilling the requirements of the third item.

In the case p ≡ 1 (mod 3) a similar argument shows that the sequence

x, 2p, λ, λ2, λ3, . . . , λp−1, y

with x = λ− p− 1 and y = 2p+ 1 suffices. �

We now use the sequence from Lemma 4.2 as a building block for a narcissistic
terrace.

Theorem 4.3 Let n = 3p where p > 3 is prime and let λ, x and y be as in
Lemma 4.2 with φ : Zp → Z3p an injective homomorphism. If there is a centered
narcissistic terrace a for Zp such that φ−1(x) and φ−1(−y) are adjacent then there
is a centered narcissistic terrace c for Zn.

Further, if a has Property A (respectively B) then c has Property B (respectively A)
and if a is starry or doublesome then so is c, with the exception of the case where
both elements φ−1(x) and φ−1(−y) are required to meet the definition of starriness
or doublesomeness.

Proof. Let a = (. . . , 0, a1, a2, . . . , a(p−1)/2), with ai = φ−1(x) and ai+1 = φ−1(−y) for
some i > 0. Consider

c = (. . . , 0, φ(a1), . . . , φ(ai), δp, λ, λ
2, . . . , λp−1, φ(−ai+1), φ(−ai+2), . . . , φ(−a(p−1)/2))

where δ = 1 or 2 according as p is congruent to 2 or 1 (mod 3) respectively.

It follows from the proof of Lemma 4.2 that the subsequence

φ(ai), δp, λ, λ
2, . . . , λp−1, φ(−ai+1)

has exactly one occurrence from each set {g,−g : 3 � g} among the elements other
than φ(ai) and φ(−ai+1) and the internal differences are φ(ai)+φ(−ai+1) = −φ(ai+1−
ai) and exactly one occurrence from each set {g,−g : 3 � g}.
As φ is a homomorphism and a is a centered narcissistic terrace, the required elements
that are a multiple of 3 appear in both the sequence and the differences. Note that
the missing φ(ai+1−ai) difference is replaced with −φ(ai+1−ai), as per the previous
paragraph.

In the case ai+1 = φ−1(x) and ai = φ−1(−y) we may instead use

c = (. . . , 0, φ(−a1), . . . , φ(−ai), λp−1, λp−2, . . . , λ, δp, φ(ai+1), φ(ai+2), . . . , φ(a(p−1)/2))

and if φ−1(x) and φ−1(−y) are adjacent in the first half of the centered narcissistic
terrace then reversing it moves them to the second half. �

Corollary 4.4 Let p > 3 be prime. Suppose there exist λ, x and y as described in
Lemma 4.2 such that 2x ≡ −y (mod 3p) or x ≡ −2y (mod 3p). If 2 is a primitive
root of p then Z3p has a centered narcissistic terrace with Property B†. If p is con-
gruent to 3 (mod 4) and 2 is a non-negating element of order (p − 1)/2, then Z3p

has a centered narcissistic terrace with Property A†.
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Proof. For the first assertion, Theorem 2.7 of [14] gives a centered narcissistic terrace
for Zp such that any pair of elements with one double the other appear as neighbours
(if either element is ±1, an automorphism needs to be applied to achieve this).
This terrace has Property A†. Applying Theorem 4.3 we find the required centered
narcissistic terrace for Z3p that has Property B†.

For the second assertion, the terrace of Theorem 4.1 above works similarly. �

Example 4.5 Consider Z39. As 2 is a primitive root of 13 we have a centered
narcissistic terrace with Property A† for the cyclic subgroup of order 13:

(. . . , 0, 36, 18, 9, 24, 12, 6).

Further, we may take λ = 20, x = 6 and y = 27 = −12 to give the following centered
narcissistic terrace with Property B† for Z39:

(. . . , 0, 3, 21, 30, 15, 27, 1, 2, 4, 8, 16, 32, 25, 11, 22, 5, 10, 20, 26, 6).

Here are the values of p up to 600 that may be used in Corollary 4.4 to give a centered
narcissistic terrace with Property B† for Z3p, along with the values of λ, x and y:

p 13 29 37 53 61 101 149 173 181 197 269
λ 20 44 56 80 92 152 224 260 272 296 404
x 6 72 18 132 30 252 372 432 90 492 672
y 27 30 75 54 123 102 150 174 363 198 270

p 293 317 349 373 389 421 461 509 541 557
λ 440 476 524 560 584 632 692 764 812 836
x 732 792 174 186 972 210 1152 1272 270 1392
y 294 318 699 747 390 843 462 510 1083 558

And here are the corresponding tables for Property A†:

p 7 23 47 71 79 103 167 191 199 239 263
λ 11 35 71 107 119 155 251 287 299 359 395
x 3 57 117 177 39 51 417 477 99 597 657
y 15 24 48 72 159 207 168 192 399 240 264

p 271 311 359 367 383 463 479 487 503 599
λ 407 467 539 551 575 695 719 731 755 899
x 135 777 897 183 957 231 1197 243 1257 1497
y 543 312 360 735 384 927 480 975 504 600

5 R-sequencings and strong half-cycles

In this section we investigate how the constructions of the last two sections connect
with the results of Section 2. Before doing so, Theorem 5.1 summarizes the results
of various computer searches.
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Theorem 5.1 Let n be in the range 11 ≤ n ≤ 81. Then Zn has a centered narcis-
sistic terrace with Property A∗, one with A†, one with B∗ and one with B†.

Proof. For n < 30 the required terraces are given in [14]. Those for n > 30 were
found by computer search and the file with the terraces may be accessed at:

http://cs.marlboro.edu/courses/matt/narcissistic

Many targets were covered by the theory of the last two sections and most of the
remainder were constructed as hexazetal terraces. The last few were found by a
straight exhaustive search. �

As the case n = 81 is of particular interest, we give the terraces at that order here:

Example 5.2 Centered narcissistic terraces for Z81, with Property A∗
† and B∗

† re-
spectively:

(. . . , 0, 1, 3, 6, 11, 5, 53, 17, 8, 74, 60, 35, 67, 63, 37, 47, 12, 59, 71, 31, . . .

. . . 39, 55, 33, 77, 49, 68, 45, 56, 29, 16, 66, 27, 57, 19, 43, 72, 51, 58, 41, 61, 79)

(. . . , 0, 1, 3, 6, 11, 5, 46, 19, 23, 7, 49, 17, 24, 71, 45, 22, 31, 66, 77, 25, . . .

. . . 37, 68, 40, 65, 8, 52, 33, 55, 42, 27, 47, 14, 28, 18, 61, 69, 51, 72, 21, 38, 2)

The tetrazetal terrace given in Section 3 also has Property A∗.

We now turn to R-sequencings. This first result does not use starriness or double-
someness of any sequences in its proof:

Theorem 5.3 Let L be an abelian group written as a product of cyclic groups as
follows: (

α∏
i=1

Gi

)
×
(

β∏
i=1

Hi

)
×
(

γ∏
i=1

Ji

)
×
(

δ∏
i=1

Ki

)

where α+ β ≥ 1 and δ ∈ {β− 1, β}, subject to the extra condition that if β = 0 then
γ = δ = 0 , and

• for each Gi: |Gi| ≡ 1 (mod 4),

• for each Hi: |Hi| ≤ 79 and |Hi| ≡ 3 (mod 4),

• for each Ji: |Ji| = 3p for a prime p ≡ 3 (mod 4) for which the conditions of
Corollary 4.4 apply, or |Ji| ≡ 1 (mod 12), or |Ji| ≤ 81 and |Ji| ≡ 1 (mod 4),

• for each Ki: |Ki| ≡ 3 (mod 4).
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Then L is R-sequenceable.

Proof. Apply Theorem 2.2 to the centered narcissistic terraces for cyclic groups
constructed in [14], the previous two sections and Theorem 5.1. �

A slightly less general, but much cleaner, result that is an immediate consequence of
Theorem 5.3 is:

Corollary 5.4 Let L be an abelian group written as a direct product of cyclic groups.
Among those cyclic groups of order congruent to 3 (mod 4), let r be the number that
have order at most 79 and s be the number that have order greater than 79. If r ≥ s
then L is R-sequenceable.

In particular, if L can be written as the product of cyclic groups, each of which has
order congruent to 1 (mod 4), then L is R-sequenceable.

Proof. If L is cyclic then it is known to be R-sequenceable by the results of [7]. Oth-
erwise, apply Theorem 5.3 with the cyclic groups of order congruent to 1 (mod 4) as
the Gi, the r+s cyclic groups of order congruent to 3 (mod 4) as the Hi and Ki. �

Let m,n ≡ 3 (mod 4), with m and n coprime. Noting that Zmn
∼= Zm × Zn and

mn ≡ 1 (mod 4) gives this corollary much wider scope than it might at first appear.

Among groups of odd order it is those whose Sylow 3-subgroups are non-cyclic for
which the question of R-sequenceability remains open. Many such groups are given
by Theorem 5.3 (or Corollary 5.4) The next three results give some more progress
on this front.

In [14] it was shown that for every abelian 3-group S with exponent at most 312

there are infinitely many R-sequenceable abelian groups with Sylow 3-subgroups
isomorphic to S. We are now able to both drop the condition on the exponent and
give a much simpler proof.

Corollary 5.5 Let S be an abelian 3-group. There are infinitely many R-sequence-
able abelian groups with Sylow 3-subgroups isomorphic to S.

Proof. Write S as the direct product of cyclic groups, each of order a power of 3. As
in the statement of Corollary 5.4, among those cyclic groups in the direct product of
order congruent to 3 (mod 4), let r be the number that have order at most 79 and s
be the number that have order greater than 79.

If r ≥ s the corollary immediately gives that S × T has an R-sequencing for any
cyclic groups T with |T | ≡ 1 (mod 4). There are infinitely many such T that have
order that is not a multiple of 3, proving the result in this case.

Now suppose that r < s. Consider S × Zs−r
11 × T where again T is any cyclic

group with |T | ≡ 1 (mod 4). Again, Corollary 5.4 tells us that such groups have
R-sequencings, and again there are infinitely many such T that have order that is
not a multiple of 3 as required. �
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As well as the one given in the proof of Corollary 5.5, there are many other ways to
use Corollary 5.4 to produce R-sequenceable groups with a given Sylow 3-subgroup.
For example, one may add as many additional cyclic groups of order congruent to 1
(mod 4) (and order not a multiple of 3) as one wishes.

Next we consider R∗-sequenceability.

Theorem 5.6 Let L be an abelian group written as a product of cyclic groups as
follows:

L =

(
α∏

i=1

Gi

)
×
(

β∏
i=1

Hi

)
×
(

γ∏
i=1

Ji

)
×
(

δ∏
i=1

Ki

)
.

where α+ β ≥ 1 and δ ∈ {β− 1, β}, subject to the extra condition that if β = 0 then
γ = δ = 0, with:

• for each Gi: |Gi| ≡ 1, 5 (mod 12), |Gi| = 3p for a prime p ≡ 3 (mod 4) for
which the conditions of Corollary 4.4 apply, or 21 ≤ |Gi| ≤ 81 and |Gi| ≡ 9
(mod 12),

• for each Hi: |Hi| ≤ 79 and |Hi| ≡ 3 (mod 4),

• for each Ji: |Ji| = 3p for a prime p ≡ 3 (mod 4) for which the conditions of
Corollary 4.4 apply, or |Ji| = 5, or 13 ≤ |Ji| ≤ 81 and |Ji| ≡ 1 (mod 4),

• for each Ki: |Ki| ≡ 7, 11 (mod 12), |Ki| is an odd prime with |Ki| ≡ 3
(mod 12) such that 2 is a non-negating element of order (|Ki| − 1)/2, or
|Ki| = 3p for a prime p ≡ 1 (mod 4) for which the conditions of Corollary 4.4
apply, or |Ji| ≤ 71 and |Ji| ≡ 11 (mod 12).

Let M be a cyclic group with |M | ≡ 9 (mod 12) or 11 ≤ |M | ≤ 81 and let N be a
cyclic group with |N | ≡ 3 (mod 12) or 11 ≤ |N | ≤ 81.

If L has order congruent to 1 (mod 4) then L×M is R∗-sequenceable. If L has order
congruent to 3 (mod 4) then L×N is R∗-sequenceable.

Proof. We can construct a centered narcissistic terrace with Property A∗ using
Theorem 2.4 and the constructions of [14] and the previous two sections. �

Extracting the results pertaining to 3-groups we find:

Corollary 5.7 Let G be an abelian group of odd order whose Sylow 3-subgroups are
of the form

S ∼= Zρ
3 × Zρ

9 × Zσ
27 × Zτ

81

or
S ∼= Zρ

3 × Zρ
9 × Zσ

27 × Zτ
81 × Z3k

where k > 1 and k ≡ ρ+ σ (mod 2). Then G is R∗-sequenceable.
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Proof. The Sylow subgroup S has a R∗-sequencing by Theorem 5.6 and the con-
structions of [14]. Hence G has an R∗-sequencing by Theorem 2.7. �

Turning to strong half-cycles, we do not have the benefit of existing theory that lets
us use the starry property to extend beyond what we can construct directly from our
centered narcissistic terraces with Properties A and B. The next result, parallel to
Theorem 5.3 for R-sequencings, captures what we can construct, which we believe to
be the first result regarding these structures in groups other than cyclic or elementary
abelian ones:

Theorem 5.8 Let L be an abelian group written as a product of cyclic groups as
follows: (

α∏
i=1

Gi

)
×
(

β∏
i=1

Hi

)
×
(

γ∏
i=1

Ji

)
×
(

δ∏
i=1

Ki

)

where γ + δ ≥ 1 and β ∈ {δ − 1, δ}, subject to the extra condition that if δ = 0 then
α = β = 0, with:

• for each Gi: |Gi| ≡ 1 (mod 4),

• for each Hi: |Hi| ≤ 79 and |Hi| ≡ 3 (mod 4),

• for each Ji: |Ji| = 3p for a prime p ≡ 3 (mod 4) for which the conditions of
Corollary 4.4 apply, or |Ji| ≡ 1 (mod 12), or |Ji| ≤ 81 and |Ji| ≡ 1 (mod 4),

• for each Ki: |Ki| ≡ 3 (mod 4).

Then L has a strong half-cycle.

Proof. Exactly as in Theorem 5.3, we apply Theorem 2.2 to the centered narcissistic
terraces for cyclic groups constructed in [14] and the previous two sections. �

Mimicking Corollary 5.4 we get:

Corollary 5.9 Let L be an abelian group written as a direct product of cyclic groups
such that there is at least one cyclic group of order congruent to 3 (mod 4). Among
those cyclic groups of order congruent to 3 (mod 4), let r be the number that have
order at most 79 and s be the number that have order greater than 79. If r ≥ s
then L is R-sequenceable.

Alternatively, if L is the product of cyclic groups, each either of order congruent
to 1 (mod 12) or order at most 81 with order congruent to 1 (mod 4), then L has
a strong half-cycle.

Finally for this section we give a more concise (but much less comprehensive) result
that stems from Corollary 2.3:
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Corollary 5.10 Suppose L is expressible as a direct product of cyclic groups of odd
order, each of which has order congruent to 1 (mod 12) or order between 9 and 81
(inclusive). Then L has a strong half-cycle and is R-sequenceable.

Proof. For the cyclic group of each these orders we have both a centered narcissistic
terrace with Property A and one with Property B. Apply Corollary 2.3. �

6 Robust half-cycles

In this section we examine robust half-cycles. Preece proved the existence of robust
half-cycles for cyclic groups of all prime orders less than 300 except possibly for 17,
193, and 257 [18].

Preece did not consider robust half-cycles for cyclic groups of composite order. We
examined small cyclic groups of composite order and found that neither Z9 nor Z15

have a robust half-cycle but that there are robust half-cycles in cyclic groups of each
composite order from 21 up to 69 where we stopped our search. The results for these
orders can be found in Table 1.

Table 1: Some robust half-cycles for cyclic groups of composite order, up to order 69.

Order Robust Half-Cycle

21 (1, 3, 13, 9, 14, 11, 19, 4, 16, 15, ←↩)
25 (1, 3, 8, 4, 20, 10, 9, 6, 23, 11, 18, 12, ←↩)
27 (1, 3, 7, 12, 23, 17, 16, 9, 6, 25, 8, 22, 13, ←↩)
33 (1, 3, 7, 6, 11, 28, 19, 13, 31, 8, 29, 16, 9, 23, 15, 12, ←↩)
35 (1, 3, 7, 6, 11, 23, 17, 14, 33, 22, 30, 16, 31, 9, 27, 20, 10, ←↩)
39 (1, 3, 7, 6, 11, 8, 18, 35, 27, 9, 29, 22, 13, 25, 19, 34, 23, 37, 24, ←↩)
45 (1, 3, 7, 6, 11, 8, 17, 10, 22, 16, 40, 27, 13, 41, 30, 14, 33, 25, 43, 21, 36, 26, ←↩)
49 (1, 3, 7, 6, 11, 8, 17, 10, 22, 16, 30, 15, 40, 20, 47, 26, 45, 35, 24, . . .

. . . 37, 21, 44, 36, 18, ←↩)
51 (1, 3, 7, 6, 11, 8, 17, 10, 22, 14, 39, 26, 16, 46, 24, 47, 31, 49, 32, . . .

. . . 21, 15, 42, 28, 13, 33, ←↩)
55 (1, 3, 7, 6, 11, 8, 17, 10, 22, 14, 27, 16, 42, 15, 51, 31, 25, 46, 29, . . .

. . . 53, 43, 20, 50, 34, 19, 37, 23, ←↩)
57 (1, 3, 7, 6, 11, 8, 17, 10, 22, 14, 27, 16, 44, 29, 52, 21, 45, 20, 55, . . .

. . . 34, 18, 48, 31, 25, 15, 53, 33, 19, ←↩)
63 (1, 3, 7, 6, 11, 8, 17, 10, 22, 14, 27, 16, 31, 21, 40, 18, 54, 48, 24 . . .

. . . 61, 43, 26, 58, 44, 28, 51, 30, 50, 25, 59, 29, ←↩)
65 (1, 3, 7, 6, 11, 8, 17, 10, 22, 14, 27, 16, 31, 21, 50, 20, 52, 30, 56, . . .

. . . 33, 61, 41, 23, 63, 36, 60, 39, 25, 19, 53, 37, 18, ←↩)
69 (1, 3, 7, 6, 11, 8, 17, 10, 22, 14, 27, 16, 31, 21, 39, 19, 54, 33, 65, . . .

. . . 43, 37, 23, 67, 51, 20, 56, 29, 57, 34, 60, 41, 24, 64, 25, ←↩)
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Via an exhaustive computer search we know that there is no robust half-cycle for Z17.
For Z193 and Z257 we looked for a robust half-cycle made up of sequences of the form

xλ0, xλ1, xλ2, . . . , xλk−1

for fixed λ and k, where k is a divisor of the multiplicative order of λ (these are
called power sequences). All of the constructions in [18] for robust half-cycles have
this form. However, we were unable to find any such half-cycles. If they exist for
either of these groups it must be the case that k ≤ 8.
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(reprinted 1975).

[12] M.A. Ollis, On terraces for abelian groups, Discrete Math. 305 (2005), 250–263.

[13] M.A. Ollis and P. Spiga, Every abelian group of odd order has a narcissistic
terrace, Ars Combin. 76 (2005), 161–168.

[14] M.A. Ollis and D.T. Willmott, Constructions for terraces and R-sequencings,
including a proof that Bailey’s Conjecture holds for abelian groups, J. Com-
bin. Des. 23 (2015), 1–17.

[15] L. J. Paige, A note on finite abelian groups, Bull. Amer. Math. Soc. 53 (1947),
590–593.

[16] L. J. Paige, Complete mappings of finite groups, Pacific J. Math. 1 (1951), 111–
116.

[17] D.A. Preece, Zigzag and foxtrot terraces for Zn, Australas. J. Combin. 42
(2008), 261–278.

[18] D.A. Preece, Half-cycles and chaplets, Australas. J. Combin. 43 (2009), 253–
280.

[19] D.H. Rees, Some designs of use in serology, Biometrics 23 (1967), 779–791.

[20] E. J. Williams, Experimental designs balanced for the estimation of residual
effects of treatments, Aust. J. Scient. Res. A, 2 (1949), 149–168.

(Received 7 Jan 2015; revised 16 May 2015)


