The non-singularity of looped-trees and complement of trees with diameter 5

Nirutt Pipattanajinda
Program of Mathematics, Faculty of Sciences and Technology
Kamphaeng Phet Rajabhat University
Kamphaeng Phet
Thailand
nirutt.p@gmail.com
Yangkok Kim
Department of Mathematics
Dongeui University, Busan 614-714
Korea
ykkim@deu.ac.kr

Abstract

A graph G is said to be singular if its adjacency matrix is singular; otherwise it is said to be non-singular. In this paper, we introduce a class of graphs called looped-trees, and find the determinant and the nonsingularity of looped-trees. Moreover, we determine the singularity or non-singularity of the complement of a certain class of trees with diameter 5 by using the results for looped-trees.

1 Introduction and Preliminaries

Non-singular trees were completely characterized by Gervacio and Rara [2]. Furthermore, the singularity or non-singularity of the complement of a tree with diameter less than 5 was completely determined by Gervacio [1]. Recently, Pipattanajinda and Kim [7] obtained the determinant of the complement of a tree with diameter 5, and determined the singularity or non-singularity of the complement of a certain class of trees with diameter 5 . In this paper we shall introduce a class of graphs called looped-trees and determine the singularity of looped-trees with diameter less than or equal to 5 . Moreover, we shall solve the singularity or non-singularity problem of the complement of a certain class of trees with diameter 5. In Section 2, we shall give the formula for the determinant of looped-trees with diameter less than 5 . We note that an adjacency matrix of a looped-tree is also a neighborhood matrix of a tree (for details, see [5]). We then determine the singularity or non-singularity of
the complement of a looped-tree with diameter 4 . Furthermore, the determinant and the non-singularity of looped-trees with diameter 5 will be solved in Section 3. In final section we find some relation between determinants of a looped-tree and the complement of a tree with diameter 5 by using the results in [4], and determined the singularity or non-singularity of the complement of a certain class of trees with diameter 5 .

By a graph G we mean a pair $(V(G), E(G))$, where $V(G)$ is a finite non-empty set of elements called vertices and $E(G)$ is a set of 2-subsets of $V(G)$ whose elements are called edges. In particular, G is a simple graph if it has no loops (edges connected at both ends to the same vertex) and no more than one edge between any two different vertices. For a simple graph $G=(V(G), E(G))$, a graph $G^{o}=\left(V\left(G^{o}\right), E\left(G^{o}\right)\right)$ with $V\left(G^{o}\right)=V(G)$ and $E\left(G^{o}\right)=\{\{u, v\} \mid\{u, v\} \in E(G)\} \cup\left\{\{u, u\} \mid u \in V\left(G^{o}\right)\right\}$ is called a looped-graph of G. In particular, if G is a tree, G^{o} is called a looped-tree.

If G is a graph with vertices $x_{1}, x_{2}, \ldots, x_{n}$, we define the adjacency matrix of G to be the $n \times n$ matrix $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if $\left\{x_{i}, x_{j}\right\} \in E(G)$ and $a_{i j}=0$ otherwise. The graph G is said to be singular if $A(G)$ is singular, i.e., $\operatorname{det} A(G)=0$; otherwise G is said to be non-singular. If $S \subset V(G)$, then $G \backslash S$ denotes the graph obtained from G by deleting all the vertices $x \in S$. The complement \bar{G} of G is a graph such that $V(\bar{G})=V(G)$ and $\{u, v\} \in E(\bar{G})$ if and only if $\{u, v\} \notin E(G)$ for any $u, v \in V(G)$ and $u \neq v$. The loop complement \bar{G}^{o} of G is a graph such that $V\left(\bar{G}^{o}\right)=V(G)$ and $\{u, v\} \in E\left(\bar{G}^{o}\right)$ if and only if $\{u, v\} \notin E(G)$ for any $u, v \in V(G)$. When G is a simple graph, the loop complement of G is the complement of G°, that is, $\bar{G}^{o}=\overline{G^{o}}$, and the loop complement of G^{o} is the complement of G, that is, ${\overline{G^{o}}}^{o}=\bar{G}$. Other terms whose definitions are not given here may be found in many graph theory books, e.g., [3].

For non-negative integers $m, r, s, m_{1}, m_{2}, \cdots, m_{r}, n_{1}, n_{2}, \cdots, n_{s}$, we define a series of looped-trees, $T_{2: m}^{o}, T_{3: r, s}^{o}, T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}$, and $T_{5: m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}}^{o}$ as follows: by $T_{2: m}^{o}$ we mean a looped-tree of a tree with diameter ≤ 2, which is depicted in Figure 1 where w is called the central vertex, and m is the number of vertices but the central vertex w. For two disjoint looped-trees $T_{2: r}^{o}, T_{2: s}^{o}$, with central vertices x_{0}, y_{0} respectively, we form a looped-tree $T_{3: r, s}^{o}$ by joining two central vertices as shown in Figure 1, where x_{0}, y_{0} are called central vertices of $T_{3: r, s}^{o}$. For disjoint loopedtrees $T_{2: m_{1}}^{o}, T_{2: m_{2}}^{o}, \ldots, T_{2: m_{r}}^{o}$, with central vertices $x_{1}, x_{2}, \ldots, x_{r}$ respectively, we form a looped-tree $T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}$ by joining all central vertices x_{i} to a new vertex z (see Figure 2 where z is called the central vertex of $T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}$). Similarly for two disjoint looped-trees $T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}, T_{4: n_{1}, n_{2}, \ldots, n_{s}}^{o}$, with central vertices x_{0}, y_{0} respectively, we form a looped-tree $T_{5: m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}}^{o}$ by joining two central vertices (see Figure 3 where x_{0}, y_{0} are called central vertices of $T_{5: m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}}^{o}$).

From the construction, we have the following:
(i) if $m \geq 2$, then $T_{2: m}^{o}$ is a looped-tree with diameter 2 ;
(ii) if $r s \neq 0$, then $T_{3: r, s}^{o}$ is a looped-tree with diameter 3 ;
(iii) if $r>2$ and $m_{i} m_{j} \neq 0$ for two distinct i, j, then $T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}$ is a looped-tree with diameter 4 ; and
(iv) if $r, s>1$ and $m_{i} n_{j} \neq 0$ for some i, j, then $T_{5: m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}}^{o}$ is a looped-tree with diameter 5 .

Figure 1: $T_{2: m}^{\circ}$ and $T_{3: r, s}^{\circ}$

Figure 2: $T_{4: m_{1}, m_{2}, \cdots, m_{r}}^{\circ}$

Moreover, we note that $T_{4: m}^{o}=T_{2: m+1}^{o}, T_{3: r, 0}^{o}=T_{2: r+1}^{o}, T_{4: m, \underbrace{o}_{j}, \cdots, 0}^{,_{j}}=T_{3: m, j}^{o}$ and $T_{5: m_{1}, \cdots, m_{r} ; \underbrace{o}_{j} ; \underbrace{\cdots, 0}_{j}}^{0}=T_{4: m_{1}, m_{2}, \ldots, m_{r}, j}^{o}$.

From now on, for the simplicity of expressions, we denote the determinant of an adjacency matrix of a graph G by $|G|$ or $|A(G)|$, whenever there is no margin for confusion. For example, $\left|T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}\right|$ means the determinant of an adjacency matrix of $T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}$. Furthermore, we use $T_{4: \ldots, m_{r}}^{o}$ and $T_{5 . \ldots, m_{r} ; \ldots, n_{s}}^{o}$ for $T_{4: m_{1}, m_{2}, \ldots, m_{r}}^{o}$ and $T_{5: m_{1}, \ldots, m_{r} ; n_{1}, \ldots, n_{s}}^{o}$. We now recall a definition of some graph and a lemma in [6] crucial for our further arguments. For any graph G with $x \in V(G)$ and $y \notin V(G)$, $G_{x \sim y^{0}}$ means the graph with $V\left(G_{x \sim y^{0}}\right)=V(G) \cup\{y\}$ and $E\left(G_{x \sim y^{0}}\right)=E(G) \cup$ $\{\{x, y\},\{y, y\}\}$.

Lemma 1.1 [6] Let $G=(G(V), G(E))$ be a graph, $x \in G(V)$ and $y \notin G(V)$. Then

$$
\left|G_{x \sim y^{o}}\right|=|G|-|G \backslash\{x\}|
$$

Lemma 1.2 (i) $\left|T_{2: m}^{o}\right|=1-m$; (ii) $\left|T_{3: r, s}^{o}\right|=r s-r-s$.
Proof. (i) We can write $T_{2: m}^{o}=\left(T_{2: m-1}^{o}\right)_{x \sim y^{\circ}}$ (see Figure 4) and apply Lemma 1.1 to get

$$
\left|T_{2: m}^{o}\right|=\left|T_{2: m-1}^{o}\right|-1 .
$$

By applying the same arguments repeatedly, we have

$$
\left|T_{2: m}^{o}\right|=\left|T_{2: m-1}^{o}\right|-1=\left|T_{2: m-2}^{o}\right|-2=\cdots=\left|T_{2: 2}^{o}\right|-(m-2)=\left|T_{2: 1}^{o}\right|-(m-1)=1-m
$$

Figure 3: $T_{5: m_{1}, m_{2}, \cdots, m_{r} ; n_{1}, n_{2}, \cdots, n_{s}}^{\circ}$

Figure 4: $T_{2: m}^{o}=\left(T_{2: m-1}^{o}\right)_{x \sim y^{o}}$
(ii) By the same argument for (i),

$$
\begin{aligned}
\left|T_{3: r, s}^{o}\right| & =\left|T_{3: r, s-1}^{o}\right|-\left|T_{2: r}^{o}\right|=\left|T_{3: r, s-2}^{o}\right|-2\left|T_{2: r}^{o}\right| \\
& =\left|T_{3: r, s-3}^{o}\right|-3\left|T_{2: r}^{o}\right|=\cdots=\left|T_{3: r, 0}^{o}\right|-s\left|T_{2: r}^{o}\right| \\
& =\left|T_{2: r+1}^{o}\right|-s\left|T_{2: r}^{o}\right|=1-(r+1)-s(1-r)=r s-r-s .
\end{aligned}
$$

From Lemma 1.2, we have the following.
Corollary $1.3 T_{2: r}^{o}$ is singular if and only if $r=1$.
Corollary 1.4 $T_{3: r, s}^{o}$ is singular if and only if $r=s=2$.

2 Looped-Trees with diameter 4

Lemma 2.1 For non-negative integers $m_{1}, m_{2}, \cdots, m_{r}(r \geq 2)$,

$$
\left|T_{4 \cdots \cdots, m_{r}}^{o}\right|=-\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r-1}\right)+\left(1-m_{r}\right)\left|T_{4 \ldots, m_{r-1}}^{o}\right|
$$

Proof. We can write $T_{4: \ldots, m_{r}}^{o}=\left(T_{4: \ldots, m_{r}-1}^{o}\right)_{x \sim y^{\circ}}$ (Figure 5, where x is adjacent to the central vertex of $T_{4: \ldots, m_{r-1}}^{o}$) and apply Lemma 1.1 to get

$$
\left|T_{4 \ldots, m_{r}}^{o}\right|=\left|T_{4 \ldots, m_{r}-1}^{o}\right|-\left|T_{4 \ldots, m_{r-1}}^{o}\right| .
$$

By applying the same arguments repeatedly, we have

$$
\left|T_{4 \ldots, m_{r}}^{o}\right|=\left|T_{4 \ldots, m_{r-1}, 0}^{o}\right|-m_{r}\left|T_{4 \ldots, m_{r-1}}^{o}\right|
$$

Now we write $T_{4: \ldots, m_{r-1}, 0}^{o}=\left(T_{4: \ldots, m_{r-1}}^{o}\right)_{x \sim y^{\circ}}$ (see Figure 6, where y is adjacent to the central vertex x of $T_{4: \cdots, m_{r-1}}^{o}$) and apply Lemma 1.1 to get

$$
\left|T_{4 \ldots m_{r-1}, 0}^{o}\right|=\left|T_{4 \ldots, m_{r-1}}^{o}\right|-\left|T_{2: m_{1}}^{o}\right|\left|T_{2: m_{2}}^{o}\right| \ldots\left|T_{2: m_{r-1}}^{o}\right|
$$

and so

$$
\left|T_{4 \ldots, m_{r}}^{o}\right|=-\left(1-m_{1}\right)\left(1-m_{2}\right) \ldots\left(1-m_{r-1}\right)+\left(1-m_{r}\right)\left|T_{4 \ldots, m_{r-1}}^{o}\right| .
$$

Figure 5: $T_{4: \cdots, m_{r}}^{o}=\left(T_{4: \cdots, m_{r}-1}^{o}\right)_{x \sim y^{o}}$

Figure 6: $T_{4: \cdots, m_{r-1}, 0}^{o}=\left(T_{4: \cdots, m_{r-1}}^{o}\right)_{x \sim y^{o}}$

Theorem 2.2 For non-negative integers $m_{1}, m_{2}, \cdots, m_{r}$,

$$
\left|T_{4 \cdots, m_{r}}^{o}\right|=\prod_{i=1}^{r}\left(1-m_{i}\right)-\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{1-m_{i}}
$$

Proof. By mathematical induction on r. Let $r=1$. By applying Lemma 1.2, we have

$$
\left|T_{4: m_{1}}^{o}\right|=\left|T_{2, m_{1}+1}^{o}\right|=1-\left(m_{1}+1\right)=\left(1-m_{1}\right)-1 .
$$

We assume that the formula works for $r-1$. Then by Lemma 2.1 and induction hypothesis,

$$
\begin{aligned}
& \left|T_{4 \cdots, m_{r}}^{o}\right| \\
= & -\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right)+\left(1-m_{r}\right)\left|T_{4: \cdots, m_{r-1}}^{o}\right| \\
= & -\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right) \\
& +\left(1-m_{r}\right)\left(\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right)-\sum_{i=1}^{r-1} \frac{\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right)}{1-m_{i}}\right) \\
= & -\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right)+\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right)\left(1-m_{r}\right) \\
& -\left(1-m_{r}\right) \sum_{i=1}^{r-1} \frac{\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right)}{1-m_{i}} \\
= & \prod_{i=1}^{r}\left(1-m_{i}\right)-\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{1-m_{i}} .
\end{aligned}
$$

Corollary 2.3 For non-negative integers m_{1}, \cdots, m_{r}, j,

$$
|T_{4 \ldots, \ldots, m_{r}, \underbrace{o}_{j} 0, \cdots, 0}^{0}|=(1-j) \prod_{i=1}^{r}\left(1-m_{i}\right)-\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{\left(1-m_{i}\right)} .
$$

Theorem 2.4 For positive integers $m_{1}, \cdots, m_{r}, T_{4: m_{1}, m_{2}, \cdots, m_{r}}^{o}$ is a singular graph if and only if at least two distinct m_{i} are 1 .

Proof. If at least two distinct m_{i} are 1, then $\prod_{i=1}^{r}\left(1-m_{i}\right)$ and $\sum_{i=1}^{r} \frac{\left(1-m_{1}\right) \cdots\left(1-m_{r}\right)}{1-m_{i}}$ of $\left|T_{4 \cdots, m_{r}}^{o}\right|$ in Theorem 2.2 are zero and so $\left|T_{4: \cdots, m_{r}}^{o}\right|=0$. For the converse, if only one m_{i} is 1 , say $m_{r}=1$, then

$$
\left|T_{4 \ldots \ldots, m_{r-1}, 1}^{o}\right|=\prod_{i=1}^{r}\left(1-m_{i}\right)-\sum_{i=1}^{r} \frac{\left(1-m_{1}\right) \cdots\left(1-m_{r}\right)}{\left(1-m_{i}\right)}=-\left(1-m_{1}\right) \cdots\left(1-m_{r-1}\right)
$$

which is clearly non-zero. If $m_{i} \neq 1$ for all i, then

$$
\begin{aligned}
\left|T_{4: \cdots, m_{r}}^{o}\right| & =\prod_{i=1}^{r}\left(1-m_{i}\right)-\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{\left(1-m_{i}\right)} \\
& =\prod_{i=1}^{r-1}\left(1-m_{i}\right)-\prod_{i=1}^{r-1}\left(1-m_{i}\right) m_{r}-\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{\left(1-m_{i}\right)} \\
& =-\prod_{i=1}^{r-1}\left(1-m_{i}\right) m_{r}-\sum_{i=1}^{r-1} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{\left(1-m_{i}\right)}
\end{aligned}
$$

where $\prod_{i=1}^{r-1}\left(1-m_{i}\right) m_{r}$ and $\sum_{i=1}^{r-1} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{\left(1-m_{i}\right)}$ have the same sign, $(-1)^{r+1}$. Hence, $\left|T_{4: \cdots, m_{r}}^{o}\right|$ cannot be zero.

Theorem 2.5 For positive integers $m_{1}, m_{2}, \cdots, m_{r}, T_{4 \ldots \cdots, m_{r}, 0}^{o}$ is a singular graph if and only if at least two distinct m_{i} are 1.

Proof. By Corollary 2.3,

$$
\left|T_{4 \ldots \cdots, m_{r}, 0}^{o}\right|=-\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{\left(1-m_{i}\right)}
$$

which is clearly zero if and only at least two distinct m_{i} are 1 .
We cannot extend Theorem 2.5 to the general case that more than one m_{i} are zeros as we see in the following Example.

Example 2.1 For positive integers $m, r, j, T_{4: \underbrace{o}_{r} m, \cdots, m}^{\underbrace{0, \cdots, 0}_{j}}$ is a singular graph if $1-m-j+j m-r=0$.

Proof. By Corollary 2.3 with $m_{1}=m_{2}=\cdots=m_{r}=m$ and j times 0 , we have

$$
\begin{aligned}
& |T_{4: \underbrace{o}_{r} m, \cdots, m}^{r} \underbrace{0, \cdots, 0}_{j}| \\
= & (1-j) \prod_{i=1}^{r}(1-m)-\sum_{i=1}^{r} \frac{(1-m)(1-m) \ldots(1-m)}{(1-m)} \\
= & (1-j)(1-m)^{r}-r(1-m)^{r-1}=(1-m)^{r-1}((1-j)(1-m)-r)=0
\end{aligned}
$$

In particular, $T_{4: 3,3,0,0}^{o}$ is singular.

3 Looped-Trees with diameter 5

Lemma 3.1 For non-negative integers $m_{1}, \cdots, m_{r}, n_{1}, \cdots, n_{s}(s \geq 2)$,

$$
\left|T_{5 \div \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|=\left(1-n_{s}\right)\left|T_{5: \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right|-\left|T_{4 ; \cdots, m_{r}}^{o}\right|\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s-1}\right)
$$

Proof. We can write $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}=\left(T_{5 \cdots, \cdots, m_{r} ; \cdots, n_{s}-1}^{o}\right)_{x \sim y^{\circ}}$ (see Figure 7, where x is adjacent to the central vertex of $T_{4: \cdots, n_{s-1}}^{o}$) and apply Lemma 1.1 to get

$$
\left|T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|=\left|T_{5 \cdots, \cdots, m_{r} ; \cdots, n_{s}-1}^{o}\right|-\left|T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right| .
$$

By applying the same argument repeatedly, we have

$$
\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|=\left|T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s-1}, 0}^{o}\right|-n_{s}\left|T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right| .
$$

Now we note that $T_{5: \cdots, m_{r} ; \cdots, n_{s-1}, 0}^{o}=\left(T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right)_{x \sim y^{\circ}}$ (see Figure 8, where y is adjacent to the central vertex x of $T_{4: \cdots, n_{s-1}}^{o}$) and apply Lemma 1.1 to get

Figure 7: $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}=\left(T_{5: \cdots, m_{r} ; \cdots, n_{s}-1}^{o}\right)_{x \sim y^{o}}$

Figure 8: $T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s-1}, 0}^{o}=\left(T_{5: \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right)_{x \sim y^{o}}$

$$
\left|T_{5: \cdots, m_{r} ; \cdots, n_{s-1}, 0}^{o}\right|=\left|T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right|-\left|T_{4: \cdots, m_{r}}^{o}\right|\left|T_{2, n_{1}}^{o}\right|\left|T_{2, n_{2}}^{o}\right| \cdots\left|T_{2, n_{s-1}}^{o}\right| .
$$

Hence,

$$
\left|T_{5 \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|=\left(1-n_{s}\right)\left|T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right|-\left|T_{4 \cdots, m_{r}}^{o}\right|\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s-1}\right) .
$$

Theorem 3.2 For non-negative integers $m_{1}, \cdots, m_{r}, n_{1}, \cdots, n_{s}$,

$$
\left|T_{5 \ldots, m_{r} ; \cdots, n_{s}}^{o}\right|=-\prod_{j=1}^{s}\left(1-n_{j}\right) \prod_{i=1}^{r}\left(1-m_{i}\right)+\left|T_{4 \ldots, m_{r}}^{o}\right|\left|T_{4 \ldots, n_{s}}^{o}\right|
$$

Proof. By induction on s. Let $s=1$. Then, by the same argument as in Lemma 3.1,

$$
\begin{aligned}
& \left|T_{5: \cdots, m_{r} ; n_{1}}^{o}\right|=\left|T_{5: \cdots, m_{r} ; n_{1}-1}^{o}\right|-\left|T_{4: \cdots, m_{r}, 0}^{o}\right|=\left|T_{5 \cdots \cdots, m_{r} ; n_{1}-2}^{o}\right|-2\left|T_{4: \cdots, m_{r}, 0}^{o}\right| \\
= & \cdots=\left|T_{5: \cdots, m_{r}, 0}^{o}\right|-n_{1}\left|T_{4 \cdots \cdots, m_{r}, 0}^{o}\right|=\left|T_{4 \cdots \cdots, m_{r}, 1}^{o}\right|-n_{1}\left|T_{4 \cdots, m_{r}, 0}^{o}\right| \\
= & \left(\left|T_{4: \cdots, m_{r}, 0}^{o}\right|-\left|T_{4: \cdots, m_{r}}^{o}\right|\right)-n_{1}\left|T_{4: \cdots, m_{r}, 0}^{o}\right|=\left(1-n_{1}\right)\left|T_{4: \cdots, m_{r}, 0}^{o}\right|-\left|T_{4: \cdots, m_{r}}^{o}\right| \\
= & \left(1-n_{1}\right)\left(\left|T_{4: \cdots, m_{r}}^{o}\right|-\prod_{i=1}^{r}\left(1-m_{i}\right)\right)-\left|T_{4 \cdots, m_{r}}^{o}\right| \\
= & -\left(1-n_{1}\right) \prod_{i=1}^{r}\left(1-m_{i}\right)-n_{1}\left|T_{4: \cdots, m_{r}}^{o}\right| \\
= & -\left(1-n_{1}\right) \prod_{i=1}^{r}\left(1-m_{i}\right)+\left|T_{4 \cdots \cdots, m_{r}}^{o}\right|\left|T_{4: n_{1}}^{o}\right| .
\end{aligned}
$$

We assume that the formula works for $s-1$. Then by Lemma 3.1 and induction hypothesis, we have

$$
\begin{aligned}
& \left|T_{5: \cdots, m_{r} ; \cdots, n_{n}}^{o}\right| \\
= & \left(1-n_{s}\right)\left|T_{5: \cdots, m_{r} ; \cdots, n_{s-1}}^{o}\right|-\left|T_{4 \cdots, m_{r}}^{o}\right|\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s-1}\right) \\
= & \left(1-n_{s}\right)\left(-\prod_{j=1}^{s-1}\left(1-n_{j}\right) \prod_{i=1}^{r}\left(1-m_{i}\right)+\left|T_{4: \cdots, m_{r}}^{o}\right|\left|T_{4 \cdots, n_{s-1}}^{o}\right|\right) \\
& -\left|T_{4 ; \cdots, m_{r}}^{o}\right|\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s-1}\right) \\
= & -\prod_{j=1}^{s}\left(1-n_{j}\right) \prod_{i=1}^{r}\left(1-m_{i}\right) \\
& +\left|T_{4: \cdots, m_{r}}^{o}\right|\left(\left(1-n_{s}\right)\left|T_{4: \cdots, n_{s-1}}^{o}\right|-\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s-1}\right)\right) \\
= & -\prod_{j=1}^{s}\left(1-n_{j}\right) \prod_{i=1}^{r}\left(1-m_{i}\right)+\left|T_{4: \cdots, m_{r}}^{o}\right|\left|T_{4: \cdots, n_{s}}^{o}\right| .
\end{aligned}
$$

where the last formula is obtained by applying Lemma 2.1.
Theorem 3.3 For non-negative integers $m_{1}, \cdots, m_{r}, n_{1}, \cdots, n_{s}$,

$$
\begin{aligned}
\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|= & \sum_{j=1}^{s} \sum_{i=1}^{r} \frac{\left(1-m_{1}\right) \cdots\left(1-m_{r}\right)\left(1-n_{1}\right) \cdots\left(1-n_{s}\right)}{\left(1-m_{i}\right)\left(1-n_{j}\right)} \\
& -\prod_{j=1}^{s}\left(1-n_{j}\right) \sum_{i=1}^{r} \frac{\left(1-m_{1}\right) \cdots\left(1-m_{r}\right)}{1-m_{i}} \\
& -\prod_{i=1}^{r}\left(1-m_{i}\right) \sum_{j=1}^{s} \frac{\left(1-n_{1}\right) \cdots\left(1-n_{s}\right)}{1-n_{j}}
\end{aligned}
$$

Proof. By simple application of Theorems 3.2 and 2.2.

Theorem 3.4 For positive integers $m_{1}, \cdots, m_{r}, n_{1}, \cdots, n_{s}, T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}$ is a singular graph if and only if at least two distinct m_{i} are 1 or at least two distinct n_{i} are 1.
Proof. If at least two distinct m_{i} are 1, or at least two distinct n_{i} are 1 , then each term of $\left|T_{5: m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}}^{o}\right|$ in Theorem 3.2 is zero and so $\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|=0$. For the converse, we need to consider two cases. (i) If none of m_{i} or n_{j} is 1 , then we just note that three terms $\sum_{j=1}^{s} \sum_{i=1}^{r} *,-\prod_{j=1}^{s}\left(1-n_{j}\right) \sum_{i=1}^{r} *,-\prod_{i=1}^{r}\left(1-m_{i}\right) \sum_{j=1}^{s} *$ in the expression of $\left|T_{5 \cdots, \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|$ have the same sign $(-1)^{r+s}$. Hence, the sum cannot be zero unless each of three terms is zero, which cannot happen. (ii) For the other case, when only one m_{i} or n_{j} is 1 , or only one m_{i} and only one n_{j} are 1 , then

$$
\begin{aligned}
\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right| & =-\prod_{j=1}^{s}\left(1-n_{j}\right) \prod_{i=1}^{r}\left(1-m_{i}\right)+\left|T_{4: \cdots, m_{r}}^{o}\right|\left|T_{4: \cdots, n_{s}}^{o}\right| \\
& =\left|T_{4 \cdots, \cdots, m_{r}}^{o}\right|\left|T_{4: \cdots, n_{s}}^{o}\right|
\end{aligned}
$$

which cannot be zero by Theorem 2.4.
We cannot get the similar version of Theorem 2.5 for $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}$ as we see in the following Examples.
Corollary 3.5 For non-negative integers $m_{1}, m_{2}, \cdots, m_{r}, n_{1}, \cdots, n_{s}$,

$$
\begin{aligned}
& \left|T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s}, 0}^{o}\right| \\
= & -\prod_{i=1}^{r}\left(1-m_{i}\right)\left(\prod_{j=1}^{s}\left(1-n_{j}\right)+\sum_{j=1}^{s} \frac{\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s-1}\right)}{1-n_{j}}\right) \\
& +\left(\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \cdots\left(1-m_{r}\right)}{1-m_{i}}\right) \sum_{j=1}^{s} \frac{\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s-1}\right)}{1-n_{j}}
\end{aligned}
$$

Example $3.1 T_{5}^{o}: \underbrace{m, m, \cdots, m}_{r}: \underbrace{n, n, \cdots, n}_{s}, 0$ is a singular graph if $n+m-s-m n+$ $m s+r s-1=0$.
Proof. By Corollary 3.5 and simple calculation gives

$$
\begin{aligned}
& |T_{5:}^{o} \underbrace{m, m, \cdots, m}_{r} \underbrace{: n, n, \cdots, n}_{s}, 0| \\
= & -(1-m)^{r}\left((1-n)^{s}+s(1-n)^{s-1}\right)+r(1-m)^{r-1} s(1-n)^{s-1} \\
= & -(1-n)^{s-1}(1-m)^{r-1}((1-m)(1-n)+s(1-m)-r s)=0
\end{aligned}
$$

In particular, $T_{5: 3 ; 2,0}^{o}$ is singular.
Corollary 3.6 For non-negative integers $m_{1}, m_{2}, \cdots, m_{r}, n_{1}, \cdots, n_{s}$,

$$
\begin{aligned}
& \left|T_{5: \cdots, m_{r}, 0 ; \cdots, n_{s}, 0}^{o}\right| \\
= & -\prod_{j=1}^{s}\left(1-n_{j}\right) \prod_{i=1}^{r}\left(1-m_{i}\right) \\
& +\left(\sum_{i=1}^{r} \frac{\left(1-m_{1}\right)\left(1-m_{2}\right) \ldots\left(1-m_{r}\right)}{\left(1-n_{i}\right)}\right) \sum_{j=1}^{s} \frac{\left(1-n_{1}\right)\left(1-n_{2}\right) \cdots\left(1-n_{s}\right)}{1-n_{j}} .
\end{aligned}
$$

Example $3.2 T_{5:}^{o} \underbrace{m+1, \cdots, m+1}_{m}, 0 ; \underbrace{n+1, \cdots, n+1}_{n}, 0$ is a singular graph.
Proof. By Corollary 3.6 and simple calculation, we have

$$
\begin{aligned}
& \mid T_{5:}^{o} \underbrace{m+1, m+1, \cdots, m+1}_{m}, 0 ; \underbrace{n+1, n+1, \cdots, n+1}_{n}, 0 \\
= & -(-n)^{n}(-m)^{m}+n(-n)^{n-1} m(-m)^{m-1}=0 .
\end{aligned}
$$

In particular, $T_{5: 2,0 ; 2,0}^{o}$ is singular.
Corollary 3.7 Let $T_{4: \cdots, m_{r}}^{o}$ and $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}$ be non-singular where $m_{1}, m_{2}, \cdots, m_{r}$, $n_{1}, n_{2}, \cdots, n_{s}$ are positive integers. Then
(i) $\left|T_{4 \ldots, m_{r}}^{o}\right|$ is positive if and only if r is even and,
(ii) $\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right|$ is positive if and only if r and s have the same parity.

4 The complement of a tree with diameter 5

We now find the determinant of a tree complement with diameter 5 in terms of determinants of looped-trees. Let G be a graph whose vertices are v_{1}, v_{2}, \ldots and let every edge be associated with the variable w_{i}. Then we can construct a variable adjacency matrix $A(G, w)$ for the graph G as follows: the (i, j) entry is w_{k} if and only if $\left\{v_{i}, v_{j}\right\} \in E(G)$ and the variable w_{k} is associated with edge $\left\{v_{i}, v_{j}\right\}$, and this entry is 0 if $\left\{v_{i}, v_{j}\right\} \notin E(G)$. We note that the ordinary adjacency matrix $A(G)$ is obtained from $A(G, w)$ by substituting $w_{k}=1$ for each of the variables for the edges of G. Let G be a graph. An (ordinary) linear subgraph of G is a spanning subgraph whose components are lines or cycles. Further, let n be the number of linear subgraphs of G and let G_{i} be the $i^{\text {th }}$ linear subgraph. In [4], Harary showed the following theorem. We note that a simple observation gives that the theorem works for our case in which the components of a linear subgraph contain loops.

Theorem 4.1 [4] Let G be a graph. Then

$$
|A(G, w)|=\sum_{i=1}^{n}\left|A\left(G_{i}, w\right)\right|
$$

and

$$
|A(G, w)|=\sum_{i=1}^{n}(-1)^{e_{i}} 2^{c_{i}} \prod_{w_{k} \in L_{i}} w_{k}^{2} \prod_{w_{j} \in M_{i}} w_{j}
$$

where (1) e_{i} is the number of even components of G_{i}, (2) c_{i} is the number of components of G_{i} containing more than two points, and thus consisting of a single undirected cycle, (3) L_{i} is the set of components of G_{i} consisting of two points and the line joining them, and (4) M_{i} is the remaining components of G_{i} each of which is a cycle.

For the complete graph $K_{\ell}^{(1)}$ of order $\ell(\geq 1)$ with 1 loop, and a graph G of order n, the following property was shown in [6], where $K_{\ell}^{(1)}+\bar{G}^{0}$ means the join of $K_{\ell}^{(1)}$ and \bar{G}^{0}.

Lemma 4.2 [6] Let G be a graph of order n. Then $|A(G)|=(-1)^{n+\ell-1} \mid A\left(K_{\ell}^{(1)}+\right.$ $\left.\bar{G}^{0}\right) \mid$.

Let G be a graph, $x_{0}, y_{0} \in V(G)$ and $z \notin V(G)$. By $\left.G\right\rangle^{x} z^{o}$, we mean the graph with $\left.V(G\rangle_{y}^{x} z^{o}\right)=V(G) \cup\{z\}$ and $\left.E(G\rangle_{y}^{x} z^{o}\right)=E(G) \cup\{\{x, z\},\{y, z\},\{z, z\}\}$.

Lemma 4.3 For non-negative integers $m_{1}, m_{2}, \cdots, m_{r}, n_{1}, n_{2}, \cdots, n_{s}$,

$$
\left|\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}\right|=(-1)^{t}\left|A\left(T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}{ }_{y}^{x} z^{o}, w\right)\right|,
$$

where the values associated with a loop at z, the edge $\{x, z\}$ and the edge $\{y, z\}$ are $1-(r+s), 1-r$ and $1-s$ respectively, and every other edge has the value 1 , and t is the order of $\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}$.

Figure 9: $T_{5 \cdots, \cdots, m_{r} ; \cdots, n_{s}}^{\circ}+z^{o}$
Proof. From Lemma 4.2, $\left|\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}\right|=(-1)^{t}\left|T_{5 \cdots, m_{r} ; \cdots, n_{s}}^{o}+z^{o}\right|$, where t is the order of $T_{5: \cdots, m_{r} ; \cdots, n_{s}}$. (See Figure 9, where the double-dotted line between z and $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}$ means that z is adjacent to every point of $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}$. We note that the adjacency matrix of $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}+z^{o}$ is of the following form:

$$
\left.\begin{array}{ccccccccccc}
& x & y & x_{1} & \cdots & x_{r} & y_{1} & \cdots & y_{s} & \cdots & z \\
x & 1 & 1 & 1 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 1 \\
y & 1 & 1 & 0 & \cdots & 0 & 1 & \cdots & 1 & \cdots & 1 \\
x_{1} & 1 & 0 & & & & & & & & 1 \\
\vdots & \vdots & \vdots & & & & & & & & \vdots \\
x_{r} & 1 & 0 & & & & & & & & 1 \\
y_{1} & 0 & 1 & & & & & & & & 1 \\
\vdots & \vdots & \vdots & & & & & & & & \vdots \\
y_{s} & 0 & 1 & & & & & & & & 1 \\
\vdots & \vdots & \vdots & & & & & & & & \vdots \\
z & 1 & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & \cdots & 1
\end{array}\right)
$$

By subtracting rows corresponding to x_{1}, \ldots, x_{r} from the last row corresponding to z, we have

$$
\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}+z^{o}\right|=\operatorname{det}\left(\begin{array}{ccccc|c}
x & y & \cdots & \cdots & \cdots & z \\
1 & 1 & \cdots & \cdots & \cdots & 1 \\
1 & 1 & & & & 1 \\
\vdots & \vdots & & & & \vdots \\
\vdots & \vdots & & & & \vdots \\
\hline 1-r & 1 & w_{3} & \cdots & w_{t} & 1-r
\end{array}\right)
$$

where $w_{i}=0$ (resp. 1) if w_{i} is an element of a column corresponding to a vertex in $T_{2: m_{i}}^{o}$ (resp. $T_{2: n_{i}}^{o}$). Similarly, by subtracting rows corresponding to y_{1}, \ldots, y_{s} from the last row corresponding to z, we have

$$
\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}+z^{o}\right|=\operatorname{det}\left(\begin{array}{ccccc|c}
x & y & \cdots & \cdots & \cdots & z \\
1 & 1 & \cdots & \cdots & \cdots & 1 \\
1 & 1 & & & & 1 \\
\vdots & \vdots & & & & \vdots \\
\vdots & \vdots & & & & \vdots \\
\hline 1-r & 1-s & 0 & \cdots & 0 & 1-(r+s)
\end{array}\right)
$$

We now subtract columns corresponding to $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$ from the last column to get

$$
\begin{aligned}
\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}+z^{o}\right| & =\operatorname{det}\left(\begin{array}{ccccc|c}
x & y & \cdots & \cdots & \cdots & z \\
1 & 1 & \cdots & \cdots & \cdots & 1-r \\
1 & 1 & & & & 1-s \\
\vdots & \vdots & & & & 0 \\
\vdots & \vdots & & & & \vdots \\
\vdots & \vdots & & & & 0 \\
\hline 1-r & 1-s & 0 & \cdots & 0 & 1-(r+s)
\end{array}\right) \\
& =\left\lvert\, A\left(T_{\left.5 \cdots \cdots, m_{r} ; \cdots, n_{s}\right\rangle}^{\substack{x \\
y}} \begin{array}{l}
\text { z } \left.z^{o}, w\right) \mid
\end{array}\right.\right. \\
&
\end{aligned}
$$

where the corresponding graph $\left.T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right\rangle_{y}^{x} z^{o}$ is depicted in Figure 10.

Figure 10: $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{\circ}>_{y}^{x} z^{o}$

Theorem 4.4 For non-negative integers $m_{1}, m_{2}, \cdots, m_{r}, n_{1}, n_{2}, \cdots, n_{s}$, then

$$
\begin{aligned}
(-1)^{t}\left|\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}\right|= & 2(1-r)(1-s) \prod_{i=1}^{r}\left(1-m_{i}\right) \prod_{i=1}^{s}\left(1-n_{i}\right) \\
& -(1-r)^{2} \prod_{i=1}^{r}\left(1-m_{i}\right)\left|T_{4 ; \cdots n_{s}}^{o}\right|-(1-s)^{2} \prod_{i=1}^{s}\left(1-n_{i}\right)\left|T_{4 \cdots m_{r}}^{o}\right| \\
& +(1-(r+s))\left|T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right| .
\end{aligned}
$$

where t is the order of $\overline{T_{5: \ldots, m_{r} ; \ldots, n_{s}}}$.
Proof. By applying Lemma 4.3, we have

$$
\left|\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}\right|=(-1)^{t}\left|A\left(T_{5 \cdots \cdots, m_{r} ; \cdots, n_{s}}^{o}{ }_{y}^{x} z^{o}, w\right)\right|,
$$

where t is the order of $\overline{T_{5: \ldots, m_{r} ; \ldots, n_{s}}}$. We partition the set of all linear subgraphs of $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}{ }_{y}^{x} z^{o}$ into 4 classes $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}$, which consists of all linear subgraphs containing a cycle $\{x, y, z\}$, a line $\{x, z\}$, and a line $\{y, z\}$ respectively, and \mathcal{G}_{4} consisting of
all linear subgraphs containing neither $\{x, z\}$ or $\{y, z\}$ nor a cycle $\{x, y, z\}$. Thanks to Theorem 4.1, we have

$$
\left.(-1)^{t} \mid A\left(T_{5 \ldots, \cdots, m_{r} ; \cdots, n_{s}}^{o}\right\rangle_{y}^{x} z^{o}\right) \mid=\sum_{i=1}^{4}\left(\sum_{H \in \mathcal{G}_{i}}|A(H, w)|\right) .
$$

Let $H \in \mathcal{G}_{1}$. We note that the determinant of H is independent of the ordering of the vertices of $\left.T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}\right\rangle_{y}^{x} z^{o}$, and so we may separate the vertices of a cycle $\{x, y, z\}$ so that the variable adjacency matrix is decomposed into diagonal block submatrices as follows:

$$
A(H, w)=\begin{aligned}
& x \\
& y \\
& z
\end{aligned}\left(\begin{array}{ccc|c}
x & y & z & \\
0 & 1 & 1-r & \\
1 & 0 & 1-s & \\
1-r & 1-s & 0 & \\
\hline & & & D_{H}
\end{array}\right)
$$

where D_{H} is a variable adjacency matrix of the complement of a cycle $\{x, y, z\}$ in H. Moreover, $\sum_{H \in \mathcal{G}_{i}}\left|D_{H}\right|$ is the determinant of $T_{m_{1}}^{o} \cup \cdots \cup T_{m_{r}}^{o} \cup T_{n_{1}}^{o} \cup \cdots \cup T_{n_{s}}^{o}$. Hence, we have

$$
\begin{aligned}
\sum_{H \in \mathcal{G}_{1}}|A(H, x)| & =2(1-r)(1-s)\left|T_{m_{1}}^{o}\right| \ldots\left|T_{m_{r}}^{o}\right|\left|T_{n_{1}}^{o}\right| \ldots\left|T_{n_{s}}^{o}\right| \\
& =2(1-r)(1-s) \prod_{i=1}^{r}\left(1-m_{i}\right) \prod_{i=1}^{s}\left(1-n_{i}\right) .
\end{aligned}
$$

We apply the same argument for $\mathcal{G}_{2}, \mathcal{G}_{3}$, and \mathcal{G}_{4} to get

$$
\begin{aligned}
\sum_{H \in \mathcal{G}_{2}}|A(H, x)| & =-(1-r)^{2} \prod_{i=1}^{r}\left(1-m_{i}\right)\left|T_{4 \ldots, n_{s}}^{o}\right|, \\
\sum_{H \in \mathcal{G}_{3}}|A(H, x)| & =-(1-s)^{2} \prod_{i=1}^{s}\left(1-n_{s}\right)\left|T_{4 \ldots, m_{r}}^{o}\right|,
\end{aligned}
$$

and

$$
\sum_{H \in \mathcal{G}_{4}}|A(H, x)|=(1-(r+s))\left|T_{5 \ldots, \ldots, m_{r} ; \ldots, n_{s}}^{o}\right| .
$$

Theorem 4.5 For positive integers $m_{1}, m_{2}, \ldots, m_{r}, n_{1}, n_{2}, \ldots, n_{s}, \overline{T_{5} \ldots, \ldots, m_{r} ; \ldots, n_{s}}$ is singular if and only if $T_{5: \ldots, m_{r} ; \ldots, n_{s}}^{o}$ is singular, that is, at least two distinct m_{i} are 1 or at least two distinct n_{i} are 1 .

Proof. For the simplification, we suppress $\left(1-m_{i}\right)$ and $\left(1-n_{j}\right)$ in $\left|\overline{T_{5}}\right|=\left|\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}\right|$. We note that by Theorems 4.4, 2.2 and 3.2,

$$
\begin{aligned}
&(-1)^{t}\left|\overline{T_{5}}\right| \\
&= 2(1-r)(1-s) \prod^{r} \prod^{s} *-(1-r)^{2} \prod^{r} *\left|T_{4: n_{s}}^{o}\right|-(1-s)^{2} \prod^{s} *\left|T_{4: m_{r}}^{o}\right| \\
&+(1-(r+s)), T_{\substack{o, m_{r} ; \cdots, n_{s} \\
r}}^{r} \\
& 2(1-r)(1-s) \prod^{r} \prod^{s} * \\
&-(1-r)^{2} \prod^{r} *\left\{\prod^{s} *-\sum^{s} *\right\}-(1-s)^{2} \prod^{s} *\left\{\prod^{r} *-\sum^{r} *\right\} \\
&+(1-(r+s))\left\{\sum^{s} * \sum^{r} *-\prod^{s} * \sum^{r} *-\prod^{r} * \sum^{s} *\right\} \\
&=-(r-s)^{2} \prod^{r} \prod^{s} *+\left(r^{2}-r+s\right) \prod^{r} * \sum^{s} *+\left(s^{2}-s+r\right) \prod^{s} * \sum^{r} * \\
&+(1-(r+s)) \sum^{r} * \sum^{r} * .
\end{aligned}
$$

If $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}$ is singular, then at least two distinct m_{i} are 1 or at least two distinct n_{i} are 1. Therefore, in the expression of $\left|\overline{T_{5}}\right|$, block terms $\prod^{r} \prod^{s} *, \prod^{r} * \sum^{s} *, \prod^{s} * \sum^{r} *$, and $\sum^{s} * \sum^{r} *$ clearly vanish and so $\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}$ is singular. For the converse, we assume that $T_{5: \cdots, m_{r} ; \cdots, n_{s}}^{o}$ is non-singular. We need to consider three cases: (i) only one m_{i} or n_{j} is 1 , (ii) only one m_{i} and only one n_{j} are 1 , (iii) neither m_{i} nor n_{j} is 1 . If only one m_{i} is 1 , then

$$
\begin{aligned}
(-1)^{t}\left|\overline{T_{5}}\right|= & -(r-s)^{2} \prod^{r} * \prod_{s}^{s} *+\left(r^{2}-r+s\right) \prod^{r} * \sum_{s}^{s} * \\
& +\left(s^{2}-s+r\right) \prod^{s} * \sum^{r} *+(1-(r+s)) \sum^{r} * \sum^{r} * \\
= & \left(s^{2}-s+r\right) \prod^{r} * \sum^{r} *+(1-(r+s)) \sum^{r} * \sum^{r} *
\end{aligned}
$$

where two block terms have the same sign $(-1)^{s+r+1}$ and so the sum can not be zero. The same argument can be applied for the case that only one n_{j} is 1 . If only one m_{i} and only one n_{j} are 1 , then

$$
\begin{aligned}
(-1)^{t}\left|\overline{T_{5}}\right|= & -(r-s)^{2} \prod^{r} \prod_{s}^{s} *+\left(r^{2}-r+s\right) \prod^{r} * \sum^{s} * \\
& +\left(s^{2}-s+r\right) \prod_{s}^{s} * \sum_{r}^{r} *+(1-(r+s)) \sum^{r} * \sum^{r} * \\
= & (1-(r+s)) \sum^{s} * \sum^{r} *
\end{aligned}
$$

which is nonzero. If none of m_{i} nor n_{j} is 1 , then

$$
\begin{aligned}
(-1)^{t}\left|\overline{T_{5}}\right|= & -(r-s)^{2} \prod^{r} \prod_{s}^{s} *+\left(r^{2}-r+s\right) \prod^{r} * \sum^{s} * \\
& +\left(s^{2}-s+r\right) \prod^{s} * \sum^{r} *+(1-(r+s)) \sum^{r} * \sum^{r} *
\end{aligned}
$$

where each block term has the same sign $(-1)^{r+s+1}$. Hence, $\left|\overline{T_{5}}\right|$ does not vanish and so $\overline{T_{5: \cdots, m_{r} ; \cdots, n_{s}}}$ is non-singular.

References

[1] S. V. Gervacio, Trees with diameter less than 5 and non-singular complement, Discrete Math. 151(1996), 91-97.
[2] S.V. Gervacio and H. M. Rara, Non-singular Trees, Very Often Graphs Vol. 2 (Ateneo de Manila University, March 1989).
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[4] F. Harary, The determinant of the adjacency matrix of a graph, SIAM Review 4(3) (1962), 202-210.
[5] D. P. Jacobs and V. Trevisan, The Determinant of a Tree's Neighborhood Matrix, Linear Alg. Appl. 256 (1997), 235-249.
[6] N. Pipattanajinda, Graph with non-singularity, Far East J. Math. Sciences 95 (2014), 1-17.
[7] N. Pipattanajinda and Y. Kim, Trees with diameter 5 and non-singular complement, Adv. Appl. Discrete Math. (to appear).

