A Bollobás-type theorem for affine subspaces

GÁbor Hegedüs
Antal Bejczy Center for Intelligent Robotics
Kiscelli utca 82
Budapest, H-1032
Hungary

Abstract

Let W denote the n-dimensional affine space over the finite field \mathbb{F}_{q}. We prove here a Bollobás-type upper bound in the case of the set of affine subspaces. We give a construction of a pair of families of affine subspaces, which shows that our result is almost sharp.

1 Introduction

First we introduce some notation.
In the following let $q=r^{\alpha}$ be a fixed prime power, $n \geq 1$ be a nonnegative integer. Let W denote the n-dimensional affine space over the finite field \mathbb{F}_{q}.

Bollobás proved in [2] the following famous result.
Theorem 1.1 Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be two families of sets such that $A_{i} \cap$ $B_{j}=\emptyset$ if and only if $i=j$. Then

$$
\sum_{i=1}^{m} \frac{1}{\substack{\left|A_{i}\right|+\left|B_{i}\right| \\\left|A_{i}\right|}} \leq 1 .
$$

In particular if $\left|A_{i}\right|=r$ and $\left|B_{i}\right|=s$ for each $1 \leq i \leq m$, then

$$
m \leq\binom{ r+s}{r}
$$

The following strengthening of the uniform version of Bollobás's theorem was proved by Lovász in [4] using tensor product methods.

Theorem 1.2 If $\mathcal{F}=\left\{A_{1}, \ldots, A_{m}\right\}$ is an r-uniform family and $\mathcal{G}=\left\{B_{1}, \ldots, B_{m}\right\}$ is an s-uniform family such that
(a) $A_{i} \cap B_{i}=\emptyset$
for each $1 \leq i \leq m$ and
(b) $A_{i} \cap B_{j} \neq \emptyset$
if $i<j(1 \leq i, j \leq m)$, then

$$
m \leq\binom{ r+s}{r}
$$

Lovász also proved the following generalization of Bollobás' theorem for subspaces of a vector space in [5]:

Theorem 1.3 Let \mathbb{F} be an arbitrary field and V be an n-dimensional vector space over the field \mathbb{F}. Let U_{1}, \ldots, U_{m} denote r-dimensional subspaces of V and V_{1}, \ldots, V_{m} denote s-dimensional subspaces of the vector space V. Assume that

$$
\text { (a) } U_{i} \cap V_{i}=\{\underline{0}\}
$$

for each $1 \leq i \leq m$ and

$$
\text { (b) } U_{i} \cap V_{j} \neq\{\underline{0}\}
$$

whenever $i<j(1 \leq i, j \leq m)$. Then

$$
m \leq\binom{ r+s}{r}
$$

In the following we give an affine version of Theorem 1.3.
We say that a pair of families of affine subspaces $\left(A_{i}, B_{i}\right)_{1 \leq i \leq m}$ of W is crossintersecting if

$$
\text { 1. } A_{i} \cap B_{i}=\emptyset \text {, }
$$

for each $1 \leq i \leq m$ and

$$
\text { 2. } A_{i} \cap B_{j} \neq \emptyset
$$

whenever $i<j,(1 \leq i, j \leq m)$.
Let $m(n, q)$ denote the maximal size of a cross-intersecting pair of families of affine subspaces $\left(A_{i}, B_{i}\right)_{1 \leq i \leq n}$.

Our main result is the following modification of Lovász' Theorem 1.3:
Theorem 1.4 Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be affine subspaces of an n-dimensional affine space W over the finite field \mathbb{F}_{q}, where $q \neq 2$. Assume that $\left(A_{i}, B_{i}\right)_{1 \leq i \leq m}$ is cross-intersecting. Then

$$
m \leq q^{n}+1,
$$

Remark. Theorem 1.4 means that

$$
m(n, q) \leq q^{n}+1
$$

Remark. Our result is a strengthening of Theorem 1.2 in the case of affine hyperplanes.

In Section 2 we prove Theorem 1.4. In the proof we use the polynomial subspace method (see [1]).

In Section 3 we give a simple construction, which shows that $m(n, q) \geq \frac{q^{n}-1}{q-1}$.
Finally in Section 4 we collect some open problems.

2 The proof of the main result

We use the following obvious observation in our proof.
Proposition 2.1 The intersection of a family of affine subspaces is either empty or equal to a translate of the intersection of their corresponding vector subspaces.

Recall that our main result was the following:
Theorem 2.2 Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be affine subspaces of an n-dimensional affine space W over the finite field \mathbb{F}_{q}, where $q \neq 2$. Assume that $\left(A_{i}, B_{i}\right)_{1 \leq i \leq m}$ is cross-intersecting. Then

$$
m \leq q^{n}+1
$$

Proof. Let p be an arbitrary, but fixed prime divisor of $q-1$. Since $q \neq 2$, hence $p>1$. We can assign for each subset $F \subseteq \mathbb{F}_{q}^{n}$ its characteristic vector $\underline{v_{F}} \in\{0,1\}^{q^{n}} \subseteq$ $\mathbb{F}_{p}^{q^{n}}$ such that $\underline{v_{F}}(s)=1 \mathrm{iff} s \in F$. Here $\underline{v_{F}}(s)$ denotes the $s^{t h}$ coordinate of the vector $\underline{v_{F}}$.

Let $1 \leq j \leq m$ be fixed. Let $\underline{v_{j}}=\left(\underline{v_{j}}(1), \ldots, \underline{v_{j}}\left(q^{n}\right)\right)$ denote the characteristic vector of the affine subspace A_{j} and $\overline{\text { let }} \overline{w_{j}}=\left(\underline{w_{j}}(1), \ldots, \underline{w_{j}}\left(q^{n}\right)\right)$ denote the characteristic vector of the affine subspace $B_{j} . \overline{\text { Here }} \overline{v_{j}}(i)$ denotes the $i^{\text {th }}$ coordinate of the vector \underline{v}_{j}. Similarly, $\underline{w}_{j}(i)$ denotes the $i^{t h}$ coordinate of the vector $\underline{w_{j}}$.

Consider the polynomials

$$
P_{i}\left(x_{1}, \ldots, x_{q^{n}}\right):=1-\left(\sum_{k=1}^{q^{n}} \underline{v_{j}}(k) x_{k}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{q^{n}}\right]
$$

for each $1 \leq i \leq m$.
We claim that the polynomials $\left\{P_{i}: 1 \leq i \leq m\right\}$ are linearly independent functions over \mathbb{F}_{p}. Namely

$$
P_{i}\left(\underline{w_{i}}\right)=1-\sum_{k=1}^{q^{n}} \underline{v_{i}}(k) \underline{w_{i}}(k)=1-\left|A_{i} \cap B_{i}\right|=1
$$

and

$$
\begin{equation*}
P_{i}\left(\underline{w_{j}}\right)=1-\sum_{k=1}^{q^{n}} \underline{v_{i}}(k) \underline{w_{j}}(k)=1-\left|A_{i} \cap B_{j}\right|=1-q^{t}, \tag{1}
\end{equation*}
$$

where $t \geq 0$, because $\left(A_{i}, B_{i}\right)_{1 \leq i \leq m}$ is a cross-intersecting pair of families of affine subspaces and hence we can apply Proposition 2.1. Since

$$
q \equiv 1 \quad(\bmod p)
$$

thus

$$
\begin{equation*}
1-q^{t} \equiv 0 \quad(\bmod p) \tag{2}
\end{equation*}
$$

Consider a linear combination

$$
\sum_{r=1}^{m} \lambda_{r} P_{r}=0
$$

where $\lambda_{r} \in \mathbb{F}_{p}$. It is easy to prove that $\lambda_{r}=0$ for each $1 \leq r \leq m$. Namely for contradiction, suppose that there exists a nontrivial linear relation

$$
\begin{equation*}
\sum_{s=1}^{m} \lambda_{s} P_{s}=0 \tag{3}
\end{equation*}
$$

Let s_{0} be the smallest s such that $\lambda_{s} \neq 0$. Substitute $w_{s_{0}}$ for the variable of each side of (3). Then by equations (1) and (2), all but the $\overline{s_{0}^{\text {th }}}$ term vanish, and what remains is

$$
\lambda_{s_{0}} P_{s_{0}}\left(\underline{w_{s_{0}}}\right)=0 .
$$

But $P_{s_{0}}\left(\underline{w_{s_{0}}}\right) \neq 0$ implies that $\lambda_{s_{0}}=0$, a contradiction. Hence the polynomials P_{1}, \ldots, P_{m} are linearly independent functions over \mathbb{F}_{p}.

We infer that the linearly independent polynomials $\left\{P_{1}, \ldots, P_{m}\right\}$ are in the $\mathbb{F}_{p^{-}}$ space spanned by the monomials

$$
\left\{x^{u} \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{q^{n}}\right]: \operatorname{deg}\left(x^{u}\right) \leq 1\right\} .
$$

Clearly

$$
\left|\left\{x^{u}: \operatorname{deg}\left(x^{u}\right) \leq 1\right\}\right| \leq q^{n}+1,
$$

hence

$$
m \leq q^{n}+1
$$

which was to be proved.

3 A simple construction

We use in our contruction the following simple proposition.
Proposition 3.1 Let F_{j} be arbitrary affine subspaces for each $1 \leq j \leq m$. Let $G_{j}:=\underline{\alpha_{j}}+F_{j}$, where $\underline{\alpha_{j}} \notin F_{j}$. Then $F_{i} \cap G_{j} \neq \emptyset$ iff $\underline{\alpha_{j}} \in F_{i}-F_{j}$.

Proof. First suppose that $\underline{\alpha_{j}} \in F_{i}-F_{j}$. Then we can write $\underline{\alpha_{j}}$ into the form

$$
\underline{\alpha_{j}}=\underline{f_{i}}-\underline{f_{j}},
$$

where $\underline{f_{i}} \in F_{i}$ and $\underline{f_{j}} \in F_{j}$. Hence $\underline{f_{i}}=\underline{\alpha_{j}}+\underline{f_{j}} \in \underline{\alpha_{j}}+F_{j}=G_{j}$.
On the other hand, suppose that $\overline{F_{i} \cap} G_{j} \neq \emptyset$. Let $\underline{v} \in F_{i} \cap G_{j}$, i.e., $\underline{v} \in F_{i}$ and $\underline{v} \in \underline{\alpha_{j}}+F_{j}$. Then there exists $\underline{f_{j}} \in F_{j}$ such that $\underline{v}=\underline{\alpha_{j}}+\underline{f_{j}}$ by definition. Hence $\underline{\alpha_{j}}=\underline{v}-\underline{f_{j}} \in F_{i}-F_{j}$.

Proposition 3.2 Let $n \geq 1$ and q be an arbitrary prime power. Then

$$
m(n, q) \geq \frac{q^{n}-1}{q-1} .
$$

Proof. Let $m=\frac{q^{n}-1}{q-1}$. We give a concrete cross-intersecting pair of families of affine subspaces $\left\{A_{1}, \ldots, A_{m}\right\}$ and $\left\{B_{1}, \ldots, B_{m}\right\}$ of an n-dimensional affine space W over the finite field \mathbb{F}_{q}. Let

$$
\mathcal{H}=\left\{H_{1}, \ldots, H_{m}\right\}
$$

denote an enumeration of the set of hyperplanes of the vector space \mathbb{F}_{q}^{n}. It is easy to see that $m=\frac{q^{n}-1}{q-1}$. For each $1 \leq i \leq m$ we fix a vector $\underline{\beta_{i}} \in \mathbb{F}_{q}^{n} \backslash H_{i}$. Define

$$
A_{i}:=H_{i}
$$

and

$$
B_{i}:=H_{i}+\underline{\beta_{i}} .
$$

Clearly A_{i}, B_{i} are affine subspaces of W for each $1 \leq i \leq m$.
Since $\underline{\beta_{i}} \notin H_{i}$ for each $1 \leq i \leq m$, it follows that $A_{i} \cap B_{i}=\emptyset$ by the definition of A_{i} and B_{i}.

On the other hand, since $\underline{\beta_{i}} \in H_{i}-H_{j}=\mathbb{F}_{q}^{n}$, it follows from Proposition 3.1 that $A_{i} \cap B_{j} \neq \emptyset$ for each $1 \leq i<\bar{j} \leq m$.

4 Open problems

Here we collect some interesting open problems.
Open problem 1: What can we say about $m(n, 2)$?
Open problem 2: What is the precise value of $m(n, q)$, if $q>2$?
Finally we conjecture the following projective version of Theorem 1.4:
Conjecture 1 Let \mathbb{F} be an arbitrary field. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be projective subspaces of an n-dimensional projective space W over the field \mathbb{F}. Assume that $\left(A_{i}, B_{i}\right)_{1 \leq i \leq m}$ is cross-intersecting (i.e. $A_{i} \cap B_{i}=\emptyset$ for each $1 \leq i \leq m$ and $A_{i} \cap B_{j} \neq \emptyset$ whenever $\left.1 \leq i<j \leq m\right)$. Then

$$
m \leq 2^{n+1}-2
$$

References

[1] L. Babai and P. Frankl, Linear algebra methods in combinatorics, Sept. 1992.
[2] B. Bollobás, On generalized graphs, Acta Mathematica Hungarica 16 (3) (1965), 447-452.
[3] Z. Füredi, Geometric solution of an intersection problem for two hypergraphs, European J. Combin. 5 (1984), 133-136.
[4] L. Lovász, Flats in matroids and geometric graphs, in: Combinatorial surveys, Proc. 6th British Comb. Conf., Egham 1977, Acad. Press, London 1977, 45-86.
[5] L. Lovász, Topological and algebraic methods in graph theory, in: Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) 1979, 1-14.
[6] P. Pudlák and V. Rödl, A combinatorial approach to complexity, Combinatorica 12 (1992), 221-226.
[7] Zs. Tuza, Application of Set-Pair Method in Extremal Hypergraph Theory, in: "Extremal problems for Finite Sets", Bolyai Society Mathematical Studies 3, János Bolyai Math. Soc., Budapest (1994), 479-514.

