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Abstract

Let W denote the n-dimensional affine space over the finite field Fq. We
prove here a Bollobás-type upper bound in the case of the set of affine
subspaces. We give a construction of a pair of families of affine subspaces,
which shows that our result is almost sharp.

1 Introduction

First we introduce some notation.
In the following let q = rα be a fixed prime power, n ≥ 1 be a nonnegative integer.

Let W denote the n-dimensional affine space over the finite field Fq.
Bollobás proved in [2] the following famous result.

Theorem 1.1 Let A1, . . . , Am and B1, . . . , Bm be two families of sets such that Ai∩
Bj = ∅ if and only if i = j. Then

m∑
i=1

1(|Ai|+|Bi|
|Ai|

) ≤ 1.

In particular if |Ai| = r and |Bi| = s for each 1 ≤ i ≤ m, then

m ≤
(
r + s

r

)
.

The following strengthening of the uniform version of Bollobás’s theorem was
proved by Lovász in [4] using tensor product methods.

Theorem 1.2 If F = {A1, . . . , Am} is an r-uniform family and G = {B1, . . . , Bm}
is an s-uniform family such that

(a) Ai ∩Bi = ∅
for each 1 ≤ i ≤ m and

(b) Ai ∩ Bj �= ∅
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if i < j (1 ≤ i, j ≤ m), then

m ≤
(
r + s

r

)
.

Lovász also proved the following generalization of Bollobás’ theorem for subspaces
of a vector space in [5]:

Theorem 1.3 Let F be an arbitrary field and V be an n-dimensional vector space
over the field F. Let U1, . . . , Um denote r-dimensional subspaces of V and V1, . . . , Vm

denote s-dimensional subspaces of the vector space V . Assume that

(a) Ui ∩ Vi = {0}
for each 1 ≤ i ≤ m and

(b) Ui ∩ Vj �= {0}
whenever i < j (1 ≤ i, j ≤ m). Then

m ≤
(
r + s

r

)
.

In the following we give an affine version of Theorem 1.3.
We say that a pair of families of affine subspaces (Ai, Bi)1≤i≤m of W is cross–

intersecting if
1. Ai ∩Bi = ∅,

for each 1 ≤ i ≤ m and
2. Ai ∩ Bj �= ∅

whenever i < j, (1 ≤ i, j ≤ m).

Let m(n, q) denote the maximal size of a cross–intersecting pair of families of
affine subspaces (Ai, Bi)1≤i≤n.

Our main result is the following modification of Lovász’ Theorem 1.3:

Theorem 1.4 Let A1, . . . , Am and B1, . . . , Bm be affine subspaces of an n-dimens-
ional affine space W over the finite field Fq, where q �= 2. Assume that (Ai, Bi)1≤i≤m

is cross–intersecting. Then
m ≤ qn + 1,

Remark. Theorem 1.4 means that

m(n, q) ≤ qn + 1.

Remark. Our result is a strengthening of Theorem 1.2 in the case of affine hyper-
planes.

In Section 2 we prove Theorem 1.4. In the proof we use the polynomial subspace
method (see [1]).

In Section 3 we give a simple construction, which shows that m(n, q) ≥ qn−1
q−1

.
Finally in Section 4 we collect some open problems.
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2 The proof of the main result

We use the following obvious observation in our proof.

Proposition 2.1 The intersection of a family of affine subspaces is either empty or
equal to a translate of the intersection of their corresponding vector subspaces.

Recall that our main result was the following:

Theorem 2.2 Let A1, . . . , Am and B1, . . . , Bm be affine subspaces of an n-dimens-
ional affine space W over the finite field Fq, where q �= 2. Assume that (Ai, Bi)1≤i≤m

is cross–intersecting. Then
m ≤ qn + 1,

Proof. Let p be an arbitrary, but fixed prime divisor of q − 1. Since q �= 2, hence
p > 1. We can assign for each subset F ⊆ F

n
q its characteristic vector vF ∈ {0, 1}qn ⊆

F
qn

p such that vF (s) = 1 iff s ∈ F . Here vF (s) denotes the s
th coordinate of the vector

vF .
Let 1 ≤ j ≤ m be fixed. Let vj = (vj(1), . . . , vj(q

n)) denote the characteristic

vector of the affine subspace Aj and let wj = (wj(1), . . . , wj(q
n)) denote the charac-

teristic vector of the affine subspace Bj. Here vj(i) denotes the ith coordinate of the

vector vj . Similarly, wj(i) denotes the ith coordinate of the vector wj.
Consider the polynomials

Pi(x1, . . . , xqn) := 1− (

qn∑
k=1

vj(k)xk) ∈ Fp[x1, . . . , xqn ]

for each 1 ≤ i ≤ m.
We claim that the polynomials {Pi : 1 ≤ i ≤ m} are linearly independent

functions over Fp. Namely

Pi(wi) = 1−
qn∑
k=1

vi(k)wi(k) = 1− |Ai ∩Bi| = 1

and

Pi(wj) = 1−
qn∑
k=1

vi(k)wj(k) = 1− |Ai ∩ Bj| = 1− qt, (1)

where t ≥ 0, because (Ai, Bi)1≤i≤m is a cross–intersecting pair of families of affine
subspaces and hence we can apply Proposition 2.1. Since

q ≡ 1 (mod p),

thus
1− qt ≡ 0 (mod p). (2)
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Consider a linear combination
m∑
r=1

λrPr = 0,

where λr ∈ Fp. It is easy to prove that λr = 0 for each 1≤ r ≤ m. Namely for
contradiction, suppose that there exists a nontrivial linear relation

m∑
s=1

λsPs = 0. (3)

Let s0 be the smallest s such that λs �= 0. Substitute ws0 for the variable of each

side of (3). Then by equations (1) and (2), all but the sth0 term vanish, and what
remains is

λs0Ps0(ws0) = 0.

But Ps0(ws0) �= 0 implies that λs0 = 0, a contradiction. Hence the polynomials
P1, . . . , Pm are linearly independent functions over Fp.

We infer that the linearly independent polynomials {P1, . . . , Pm} are in the Fp-
space spanned by the monomials

{xu ∈ Fp[x1, . . . , xqn] : deg(xu) ≤ 1}.

Clearly
|{xu : deg(xu) ≤ 1}| ≤ qn + 1,

hence
m ≤ qn + 1,

which was to be proved.

3 A simple construction

We use in our contruction the following simple proposition.

Proposition 3.1 Let Fj be arbitrary affine subspaces for each 1 ≤ j ≤ m. Let
Gj := αj + Fj, where αj /∈ Fj. Then Fi ∩Gj �= ∅ iff αj ∈ Fi − Fj.

Proof. First suppose that αj ∈ Fi − Fj . Then we can write αj into the form

αj = fi − fj ,

where fi ∈ Fi and fj ∈ Fj . Hence fi = αj + fj ∈ αj + Fj = Gj .

On the other hand, suppose that Fi ∩ Gj �= ∅. Let v ∈ Fi ∩ Gj, i.e., v ∈ Fi and
v ∈ αj + Fj . Then there exists fj ∈ Fj such that v = αj + fjby definition. Hence
αj = v − fj ∈ Fi − Fj .
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Proposition 3.2 Let n ≥ 1 and q be an arbitrary prime power. Then

m(n, q) ≥ qn − 1

q − 1
.

Proof. Let m = qn−1
q−1

. We give a concrete cross–intersecting pair of families of affine

subspaces {A1, . . . , Am} and {B1, . . . , Bm} of an n-dimensional affine space W over
the finite field Fq. Let

H = {H1, . . . , Hm}
denote an enumeration of the set of hyperplanes of the vector space F

n
q . It is easy to

see that m = qn−1
q−1

. For each 1 ≤ i ≤ m we fix a vector βi ∈ F
n
q \Hi. Define

Ai := Hi,

and
Bi := Hi + βi.

Clearly Ai, Bi are affine subspaces of W for each 1 ≤ i ≤ m.
Since βi /∈ Hi for each 1 ≤ i ≤ m, it follows that Ai ∩Bi = ∅ by the definition of

Ai and Bi.
On the other hand, since βi ∈ Hi −Hj = F

n
q , it follows from Proposition 3.1 that

Ai ∩Bj �= ∅ for each 1 ≤ i < j ≤ m.

4 Open problems

Here we collect some interesting open problems.
Open problem 1: What can we say about m(n, 2)?

Open problem 2: What is the precise value of m(n, q), if q > 2?

Finally we conjecture the following projective version of Theorem 1.4:

Conjecture 1 Let F be an arbitrary field. Let A1, . . . , Am and B1, . . . , Bm be pro-
jective subspaces of an n-dimensional projective space W over the field F. Assume
that (Ai, Bi)1≤i≤m is cross-intersecting (i.e. Ai ∩ Bi = ∅ for each 1 ≤ i ≤ m and
Ai ∩Bj �= ∅ whenever 1 ≤ i < j ≤ m). Then

m ≤ 2n+1 − 2.
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G. HEGEDÜS /AUSTRALAS. J. COMBIN. 63 (2) (2015), 262–267 267
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