The 3-color Ramsey number for a 3 -uniform loose path of length 3

Eliza Jackowska
Institute of Mathematics
Adam Mickiewicz University
Umultowska 87, 61-614 Poznań
Poland
elijac@amu.edu.pl

Abstract

The values of hypergraph 2-color Ramsey numbers for loose cycles and paths have already been determined. The only known value for more than 2 colors is $R\left(C_{3}^{3} ; 3\right)=8$, where C_{3}^{3} is a 3 -uniform loose cycle of length 3 . Here we determine that $R\left(P_{3}^{3} ; 3\right)=9$, where P_{3}^{3} is a 3 -uniform loose path of length 3. Our proof relies on the determination of the Turán number $\mathrm{ex}_{3}\left(9 ; P_{3}^{3}\right)$. We also find the Turán number $\mathrm{ex}_{3}\left(12 ; P_{3}^{3}\right)$ and use it to estimate $R\left(P_{3}^{3} ; 4\right)$.

1 Introduction

In this note we consider the problem of finding the 3-color Ramsey number for the 3 -uniform loose path of length 3 and estimate the corresponding Ramsey number for 4 colors. A hypergraph H is a pair $H=(V, E)$, where V is a finite nonempty set of vertices and E is a collection of distinct nonempty subsets of V. A vertex v is of degree i when it belongs to i edges in a hypergraph H. We consider only k-uniform hypergraphs in which all edges have size k, and call them k-graphs, for short.

The clique K_{n}^{k} is a k-graph on n vertices and with $\binom{n}{k}$ edges. For a given k-graph H, the Ramsey number $R(H ; r)$ is the least integer n such that in every r-coloring of the edges of K_{n}^{k} there is a monochromatic copy of H. If H itself is a clique, we are dealing with classical Ramsey numbers, which are so hard to calculate that the only known value for $k \geqslant 3$ is $R\left(K_{4}^{3} ; 2\right)=13$ ([7]). Instead of cliques, sometimes sparser structures like cycles and paths have been studied.

There are several natural definitions of a cycle and a path in a uniform hypergraph. Here we focus only on loose cycles and loose paths. A k-uniform loose cycle C_{n}^{k} of length n is a k-graph whose edges form a cyclic list $\left(f_{1}, \ldots, f_{n}\right)$ such that consecutive edges intersect in exactly one element and nonconsecutive ones are disjoint.

By removing one edge from a loose cycle of length $n+1$, we obtain a k-uniform loose path P_{n}^{k} of length n. Note that $\left|V\left(C_{n}^{k}\right)\right|=n(k-1)$ and $\left|V\left(P_{n}^{k}\right)\right|=n(k-1)+1$.

Further, a k-star with n arms is a k-graph with edges $f_{1}, \ldots, f_{n}, n \geqslant 2$, such that $\bigcap_{i=1}^{n} f_{i} \neq \emptyset$. A star S is called full if $|E(S)|=\binom{|V(S)|-1}{k-1}$, that is, a vertex v forms edges with all $(k-1)$-element subsets of $V(S) \backslash\{v\}$. For $k=2$ we get the usual graph definitions of the cycle C_{n}, the path P_{n} with n edges, and the star $K_{1, n}$. Given a k-graph H and a k-element set e, we denote by $H+e$ the k-graph $(V(H) \cup e, E(H) \cup\{e\})$.

There are many results in graph Ramsey theory related to cycles and paths (see [9]). For hypergraphs though, much less is known. First, it was proved in [5] that $R\left(P_{n}^{3} ; 2\right)$ and $R\left(C_{n}^{3} ; 2\right)$ are asymptotically equal to $\frac{5 n}{2}$. Subsequently, Omidi and Shahsiah in [8] proved that

$$
R\left(P_{n}^{3} ; 2\right)=R\left(C_{n}^{3} ; 2\right)+1=\left\lfloor\frac{5 n+1}{2}\right\rfloor .
$$

Gyárfás and Raeisi [4] found the values for $R\left(P_{n}^{k} ; 2\right)$ and $R\left(C_{n}^{k} ; 2\right)$ for $n \leqslant 4$ and $k \geqslant 3$. They also determined the 3 -color Ramsey number for C_{3}^{3},

$$
R\left(C_{3}^{3} ; 3\right)=8
$$

In this note we prove two theorems about multicolored Ramsey numbers for P_{3}^{3}.
Theorem 1.1. $R\left(P_{3}^{3} ; 3\right)=9$
Theorem 1.2. $10 \leqslant R\left(P_{3}^{3} ; 4\right) \leqslant 12$
Turán numbers may sometimes provide upper bounds on Ramsey numbers (see, e.g. Prop. 13 in [4] and Proposition 3.2 below). Indeed, the proofs of Theorems 1.1 and 1.2 are based on the corresponding Turán numbers. In Section 2, we will first determine the Turán numbers $\operatorname{ex}_{3}\left(9 ; P_{3}^{3}\right)$ and $\mathrm{ex}_{3}\left(12 ; P_{3}^{3}\right)$, and then, in Section 3, deduce Theorems 1.1 and 1.2.

2 Turán numbers

Given a k-graph H and a positive integer n, the k-graph Turán number ex $x_{k}(n ; H)$ is the maximum number of edges in a k-graph F on n vertices that does not contain H as a subhypergraph.

The numbers $e x_{k}\left(n ; P_{l}^{k}\right)$, for all fixed k and l, where $k \geqslant 4$ or $l \geqslant 4$, and sufficiently large n, are determined in [3] and [6]. There are, however, no corresponding results for $k=l=3$. The method of the proof used in [3] does not quite work for the case $k=3$. In turn, Kostochka, Mubayi and Verstraëte skipped this case, assuming that it was determined in [3].

In order to determine $e x_{3}\left(9 ; P_{3}^{3}\right)$ and $e x_{3}\left(12 ; P_{3}^{3}\right)$, we will use the following result for 3 -cycles of length 3, proved by Csákány and Kahn (see also [2]).

Theorem 2.1. [1] For $n \geqslant 6$, ex $x_{3}\left(n ; C_{3}^{3}\right)=\binom{n-1}{2}$. Moreover, for $n \geqslant 8$, the only extremal 3-graph is the full star.

We begin with a determination of $e x_{3}\left(9 ; P_{3}^{3}\right)$.
Lemma 2.2. We have ex $x_{3}\left(9 ; P_{3}^{3}\right)=28$. Moreover, the only extremal 3 -graph is the full star.

Before proving Lemma 2.2, we will show some useful facts. In these facts, e always stands for a 3 -element subset of a vertex set V. Let us consider a copy C of C_{3}^{3} with $V(C) \subset V$. We partition $V(C)=V_{1} \cup V_{2}$ where, for $i=1,2, V_{i}$ stands for the set of vertices of degree i in C, that is the vertices which belong to exactly i edges of C.

We define two families of triples:

$$
\begin{aligned}
& E_{1}=\left\{e \in\binom{V}{3}:\left|e \cap V_{1}\right|=\left|e \cap V_{2}\right|=1, \text { and } \forall f \in E(C): e \cap f \neq \emptyset\right\}, \\
& E_{2}=\left\{e \in\binom{V}{3}: V_{1}=\emptyset,\left|e \cap V_{2}\right|=2\right\}, \\
& \text { and } E^{\prime}=E_{1} \cup E_{2} .
\end{aligned}
$$

The edges in E_{1} are formed by taking a vertex of degree 1 in C, then another one of degree 2 in C but which does not belong to the same edge as the first one, and the third vertex belongs to the set $V \backslash V(C)$. Similarly the edges in E_{2} are formed by taking two vertices of degree 2 in C and one vertex from the set $V \backslash V(C)$ (see Figures 1 and 2).

Figure 1: An edge from the family E_{1} is shaded.

Figure 2: An edge from the family E_{2} is shaded.

Fact 2.3. For every $e \in\binom{V}{3}$ such that either $|e \cap V(C)|=1$, or $|e \cap V(C)|=2$ but $e \notin E^{\prime}$, we have $C+e \supset P_{3}^{3}$.

Fact 2.3 says that the existence of edges listed therein implies the presence of P_{3}^{3}. In particular, the family E^{\prime} consists of all triples e, with $1 \leq|e \cap V(C)| \leq 2$, whose addition to C does not create a copy of P_{3}^{3}. However, if we consider these edges more carefully, we will notice that some of them, if occur together, do lead to a formation of P_{3}^{3}. This is formalized in Fact 2.4 below, for which, as well as for the two subsequent facts, we introduce some further notation and assumptions.

For $s \geqslant 2$, let $V=V(C) \cup W$ where $V(C) \cap W=\emptyset$ and $|W|=s$.
Fact 2.4. Let H be a P_{3}^{3}-free 3-graph with $V(H)=V$ and $C \subseteq H$. Then $\mid E^{\prime} \cap$ $E(H) \mid \leqslant 3 s$.

Proof. If $e \in E_{1}, f \in E_{2}$ and $e \cap f=\emptyset$, then $C+e+f \supset P_{3}^{3}$. We have $\left|E_{1}\right|=\left|E_{2}\right|=3 s$. Construct an auxiliary bipartite graph $B=\left(E_{1}, E_{2} ; \mathcal{E}\right)$, where $\{e, f\} \in \mathcal{E}$ if $e \cap f=\emptyset$. It follows that if $\{e, f\} \in \mathcal{E}$, then $|\{e, f\} \cap E(H)| \leqslant 1$. Observe also that the graph B is $(s-1)$-regular, thus by Hall's theorem it has a perfect matching M. At most one edge of each pair $\{e, f\} \in M$ is in $E(H)$, which implies that $\left|E^{\prime} \cap E(H)\right| \leqslant 3 s$.

As a further preparation toward the proof of Lemma 2.2, let us consider the set of three edges $E_{3}=\{V(C) \backslash e: e \in C\}$. One edge of E_{3} is presented in Figure 3.

Figure 3: An edge from the family E_{3} is shaded.

Fact 2.5. Let H be a P_{3}^{3}-free 3-graph with $V(H)=V$ and $C \subseteq H$. If $e \in E^{\prime} \cap E(H)$, then $\left|E_{3} \cap E(H)\right| \leqslant 1$.

Proof. Let $f \in E_{3}$. If $e \in E_{1}$, then $C+e+f \supset P_{3}^{3}$, and in view of the assumption that H is P_{3}^{3}-free, we conclude that $E_{3} \cap E(H)=\emptyset$. If $e \in E_{2}$ and $e \cap f \neq \emptyset$, then $C+e+f \supset P_{3}^{3}$, and, as two of the three edges in E_{3} intersect e, we conclude that $\left|E_{3} \cap E(H)\right| \leqslant 1$.

It turns out that we can ban some more edges from being present in H. Let us set $E_{4}=\binom{W}{3}$.

Fact 2.6. Let H be a P_{3}^{3}-free 3 -graph with $V(H)=V$ and $C \subseteq H$. If $e \in E^{\prime}$, $f \in E_{4}$, and $f \cap e \neq \emptyset$, then $C+e+f \supset P_{3}^{3}$. Consequently, only one of e and f may belong to H.

We are now going to use Facts 2.3-2.6 to prove Lemma 2.2.
Proof of Lemma 2.2. Notice that the full star on 9 vertices has $\binom{8}{2}=28$ edges and contains no P_{3}^{3}.

Consider a 3 -graph H with 9 vertices and at least 28 edges which is not a star. Based on Theorem 2.1, H contains a copy C of C_{3}^{3}. Suppose $P_{3}^{3} \nsubseteq H$. Then, by Fact 2.3,

$$
|E(H)| \leqslant\left|\binom{V(C)}{3} \backslash E_{3}\right|+\left|E_{3} \cap E(H)\right|+\left|E_{4} \cap E(H)\right|+\left|E^{\prime} \cap E(H)\right|
$$

Note that $\left|\binom{V(C)}{3} \backslash E_{3}\right|=\binom{6}{3}-3=17,\left|E_{3} \cap E(H)\right| \leqslant\left|E_{3}\right|=3$, and $\mid E_{4} \cap$ $E(H)\left|\leqslant\left|E_{4}\right|=1\right.$. Hence, if $E^{\prime} \cap E(H)=\emptyset$ then $| E(H) \mid \leqslant 17+3+1+0=$ $21<28$, a contradiction. Otherwise, if $\left|E^{\prime} \cap E(H)\right| \geqslant 1$ then, by Fact 2.4 with $s=3,\left|E^{\prime} \cap E(H)\right| \leqslant 9$. Moreover, by Fact $2.5,\left|E_{3} \cap E(H)\right| \leqslant 1$, and by Fact 2.6, $E_{4} \cap E(H)=\emptyset$. Consequently, $|E(H)| \leqslant 17+1+0+9=27<28$, a contradiction again.

Based on Lemma 2.2, we can determine $e x_{3}\left(12 ; P_{3}^{3}\right)$.
Lemma 2.7. We have ex $x_{3}\left(12 ; P_{3}^{3}\right)=55$. Moreover, the only extremal 3 -graph is the full star.

Proof. Notice that the full star on 12 vertices has $\binom{11}{2}=55$ edges and contains no P_{3}^{3}. Consider a 3 -graph H with 12 vertices and at least 55 edges, which is not a star. It follows from Theorem 2.1 that $C_{3}^{3} \subseteq H$. Let C be a copy of C_{3}^{3} in H, set $W=V(H) \backslash V(C)$, and notice that $|W|=6$. Assume that there is no copy of P_{3}^{3} in H and consider two cases.

Case 1. $\binom{W}{3} \cap E(H) \neq \emptyset$.
Let $f \in H[W]$. By Facts 2.3 and 2.6, there is no edge e in H such that $f \cap e \neq \emptyset$ and $e \cap V(C) \neq \emptyset$. By Lemma 2.2, $|H[V \backslash f]| \leq 27$. Also $\left|E(H) \cap\binom{W}{3}\right| \leqslant 20$. Thus, $|E(H)| \leqslant 27+20=47<55$, a contradiction.

Case 2. $\binom{W}{3} \cap E(H)=\emptyset$.
Partition the set W in two triples f_{1} and f_{2} and define two induced subhypergraphs $H_{1}=H\left[V \backslash f_{1}\right]$ and $H_{2}=H\left[V \backslash f_{2}\right]$. By Lemma 2.2, $\left|E\left(H_{1}\right)\right| \leqslant 28$ and $\left|E\left(H_{2}\right)\right| \leqslant 28$. Moreover, $\left|E\left(H_{1}\right) \cap E\left(H_{2}\right)\right| \geqslant|E(C)|=3$. Consequently $|E(H)| \leqslant\left|E\left(H_{1}\right)\right|+$ $\left|E\left(H_{2}\right)\right|-|E(C)|=28+28-3=53<55$, a contradiction again.

3 Proofs of Theorem 1.1 and Theorem 1.2

The derivation of the lower bounds in Theorems 1.1 and 1.2 is based on a construction used already by Gyárfás and Raeisi in [4] to determine $R\left(C_{3}^{3} ; 3\right)$. For future references we state this result in a general form.
Proposition 3.1. Let $r \geqslant 2$. If a k-graph F is not a star, then

$$
R(F ; r) \geqslant r+|V(F)|-1 .
$$

Proof. Let us consider the following r-coloring of the edges of the clique K_{n}^{k} with vertex set $\{1,2, \ldots, n\}$, where $n=r+|V(F)|-2$. We color an edge e by color i, for $i \in\{1,2, \ldots, r-1\}$, if the minimum vertex in e equals i, that is $\min (e)=i$, and by color r otherwise. Hence, there is no monochromatic copy of F in colors $1,2, \ldots, r-1$, because F is not a star. We do not obtain a copy of F in color r either, because the edges of color r form a clique K_{n-r+1}^{k}, while $|V(F)|=n-r+2$.

A relation between the Turán and Ramsey numbers is captured by the following simple observation.
Proposition 3.2. Let $r \geqslant 2, k \geqslant 2$, and $n \geqslant r+k$. If ex $x_{k}(n ; F)=\frac{1}{r}\binom{n}{k}$, but the unique F-free k-graph with n vertices and $\frac{1}{r}\binom{n}{k}$ edges is a star, then $R(F ; r) \leqslant n$.

Proof. Let us consider an r-coloring of the complete k-graph K_{n}^{k}. If there are more than $\frac{1}{r}\binom{n}{k}$ edges in one color, then, by the definition of $e x_{k}(n ; F)$, there is a copy of F in that color. Otherwise, there are exactly $\frac{1}{r}\binom{n}{k}$ edges in each color, but not all the colors may form stars. Indeed, since $n \geqslant r+k$, there would be at least k vertices which are not centers of any monochromatic star. But then an edge of K_{n}^{k} would have no color assigned, a contradiction. Thus, for some i, the edges colored by i do not form a star, which, by our assumption on $e x_{k}(n ; F)$, implies that there is a copy of F in that color.

Propositions 3.1 and 3.2, together with Lemma 2.2 quickly imply Theorem 1.1.
Proof of Theorem 1.1. From Proposition 3.1 we obtain the lower bound $R\left(P_{3}^{3} ; 3\right) \geqslant$ $3+7-1=9$. For the upper bound we use Proposition 3.2 with $k=3, r=3$, and $n=9$. Indeed, the assumptions of Proposition 3.2 follow by Lemma 2.2, and thus $R\left(P_{3}^{3} ; 3\right) \leqslant 9$.

Similarly, Theorem 1.2 follows from Proposition 3.1, Proposition 3.2, and Lemma 2.7.

4 Concluding remarks

It would be interesting to determine the Turán numbers $e x_{3}\left(n ; P_{3}^{3}\right)$ for all n. As far as the next Ramsey numbers are concerned, we conjecture that $R\left(P_{3}^{3} ; 4\right)=10$. We would also like to determine or estimate the Ramsey numbers $R\left(P_{n}^{k} ; r\right)$ for at least some cases where $\max \{n, k, r\} \geq 4$.

Acknowledgements

I would like to express my gratitude toward my supervisor Andrzej Ruciński, who has significantly contributed to the writing of this paper and made it much more readable. I am also thankful for the referees for their numerous comments and helpful suggestions.

References

[1] R. Csákány and J. Kahn, A Homological Approach to Two Problems on Finite Sets, J. Algebraic Combin. 9 (1999), 141-149.
[2] P. Frankl and Z. Füredi, Exact solution of some Turán-type problems, J. Combin. Th. Ser. A 45 (1987), 226-262.
[3] Z. Füredi, T. Jiang and R. Seiver, Exact solution of the hypergraph Turán problem for k-uniform linear paths, Combinatorica 34(3) (2014), 299-322.
[4] A. Gyárfás and G. Raeisi, The Ramsey number of loose triangles and quadrangles in hypergraphs, Electronic J. Combin. 19(2) (2012), \# R30.
[5] P. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Ruciński, M. Simonovits and J. Skokan, The Ramsey number for hypergraph cycles I, J. Combin. Th. Ser. A 113 (2006), 67-83.
[6] A. Kostochka, D. Mubayi and J. Verstraëte, Turán Problems and Shadows I: Paths and Cycles, J. Combin. Th. Ser. A, 129 (2015), 57-79.
[7] B. D. McKay and S.P. Radziszowski, The First Classical Ramsey Number for Hypergraphs is Computed, Proc. Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA91, San Francisco (1991), 304-308.
[8] G. R. Omidi and M. Shahsiah, Ramsey Numbers of 3-Uniform Loose Paths and Loose Cycles, J. Combin. Th. Ser. A 121 (2014), 64-73.
[9] S. P. Radziszowski, Small Ramsey numbers, Electronic J. Combin., Dynamic Surveys, DS1 (1994) (January 12, 2014).

