A Bollobás-type theorem for affine subspaces

Gábor Hegedüs

Antal Bejczy Center for Intelligent Robotics Kiscelli utca 82 Budapest, H-1032 Hungary

Abstract

Let W denote the *n*-dimensional affine space over the finite field \mathbb{F}_q . We prove here a Bollobás-type upper bound in the case of the set of affine subspaces. We give a construction of a pair of families of affine subspaces, which shows that our result is almost sharp.

1 Introduction

First we introduce some notation.

In the following let $q = r^{\alpha}$ be a fixed prime power, $n \ge 1$ be a nonnegative integer. Let W denote the *n*-dimensional affine space over the finite field \mathbb{F}_q .

Bollobás proved in [2] the following famous result.

Theorem 1.1 Let A_1, \ldots, A_m and B_1, \ldots, B_m be two families of sets such that $A_i \cap B_j = \emptyset$ if and only if i = j. Then

$$\sum_{i=1}^{m} \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \le 1.$$

In particular if $|A_i| = r$ and $|B_i| = s$ for each $1 \le i \le m$, then

$$m \le \binom{r+s}{r}.$$

The following strengthening of the uniform version of Bollobás's theorem was proved by Lovász in [4] using tensor product methods.

Theorem 1.2 If $\mathcal{F} = \{A_1, \ldots, A_m\}$ is an r-uniform family and $\mathcal{G} = \{B_1, \ldots, B_m\}$ is an s-uniform family such that

(a)
$$A_i \cap B_i = \emptyset$$

for each $1 \leq i \leq m$ and

(b)
$$A_i \cap B_j \neq \emptyset$$

if $i < j \ (1 \leq i, j \leq m)$, then

$$m \le \binom{r+s}{r}.$$

Lovász also proved the following generalization of Bollobás' theorem for subspaces of a vector space in [5]:

Theorem 1.3 Let \mathbb{F} be an arbitrary field and V be an n-dimensional vector space over the field \mathbb{F} . Let U_1, \ldots, U_m denote r-dimensional subspaces of V and V_1, \ldots, V_m denote s-dimensional subspaces of the vector space V. Assume that

$$(a) U_i \cap V_i = \{\underline{0}\}$$

for each $1 \leq i \leq m$ and

(b)
$$U_i \cap V_j \neq \{\underline{0}\}$$

whenever $i < j \ (1 \leq i, j \leq m)$. Then

$$m \le \binom{r+s}{r}.$$

In the following we give an affine version of Theorem 1.3.

We say that a pair of families of affine subspaces $(A_i, B_i)_{1 \le i \le m}$ of W is crossintersecting if

1. $A_i \cap B_i = \emptyset$,

for each $1 \leq i \leq m$ and

2.
$$A_i \cap B_j \neq \emptyset$$

whenever i < j, $(1 \le i, j \le m)$.

Let m(n,q) denote the maximal size of a cross-intersecting pair of families of affine subspaces $(A_i, B_i)_{1 \le i \le n}$.

Our main result is the following modification of Lovász' Theorem 1.3:

Theorem 1.4 Let A_1, \ldots, A_m and B_1, \ldots, B_m be affine subspaces of an n-dimensional affine space W over the finite field \mathbb{F}_q , where $q \neq 2$. Assume that $(A_i, B_i)_{1 \leq i \leq m}$ is cross-intersecting. Then

 $m \le q^n + 1,$

Remark. Theorem 1.4 means that

$$m(n,q) \le q^n + 1.$$

Remark. Our result is a strengthening of Theorem 1.2 in the case of affine hyperplanes.

In Section 2 we prove Theorem 1.4. In the proof we use the polynomial subspace method (see [1]).

In Section 3 we give a simple construction, which shows that $m(n,q) \ge \frac{q^n-1}{q-1}$. Finally in Section 4 we collect some open problems.

2 The proof of the main result

We use the following obvious observation in our proof.

Proposition 2.1 The intersection of a family of affine subspaces is either empty or equal to a translate of the intersection of their corresponding vector subspaces. \Box

Recall that our main result was the following:

Theorem 2.2 Let A_1, \ldots, A_m and B_1, \ldots, B_m be affine subspaces of an n-dimensional affine space W over the finite field \mathbb{F}_q , where $q \neq 2$. Assume that $(A_i, B_i)_{1 \leq i \leq m}$ is cross-intersecting. Then

$$m \le q^n + 1,$$

Proof. Let p be an arbitrary, but fixed prime divisor of q-1. Since $q \neq 2$, hence p > 1. We can assign for each subset $F \subseteq \mathbb{F}_q^n$ its characteristic vector $\underline{v}_F \in \{0,1\}^{q^n} \subseteq \mathbb{F}_p^{q^n}$ such that $\underline{v}_F(s) = 1$ iff $s \in F$. Here $\underline{v}_F(s)$ denotes the s^{th} coordinate of the vector \underline{v}_F .

Let $1 \leq j \leq m$ be fixed. Let $\underline{v_j} = (\underline{v_j}(1), \dots, \underline{v_j}(q^n))$ denote the characteristic vector of the affine subspace A_j and let $\underline{w_j} = (\underline{w_j}(1), \dots, \underline{w_j}(q^n))$ denote the characteristic vector of the affine subspace B_j . Here $\underline{v_j}(i)$ denotes the i^{th} coordinate of the vector v_j . Similarly, $w_j(i)$ denotes the i^{th} coordinate of the vector w_j .

Consider the polynomials

$$P_i(x_1, \dots, x_{q^n}) := 1 - (\sum_{k=1}^{q^n} \underline{v_j}(k) x_k) \in \mathbb{F}_p[x_1, \dots, x_{q^n}]$$

for each $1 \leq i \leq m$.

We claim that the polynomials $\{P_i : 1 \leq i \leq m\}$ are linearly independent functions over \mathbb{F}_p . Namely

$$P_i(\underline{w_i}) = 1 - \sum_{k=1}^{q^n} \underline{v_i}(k) \underline{w_i}(k) = 1 - |A_i \cap B_i| = 1$$

and

$$P_{i}(\underline{w_{j}}) = 1 - \sum_{k=1}^{q^{n}} \underline{v_{i}}(k) \underline{w_{j}}(k) = 1 - |A_{i} \cap B_{j}| = 1 - q^{t},$$
(1)

where $t \ge 0$, because $(A_i, B_i)_{1 \le i \le m}$ is a cross-intersecting pair of families of affine subspaces and hence we can apply Proposition 2.1. Since

 $q \equiv 1 \pmod{p},$

thus

$$1 - q^t \equiv 0 \pmod{p}.$$
 (2)

Consider a linear combination

$$\sum_{r=1}^{m} \lambda_r P_r = 0,$$

where $\lambda_r \in \mathbb{F}_p$. It is easy to prove that $\lambda_r = 0$ for each $1 \leq r \leq m$. Namely for contradiction, suppose that there exists a nontrivial linear relation

$$\sum_{s=1}^{m} \lambda_s P_s = 0. \tag{3}$$

Let s_0 be the smallest s such that $\lambda_s \neq 0$. Substitute \underline{w}_{s_0} for the variable of each side of (3). Then by equations (1) and (2), all but the s_0^{th} term vanish, and what remains is

$$\lambda_{s_0} P_{s_0}(w_{s_0}) = 0.$$

But $P_{s_0}(w_{s_0}) \neq 0$ implies that $\lambda_{s_0} = 0$, a contradiction. Hence the polynomials P_1, \ldots, P_m are linearly independent functions over \mathbb{F}_p .

We infer that the linearly independent polynomials $\{P_1, \ldots, P_m\}$ are in the \mathbb{F}_p space spanned by the monomials

$$\{x^u \in \mathbb{F}_p[x_1, \dots, x_{q^n}] : \deg(x^u) \le 1\}.$$

Clearly

$$|\{x^u: \deg(x^u) \le 1\}| \le q^n + 1,$$

hence

$$m \leq q^n + 1$$

which was to be proved.

3 A simple construction

We use in our contruction the following simple proposition.

Proposition 3.1 Let F_j be arbitrary affine subspaces for each $1 \leq j \leq m$. Let $G_j := \underline{\alpha_j} + F_j, \text{ where } \underline{\alpha_j} \notin F_j. \text{ Then } F_i \cap G_j \neq \emptyset \text{ iff } \underline{\alpha_j} \in F_i - F_j.$

Proof. First suppose that $\alpha_j \in F_i - F_j$. Then we can write α_j into the form

$$\underline{\alpha_j} = \underline{f_i} - \underline{f_j},$$

where $\underline{f_i} \in F_i$ and $\underline{f_j} \in F_j$. Hence $\underline{f_i} = \underline{\alpha_j} + \underline{f_j} \in \underline{\alpha_j} + F_j = G_j$. On the other hand, suppose that $F_i \cap G_j \neq \emptyset$. Let $\underline{v} \in F_i \cap G_j$, i.e., $\underline{v} \in F_i$ and $\underline{v} \in \underline{\alpha_j} + F_j$. Then there exists $\underline{f_j} \in F_j$ such that $\underline{v} = \underline{\alpha_j} + \underline{f_j}$ by definition. Hence $\underline{\alpha_j} = \underline{v} - \underline{f_j} \in F_i - F_j$.

265

Proposition 3.2 Let $n \ge 1$ and q be an arbitrary prime power. Then

$$m(n,q) \ge \frac{q^n - 1}{q - 1}.$$

Proof. Let $m = \frac{q^n-1}{q-1}$. We give a concrete cross-intersecting pair of families of affine subspaces $\{A_1, \ldots, A_m\}$ and $\{B_1, \ldots, B_m\}$ of an *n*-dimensional affine space W over the finite field \mathbb{F}_q . Let

$$\mathcal{H} = \{H_1, \dots, H_m\}$$

denote an enumeration of the set of hyperplanes of the vector space \mathbb{F}_q^n . It is easy to see that $m = \frac{q^n - 1}{q - 1}$. For each $1 \leq i \leq m$ we fix a vector $\underline{\beta_i} \in \mathbb{F}_q^n \setminus H_i$. Define

$$A_i := H_i$$

and

$$B_i := H_i + \beta_i.$$

Clearly A_i, B_i are affine subspaces of W for each $1 \le i \le m$.

Since $\underline{\beta_i} \notin H_i$ for each $1 \leq i \leq m$, it follows that $A_i \cap B_i = \emptyset$ by the definition of A_i and B_i .

On the other hand, since $\underline{\beta}_i \in H_i - H_j = \mathbb{F}_q^n$, it follows from Proposition 3.1 that $A_i \cap B_j \neq \emptyset$ for each $1 \leq i < \overline{j} \leq m$.

4 Open problems

Here we collect some interesting open problems.

Open problem 1: What can we say about m(n, 2)? Open problem 2: What is the precise value of m(n, q), if q > 2?

Finally we conjecture the following projective version of Theorem 1.4:

Conjecture 1 Let \mathbb{F} be an arbitrary field. Let A_1, \ldots, A_m and B_1, \ldots, B_m be projective subspaces of an n-dimensional projective space W over the field \mathbb{F} . Assume that $(A_i, B_i)_{1 \leq i \leq m}$ is cross-intersecting (i.e. $A_i \cap B_i = \emptyset$ for each $1 \leq i \leq m$ and $A_i \cap B_j \neq \emptyset$ whenever $1 \leq i < j \leq m$). Then

$$m \le 2^{n+1} - 2.$$

References

- [1] L. Babai and P. Frankl, *Linear algebra methods in combinatorics*, Sept. 1992.
- [2] B. Bollobás, On generalized graphs, Acta Mathematica Hungarica 16 (3) (1965), 447-452.

- [3] Z. Füredi, Geometric solution of an intersection problem for two hypergraphs, European J. Combin. 5 (1984), 133–136.
- [4] L. Lovász, Flats in matroids and geometric graphs, in: Combinatorial surveys, Proc. 6th British Comb. Conf., Egham 1977, Acad. Press, London 1977, 45–86.
- [5] L. Lovász, Topological and algebraic methods in graph theory, in: Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) 1979, 1–14.
- [6] P. Pudlák and V. Rödl, A combinatorial approach to complexity, *Combinatorica* 12 (1992), 221–226.
- [7] Zs. Tuza, Application of Set-Pair Method in Extremal Hypergraph Theory, in: "Extremal problems for Finite Sets", *Bolyai Society Mathematical Studies* 3, János Bolyai Math. Soc., Budapest (1994), 479–514.

(Received 11 Feb 2015)