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Abstract

The degree diameter problem involves finding the largest graph (in terms
of number of vertices) subject to constraints on the degree and the di-
ameter of the graph. Beyond the degree constraint there is no restriction
on the number of edges (apart from keeping the graph simple) so the
resulting graph may be thought of as being embedded in the complete
graph. In a generalisation of this problem, the graph is considered to be
embedded in some connected host graph. This article considers embed-
ding the graph in the triangular grid and provides some exact values and
some upper and lower bounds for the optimal graphs. Moreover, all the
optimal graphs are 2-connected, without this constraints no larger graphs
were found.

1 Introduction

In this paper we consider simple undirected graphs only. For definitions and notations
not defined here we refer to [1]. Let G(V,E) be a graph with V (G) the vertex set and
E(G) the set of edges of G. For x ∈ V (G), NG[x] denotes the closed neighbourhood
of x in G, i.e., a set of all vertices of G adjacent to x in G together with vertex x

∗ Research partly supported by project P202/12/G061 of the Czech Science Foundation.



P. HOLUB AND J. RYAN/AUSTRALAS. J. COMBIN. 63 (3) (2015), 333–345 334

itself. Analogously, for A ⊂ V (G), NG[A] denotes the closed neighbourhood of A,
i.e., the set of all vertices of G adjacent to at least one vertex of A in G together
with the set A itself. For x, y ∈ V (G), the distance between x and y in G is denoted
by distG(x, y) and the diameter of G is max {distG(x, y)} over all pairs x, y ∈ V (G).
For a given graph G and positive integers Δ and D,NG(Δ, D) denotes the number
of vertices of a maximal subgraph of G (in terms of number of vertices) with given
maximum degree Δ and given diameter D.

Recent articles have studied NG(Δ, D) for the multidimensional rectangular mesh
[2, 5] and the multidimensional hexagonal grid [3] as host graphs. In this paper we
consider the triangular grid as the host graph, partly in response to the motivation
from [3] wherein the triangular grid is the dual of the hexagonal grid and partly
because the triangular grid is an important structure in its own right. The dual
concept can be observed by construction; replace each hexagon in the hexagonal
grid by a point and join points with an edge where their corresponding hexagons
are adjacent in the hexagonal grid. The resulting structure has Δ = 6 (and 6
regular for the infinite grid) and is traditionally represented as a mesh of equilateral
triangles though this is not required. A simple compression along any of the three
axes (horizontal for example) would result in a grid of isosceles triangles. Arbitrary
compression along all three axes could result in a grid of scalene triangles, though
these deformations of the triangular grid are beyond the scope of this paper.

Cellular phone networks are generally represented as a hexagonal grid, especially
in areas of dense coverage such as in cities. Analysis within these networks, including
maintenance and fault finding is often simplified by considering only the adjacencies
in the network so leading to analysis in the triangular environment.

A further feature of triangular networks is that, while the vertices are 6 regular,
the faces are 3 (edge) regular. Security schemes proposed for sensitive communication
networks such as in military or in confidential industrial research projects often treat
a secure cell surrounded by ’protector’ cells whose sole aim is to counter intruders or
malware.

Many applications of triangulations of the plane involve Delaunay triangulations
of Voronoi cells. These differ from the triangular grid by virtue of the triangles
assuming shapes other than those given by deformations along the grid axes. The
triangular grid is a useful tool for many researches in wireless network theory when
considering grid based deployment. In [6] the authors reveal that deployment of wire-
less sensor networks on a triangular grid shows resilience to horizontal misalignment.
In [7] a grid of non overlapping triangles is used to model sensor network security
in unattended and hostile environments. The authors in [4] employ the triangular
grid to study their reverse carpooling algorithm to minimise energy consumption on
a shared wireless grid network. Although this grid may be a simplified version of the
real life network structures, it is a useful tool for analysis and the investigation of
strategies.

The remainder of the paper is structured as follows. In Section 2 we discuss the
case when Δ = 6 and in Section 3 we consider the cases when Δ = 3, 4, 5 separately.
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2 Values for Δ = 6

In what follows, any reference to the triangular grid, whether infinite or not, will be
taken to mean a grid of equilateral triangles in the Euclidean plane.

Proposition 2.1 Let D be an even positive integer, let TD be a maximum connected
subgraph of the infinite triangular grid of diameter D. Then

|V (TD)| = 3

4
D2 +

3

2
D + 1.

Proof: The maximum subgraph TD of the infinite triangular grid with (even) di-
ameter D corresponds to an interior of a bounding regular hexagon (including the
hexagon) centered on a vertex arbitrarily selected to be the origin (or center), say x.
In Figure 1, see the graphs of even diameter and note that the center x is represented
by ⊗. Consider an infinite triangular grid T . Colour all the horizontal lines of T
with colour a, all the lines going from the top left corner to the bottom right corner
with colour b and all the remaining lines of T with colour c. Then the corner vertices
of the bounding hexagon are the vertices at distance D/2 from x, that trace a single
colour to the origin.

The number of vertices of TD is given by

|V (TD)| = 6
D

2
+ 6

D − 2

2
+ 6

D − 4

2
+ · · ·+ 6

2

2
+ 1

= 3D + 3(D − 2) + 3(D − 4) + · · ·+ 6 + 1

=
6 + 3D

2

D

2
+ 1

=
3

4
D2 +

3

2
D + 1.

�

Proposition 2.2 Let D be an odd positive integer, let TD be a maximum connected
subgraph of the infinite triangular grid of diameter D. Then

|V (TD)| = 3

4
D2 +

3

2
D +

3

4
.

Proof: The maximum subgraph TD of the infinite triangular grid with (odd) di-
ameter D corresponds to a bounding non-regular hexagon centered on the centroid
of an arbitrarily chosen unit triangle. The vertices of this triangle form the centre
of the graph. See, in Figure 1, subgraphs of odd diameter. Colour the 3 edges of
the triangle with distinct colours and extend the colours through the grid so that
the paths of a single colour form a series of parallel lines through the triangular
grid. Then the corner vertices of the bounding hexagon are the vertices, at distance
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(D − 1)/2 from the central triangle that trace a single colour to the nearest central
vertex.

The number of vertices of TD is given by

|V (TD)| = 3
2D

2
+ 3

2(D − 2)

2
+ 3

2(D − 4)

2
+ · · ·+ 3

2

2
= 3D + 3(D − 2) + 3(D − 4) + · · ·+ 3

=
3 + 3D

2

D + 1

2

=
3

4
D2 +

3

2
D +

3

4
.

�

In Fig. 1, the graphs TD are depicted for D = 3, 4, 5, 6. The central vertices or
triangles are emphasized by ⊗.

Figure 1: The graphs TD for D = 3, 4, 5, 6.

As an immediate consequence of the previous two propositions we obtain the
following statement.

Corollary 2.3 Let D be a positive integer, let T be the infinite triangular grid. Then

NT (6, D) =

{
3
4
D2 + 3

2
D + 3

4
for odd D,

3
4
D2 + 3

2
D + 1 for even D.

Note that these values are also trivial upper bounds on NT (Δ, D) for Δ ≤ 5.
This also implies that a maximum subgraph GD of T corresponds to a maximum
subgraphs of TD.

3 Values for Δ ≤ 5

3.1 Values for Δ = 1, 2

Since for Δ ≥ Δ(T ) we have NT (Δ, D) = |V (TD)|, we consider only cases when
Δ ≤ 5. If Δ = 1 then we easily get NT (1, D) = 2, since the maximum subgraph of
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T of maximum degree 1 and diameter D is K2. Now we investigate the case when
Δ = 2.

Proposition 3.1 Let T be the infinite triangular grid, let D be a positive integer.
Then NT (2, D) = 2D + 1.

Proof: Clearly TD contains a cycle for each D > 0. Thus a maximum graph of
diameter D and maximum degree 2 is a cycle of length 2D+1. For even D, consider
a horizontal row of triangles containing the central vertex of TD. The border cycle
of this row contains 2D + 1 vertices, implying that, for even D, such a subgraph of
TD exists. Similarly for odd D, consider a horizontal row of triangles containing the
central triangle of TD. The border cycle of this row has 2D + 1 vertices, implying
that such a subgraph of TD exists also for odd D. �

3.2 Values for Δ = 5

Theorem 3.2 Let T be the infinite triangular grid and let D be an even positive
integer. Then NT (5, D) = |V (TD)| − 1.

Proof: Let GD denote a maximum induced subgraph of T (which is the same as
a maximum subgraph of TD) of maximum degree 5 and diameter D. First we show
that |V (GD)| ≤ |V (TD)| − 1. On the contrary suppose that |V (GD)| = |V (TD)|
(clearly GD is a subgraph of TD and hence |V (GD)| ≤ |V (TD)|). Consider the border
hexagon of TD. We cyclically denote the vertices of this hexagon by x1, . . . , x6.
Clearly distG(xi, xi+3) = D, i = 1, 2, 3 and the only xi, xi+3-path in TD of length D is
the diagonal xi, xi+3-path. But this implies that the central vertex of TD has degree
six, a contradiction.

Now we consider a subgraph GD of T depicted in Fig. 2 (left), where � denotes the
vertex of the closed ball TD which does not belong to GD. Note that the central
vertex x of GD corresponds to the central vertex of TD and is depicted by ⊗, and
that GD has a regular rhombic structure except for a subgraph induced by NT [x].
Clearly Δ(GD) = 5 and |V (GD)| = |V (TD)| − 1. From the structure of GD one can
see that the distance between any vertex of GD and the central vertex x is the same
in GD as in TD except the vertices emphasized by bullets. But for them, the distance
from x is at most D

2
, implying that the diameter of GD is at most D. �

Now we focus on odd diameter D.

Theorem 3.3 Let T be the infinite triangular grid and let D be an odd positive
integer. Then NT (5, D) = |V (TD)|.

Proof: Let GD denote the maximum induced subgraph of T of maximum degree
5 and diameter D as depicted in Fig. 2 (right). Note that the central triangle T1 of
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Figure 2: The structures of GD for Δ = 5

GD corresponds to the central triangle of a corresponding graph TD and its vertices
are depicted by ⊗. Note also that GD has a regular rhombic structure except for a
subgraph induced by NT [V (T1)]. Clearly Δ(GD) = 5 and |V (GD)| = |V (TD)|. From
the structure of GD one can see that the distance between any vertex of GD and
a closest vertex of the central triangle is the same as in the graph TD. Thus the
diameter of GD is D. �

3.3 Values for Δ = 4

Now we focus on the case when Δ = 4. Again we need to consider parity of D. We
start with even D.

Theorem 3.4 Let T be the infinite triangular grid, let D be an even positive integer.
Then NT (4, D) = |V (TD)| − 2.

Proof: Let GD denote the maximum subgraph of T of maximum degree 4 (and
diameter D) i.e., NT (4, D) = V (GD). First we show that NT (4, D) ≤ |V (TD)| − 2.
On the contrary suppose that NT (4, D) ≥ |V (TD)|−1. Consider the border hexagon
of TD. If all of the vertices of the border hexagon of TD belong to GD, then (as in
the proof of Theorem 3.2) dGD

(x) = 6, a contradiction. Thus there is a vertex, say
vertex z, of the border hexagon of TD which does not belong to GD, and, by the
assumption, {z} = V (TD) \ V (GD). Two pairs of diametrically opposed vertices of
the border hexagon, which belong to GD, must be connected by a path going through
the central vertex since the diameter of GD is D. Now we consider, along with z, the
remaining corner vertex y of the border hexagon which belongs to GD. Let z

′ denote
the neighbour of z in TD lying on the shortest path in TD connecting y and z. Since
the degree of the central vertex x in GD is 4, distGD

(x, y) > D
2
and distGD

(x, z′) ≥ D
2
,

implying that distGD
(y, z′) > D, a contradiction. Therefore NT (4, D) ≤ |V (TD)|−2.
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Figure 3: The structures of GD for Δ = 4 and even D.

Now we show that NT (4, D) ≥ |V (TD)| − 2. Consider a graph GD depicted in Fig. 3
right, where � denotes the vertices of TD which do not belong to GD. Note that
the central vertex x of GD corresponds to the central vertex of TD and is depicted
by ⊗. Clearly |V (GD)| = |V (TD)| − 2 and Δ(GD) = 4. It remains to show that
the diameter of GD is D. We show that the distance between any vertex of GD and
the central vertex x is at most D

2
. It is easy to see that distGD

(x, y) = distTD
(x, y)

for every vertex of GD except those vertices belonging to the horizontal diagonal of
the hexagon. But clearly, the distance is greater by one in GD than in TD, hence we
satisfy the condition that dist(x, y) ≤ D

2
for every y ∈ V (GD). Note that the graph

GD is symmetric about its central vertex x. �

For odd D and Δ = 4 we can prove the following theorem.

Theorem 3.5 Let T be the infinite triangular grid and let D be an odd positive
integer. Then {

NT (4, D) ≥ 9 when D = 3,
NT (4, D) = |V (TD)| otherwise.

Proof: For D = 1, GD � TD since T1 is a triangle. For D = 3, 5, 7, a largest
subgraph of T with Δ = 4 is depicted in Fig. 4. Clearly the graphs G1, G3 and G5

have the required maximum degree and diameter. ForD ≥ 7, we consider a structure
shown in Fig. 5. The whole graph GD arises from three copies of depicted structure
rotated by 0, 120 and 240 degrees with center of rotation in the middle of the central
triangle. Note that the central triangle T1 of GD corresponds to the central triangle
of TD and its vertices are depicted by ⊗. Note also that GD has a regular rhombic
structure except for a subgraph induced by NT [V (T1)] and, for D = 7, the graphs
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depicted in Fig. 4 and 5 are the same. Clearly Δ(GD) = 4 and |V (GD)| = |V (TD)|.
From the structure of GD one can see that the distance between any vertex of GD

and any vertex of the central triangle is the same in GD as in TD except for the
vertices emphasized by bullets. However for these vertices, the distance from the
central triangle is 3, implying that the diameter of GD is at most D for D ≥ 7. �

Figure 4: The structures of GD for Δ = 4 and small odd D.

3.4 Bounds for Δ = 3

Finally we investigate the case when Δ = 3. For even D we prove the following
statement.

Theorem 3.6 Let T be the infinite triangular grid and let D be an even positive
integer. Then

NT (3, D) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5 when D = 2,
11 when D = 4,
22 when D = 6,
46 when D = 8,
|V (TD)| − 6 otherwise.

Proof: Graphs GD depicted in Fig. 6 clearly have maximum degree at most 3. One
can also check that the distance between any vertex of GD and its central vertex is
at most D

2
. Hence for D = 2, 4, 6, 8 the theorem holds.

Now we consider a structure depicted in Fig. 7. Note that this structure for D = 10
is the same as is depicted in Fig. 6 right. The whole subgraph GD arises from
three copies of depicted structure rotated by 0, 120 and 240 degrees with center of
rotation at the central vertex x of GD. In Fig. 7, � denotes vertices of TD which do
not belong to GD and dashed edges mean the edges we add to the structure to make
the subgraph GD 2-connected. Note that the central vertex x of GD corresponds to
the central vertex of TD and is depicted by ⊗. Clearly the maximum degree of GD is
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Figure 5: The structures of GD for Δ = 4 and large odd D.

three. Hence it remains to show that the diameter of GD is D. We again prove that
distGD

(x, y) ≤ D
2
for every vertex y of GD. As can be seen, all the vertices of GD,

except the vertices emphasized by bullets, have the same distance from x in GD as
in TD. And, all the vertices emphasized by bullets are at distance at most D

2
from

x. Hence the diameter of GD is at most D. �

For odd D we prove the following statement.

Theorem 3.7 Let T be the infinite triangular grid and let D be an odd positive
integer. Then

NT (3, D) ≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

7 when D = 3,
14 when D = 5,
24 when D = 7,
48 when D = 9,
96 when D = 11,
|V (TD)| − 9 otherwise.

Proof: Graphs GD depicted in Fig. 8 clearly have maximum degree at most 3. One
can also check that the distance between any vertex of GD and its central triangle is
at most D−1

2
. Hence for D = 3, 5, 7, 9, 11 the theorem holds.
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Figure 6: The structures of GD for Δ = 3 and small even D.

Now we consider a structure depicted in Fig. 9. The whole subgraph GD arises from
three copies of depicted structure rotated by 0, 120 and 240 degrees with center of
rotation in the middle of the central triangle of GD. In Fig. 9, � denotes vertices
of TD which do not belong to GD, and dashed edges depict the edges added to the
structure to make GD 2-connected. Note that the central triangle of GD corresponds
to the central triangle of TD and its vertices are depicted by ⊗. Clearly the maximum
degree of GD is three. Hence it remains to show that the diameter of GD is D. As
can be seen, all the vertices of GD, except those vertices depicted by bullets, have
the same distance from the central triangle in GD as in TD. And, all the remaining
vertices are at distance at most D−1

2
from the central triangle in GD. Hence the

diameter of GD is at most D. �

As an immediate consequence of Theorems 3.6, 3.7 and of the fact that NG(Δ−
1, D) ≤ NG(Δ, D) for any graph G, we obtain the following statement.

Corollary 3.8 Let T be the infinite triangular grid and let D ≥ 12 be a positive
integer. Then

|V (TD)| − 6 ≤ NT (3, D) ≤ |V (TD)| − 2 when D is even,
|V (TD)| − 9 ≤ NT (3, D) ≤ |V (TD)| when D is odd.
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Figure 7: The structures of GD for Δ = 3 and large even D.

Figure 8: The structures of GD for Δ = 3 and small odd D.



P. HOLUB AND J. RYAN/AUSTRALAS. J. COMBIN. 63 (3) (2015), 333–345 344

Figure 9: The structures of GD for Δ = 3 and large odd D.

Remarks

As it was mentioned, all the optimal subgraphs for Δ = 2, 3, 4, 5 are 2-connected.
The prescribed structures in Figures 7 and 9 contain maximal subgraphs of given
diameter and Δ = 3 and dashed edges which make the structures 2-connected.
Without restriction on 2-connectivity we are not able to find larger subgraphs.
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