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Abstract

The values of hypergraph 2-color Ramsey numbers for loose cycles and
paths have already been determined. The only known value for more
than 2 colors is R(C3

3 ; 3) = 8, where C3
3 is a 3-uniform loose cycle of

length 3. Here we determine that R(P 3
3 ; 3) = 9, where P 3

3 is a 3-uniform
loose path of length 3. Our proof relies on the determination of the Turán
number ex3(9;P 3

3 ). We also find the Turán number ex3(12;P 3
3 ) and use

it to estimate R(P 3
3 ; 4).

1 Introduction

In this note we consider the problem of finding the 3-color Ramsey number for the
3-uniform loose path of length 3 and estimate the corresponding Ramsey number for
4 colors. A hypergraph H is a pair H = (V,E), where V is a finite nonempty set of
vertices and E is a collection of distinct nonempty subsets of V . A vertex v is of
degree i when it belongs to i edges in a hypergraph H . We consider only k-uniform
hypergraphs in which all edges have size k, and call them k-graphs, for short.

The clique Kk
n is a k-graph on n vertices and with

(
n
k

)
edges. For a given k-graph

H , the Ramsey number R(H ; r) is the least integer n such that in every r-coloring of
the edges of Kk

n there is a monochromatic copy of H . If H itself is a clique, we are
dealing with classical Ramsey numbers, which are so hard to calculate that the only
known value for k � 3 is R(K3

4 ; 2) = 13 ([7]). Instead of cliques, sometimes sparser
structures like cycles and paths have been studied.

There are several natural definitions of a cycle and a path in a uniform hyper-
graph. Here we focus only on loose cycles and loose paths. A k-uniform loose cycle
Ck

n of length n is a k-graph whose edges form a cyclic list (f1, . . . , fn) such that con-
secutive edges intersect in exactly one element and nonconsecutive ones are disjoint.
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By removing one edge from a loose cycle of length n+1, we obtain a k-uniform loose
path P k

n of length n. Note that |V (Ck
n)| = n(k − 1) and |V (P k

n )| = n(k − 1) + 1.

Further, a k-star with n arms is a k-graph with edges f1, . . . , fn, n � 2, such
that

⋂n
i=1 fi �= ∅. A star S is called full if |E(S)| =

(|V (S)|−1
k−1

)
, that is, a vertex v

forms edges with all (k − 1)-element subsets of V (S)\{v}. For k = 2 we get the
usual graph definitions of the cycle Cn, the path Pn with n edges, and the star
K1,n. Given a k-graph H and a k-element set e, we denote by H + e the k-graph
(V (H) ∪ e, E(H) ∪ {e}).

There are many results in graph Ramsey theory related to cycles and paths (see
[9]). For hypergraphs though, much less is known. First, it was proved in [5] that
R(P 3

n ; 2) and R(C3
n; 2) are asymptotically equal to 5n

2
. Subsequently, Omidi and

Shahsiah in [8] proved that

R(P 3
n ; 2) = R(C3

n; 2) + 1 =

⌊
5n + 1

2

⌋
.

Gyárfás and Raeisi [4] found the values for R(P k
n ; 2) and R(Ck

n; 2) for n � 4 and
k � 3. They also determined the 3-color Ramsey number for C3

3 ,

R(C3
3 ; 3) = 8.

In this note we prove two theorems about multicolored Ramsey numbers for P 3
3 .

Theorem 1.1. R(P 3
3 ; 3) = 9

Theorem 1.2. 10 � R(P 3
3 ; 4) � 12

Turán numbers may sometimes provide upper bounds on Ramsey numbers (see,
e.g. Prop. 13 in [4] and Proposition 3.2 below). Indeed, the proofs of Theorems 1.1
and 1.2 are based on the corresponding Turán numbers. In Section 2, we will first
determine the Turán numbers ex3(9;P 3

3 ) and ex3(12;P 3
3 ), and then, in Section 3,

deduce Theorems 1.1 and 1.2.

2 Turán numbers

Given a k-graph H and a positive integer n, the k-graph Turán number exk(n;H) is
the maximum number of edges in a k-graph F on n vertices that does not contain
H as a subhypergraph.

The numbers exk(n;P k
l ), for all fixed k and l, where k � 4 or l � 4, and sufficiently

large n, are determined in [3] and [6]. There are, however, no corresponding results
for k = l = 3. The method of the proof used in [3] does not quite work for the case
k = 3. In turn, Kostochka, Mubayi and Verstraëte skipped this case, assuming that
it was determined in [3].

In order to determine ex3(9;P 3
3 ) and ex3(12;P 3

3 ), we will use the following result
for 3-cycles of length 3, proved by Csákány and Kahn (see also [2]).
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Theorem 2.1. [1] For n � 6, ex3(n;C3
3) =

(
n−1
2

)
. Moreover, for n � 8, the only

extremal 3-graph is the full star.

We begin with a determination of ex3(9;P 3
3 ).

Lemma 2.2. We have ex3(9;P 3
3 ) = 28. Moreover, the only extremal 3-graph is the

full star.

Before proving Lemma 2.2, we will show some useful facts. In these facts, e
always stands for a 3-element subset of a vertex set V . Let us consider a copy C
of C3

3 with V (C) ⊂ V . We partition V (C) = V1 ∪ V2 where, for i = 1, 2, Vi stands
for the set of vertices of degree i in C, that is the vertices which belong to exactly i
edges of C.

We define two families of triples:

E1 =
{
e ∈ (

V
3

)
: |e ∩ V1| = |e ∩ V2| = 1, and ∀f ∈ E(C) : e ∩ f �= ∅} ,

E2 =
{
e ∈ (

V
3

)
: V1 = ∅, |e ∩ V2| = 2

}
,

and E ′ = E1 ∪ E2.

The edges in E1 are formed by taking a vertex of degree 1 in C, then another one
of degree 2 in C but which does not belong to the same edge as the first one, and
the third vertex belongs to the set V \V (C). Similarly the edges in E2 are formed
by taking two vertices of degree 2 in C and one vertex from the set V \V (C) (see
Figures 1 and 2).

Figure 1: An edge from the family E1 is shaded.

Figure 2: An edge from the family E2 is shaded.
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Fact 2.3. For every e ∈ (
V
3

)
such that either |e ∩ V (C)| = 1, or |e ∩ V (C)| = 2 but

e �∈ E ′, we have C + e ⊃ P 3
3 .

Fact 2.3 says that the existence of edges listed therein implies the presence of
P 3
3 . In particular, the family E ′ consists of all triples e, with 1 ≤ |e ∩ V (C)| ≤ 2,

whose addition to C does not create a copy of P 3
3 . However, if we consider these

edges more carefully, we will notice that some of them, if occur together, do lead to
a formation of P 3

3 . This is formalized in Fact 2.4 below, for which, as well as for the
two subsequent facts, we introduce some further notation and assumptions.

For s � 2, let V = V (C) ∪W where V (C) ∩W = ∅ and |W | = s.

Fact 2.4. Let H be a P 3
3 -free 3-graph with V (H) = V and C ⊆ H. Then |E ′ ∩

E(H)| � 3s.

Proof. If e ∈ E1, f ∈ E2 and e∩f = ∅, then C+e+f ⊃ P 3
3 . We have |E1| = |E2| = 3s.

Construct an auxiliary bipartite graph B = (E1, E2; E), where {e, f} ∈ E if e∩f = ∅.
It follows that if {e, f} ∈ E , then |{e, f}∩E(H)| � 1. Observe also that the graph B
is (s− 1)-regular, thus by Hall’s theorem it has a perfect matching M . At most one
edge of each pair {e, f} ∈ M is in E(H), which implies that |E ′ ∩ E(H)| � 3s.

As a further preparation toward the proof of Lemma 2.2, let us consider the set
of three edges E3 = {V (C)\e : e ∈ C}. One edge of E3 is presented in Figure 3.

Figure 3: An edge from the family E3 is shaded.

Fact 2.5. Let H be a P 3
3 -free 3-graph with V (H) = V and C ⊆ H. If e ∈ E ′∩E(H),

then |E3 ∩ E(H)| � 1.

Proof. Let f ∈ E3. If e ∈ E1, then C + e + f ⊃ P 3
3 , and in view of the assumption

that H is P 3
3 -free, we conclude that E3 ∩ E(H) = ∅. If e ∈ E2 and e ∩ f �= ∅, then

C + e + f ⊃ P 3
3 , and, as two of the three edges in E3 intersect e, we conclude that

|E3 ∩ E(H)| � 1.

It turns out that we can ban some more edges from being present in H . Let us
set E4 =

(
W
3

)
.
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Fact 2.6. Let H be a P 3
3 -free 3-graph with V (H) = V and C ⊆ H. If e ∈ E ′,

f ∈ E4, and f ∩ e �= ∅, then C + e+ f ⊃ P 3
3 . Consequently, only one of e and f may

belong to H.

We are now going to use Facts 2.3–2.6 to prove Lemma 2.2.

Proof of Lemma 2.2. Notice that the full star on 9 vertices has
(
8
2

)
= 28 edges and

contains no P 3
3 .

Consider a 3-graph H with 9 vertices and at least 28 edges which is not a star.
Based on Theorem 2.1, H contains a copy C of C3

3 . Suppose P 3
3 �⊆ H . Then, by

Fact 2.3,

|E(H)| �
∣∣∣∣
(
V (C)

3

)
\ E3

∣∣∣∣ + |E3 ∩ E(H)| + |E4 ∩ E(H)| + |E ′ ∩ E(H)|.

Note that
∣∣∣(V (C)

3

)\E3

∣∣∣ =
(
6
3

) − 3 = 17, |E3 ∩ E(H)| � |E3| = 3, and |E4 ∩
E(H)| � |E4| = 1. Hence, if E ′ ∩ E(H) = ∅ then |E(H)| � 17 + 3 + 1 + 0 =
21 < 28, a contradiction. Otherwise, if |E ′ ∩ E(H)| � 1 then, by Fact 2.4 with
s = 3, |E ′ ∩ E(H)| � 9. Moreover, by Fact 2.5, |E3 ∩ E(H)| � 1, and by Fact 2.6,
E4 ∩ E(H) = ∅. Consequently, |E(H)| � 17 + 1 + 0 + 9 = 27 < 28, a contradiction
again.

Based on Lemma 2.2, we can determine ex3(12;P 3
3 ).

Lemma 2.7. We have ex3(12;P 3
3 ) = 55. Moreover, the only extremal 3-graph is the

full star.

Proof. Notice that the full star on 12 vertices has
(
11
2

)
= 55 edges and contains no

P 3
3 . Consider a 3-graph H with 12 vertices and at least 55 edges, which is not a

star. It follows from Theorem 2.1 that C3
3 ⊆ H . Let C be a copy of C3

3 in H , set
W = V (H)\V (C), and notice that |W | = 6. Assume that there is no copy of P 3

3 in
H and consider two cases.

Case 1.
(
W
3

) ∩ E(H) �= ∅.

Let f ∈ H [W ]. By Facts 2.3 and 2.6, there is no edge e in H such that f ∩ e �= ∅
and e ∩ V (C) �= ∅. By Lemma 2.2, |H [V \f ]| ≤ 27. Also |E(H) ∩ (

W
3

)| � 20. Thus,
|E(H)| � 27 + 20 = 47 < 55, a contradiction.

Case 2.
(
W
3

) ∩ E(H) = ∅.

Partition the set W in two triples f1 and f2 and define two induced subhypergraphs
H1 = H [V \f1] and H2 = H [V \f2]. By Lemma 2.2, |E(H1)| � 28 and |E(H2)| � 28.
Moreover, |E(H1) ∩ E(H2)| � |E(C)| = 3. Consequently |E(H)| � |E(H1)| +
|E(H2)| − |E(C)| = 28 + 28 − 3 = 53 < 55, a contradiction again.
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3 Proofs of Theorem 1.1 and Theorem 1.2

The derivation of the lower bounds in Theorems 1.1 and 1.2 is based on a construction
used already by Gyárfás and Raeisi in [4] to determine R(C3

3 ; 3). For future references
we state this result in a general form.

Proposition 3.1. Let r � 2. If a k-graph F is not a star, then

R(F ; r) � r + |V (F )| − 1.

Proof. Let us consider the following r-coloring of the edges of the clique Kk
n with

vertex set {1, 2, . . . , n}, where n = r + |V (F )| − 2. We color an edge e by color i, for
i ∈ {1, 2, . . . , r − 1}, if the minimum vertex in e equals i, that is min(e) = i, and by
color r otherwise. Hence, there is no monochromatic copy of F in colors 1, 2, . . . , r−1,
because F is not a star. We do not obtain a copy of F in color r either, because the
edges of color r form a clique Kk

n−r+1, while |V (F )| = n− r + 2.

A relation between the Turán and Ramsey numbers is captured by the following
simple observation.

Proposition 3.2. Let r � 2, k � 2, and n � r + k. If exk(n;F ) = 1
r

(
n
k

)
, but the

unique F -free k-graph with n vertices and 1
r

(
n
k

)
edges is a star, then R(F ; r) � n.

Proof. Let us consider an r-coloring of the complete k-graph Kk
n. If there are more

than 1
r

(
n
k

)
edges in one color, then, by the definition of exk(n;F ), there is a copy of

F in that color. Otherwise, there are exactly 1
r

(
n
k

)
edges in each color, but not all

the colors may form stars. Indeed, since n � r+k, there would be at least k vertices
which are not centers of any monochromatic star. But then an edge of Kk

n would
have no color assigned, a contradiction. Thus, for some i, the edges colored by i do
not form a star, which, by our assumption on exk(n;F ), implies that there is a copy
of F in that color.

Propositions 3.1 and 3.2, together with Lemma 2.2 quickly imply Theorem 1.1.

Proof of Theorem 1.1. From Proposition 3.1 we obtain the lower bound R(P 3
3 ; 3) �

3 + 7 − 1 = 9. For the upper bound we use Proposition 3.2 with k = 3, r = 3, and
n = 9. Indeed, the assumptions of Proposition 3.2 follow by Lemma 2.2, and thus
R(P 3

3 ; 3) � 9.

Similarly, Theorem 1.2 follows from Proposition 3.1, Proposition 3.2, and Lemma 2.7.

4 Concluding remarks

It would be interesting to determine the Turán numbers ex3(n;P 3
3 ) for all n. As far

as the next Ramsey numbers are concerned, we conjecture that R(P 3
3 ; 4) = 10. We

would also like to determine or estimate the Ramsey numbers R(P k
n ; r) for at least

some cases where max{n, k, r} ≥ 4.
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