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Abstract

We prove an inequality between three measures of disorder on the sym-
metric group on n elements. This inequality has been inspired by the
well-known Diaconis-Graham inequalities. We also discuss when the in-
equality is satisfied as equality, and how often this happens. In the case
n is odd, the number of permutations that satisfy the equality is a simple
function of the Lucas numbers. In addition, we show that a quantity
involved in the new inequality (which is a function of the three measures
of disorder) can be used to give a new characterization of the dihedral
group.

1 Introduction

Throughout the paper, we let N∗ = {1, 2, . . .} be the set of all positive integers (with
N := N

∗ ∪ {0}), Z be the set of all integers, and R be the set of real numbers. For
a finite set A, we let #A denote the number of elements of A. For n ∈ N

∗, we
denote by Sn the symmetric group, i.e., the set of all permutations of the numbers
1, 2, . . . , n.

If n ∈ N
∗, a ∈ Sn, and i ∈ {1, . . . , n}, we denote by ai the i

th element of a; that is,
if a is considered as a bijection a : {1, 2, . . . , n} −→ {1, 2, . . . , n}, we define ai := a(i).
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Thus we write a = (a1, a2, . . . , an) to indicate explicitly the elements of permutation
a ∈ Sn. For a permutation a ∈ Sn and i ∈ {1, 2, . . . , n}, we define for convenience
ajn+i := ai for all j ∈ Z, so that in particular, a0 := an and an+1 := a1. To avoid
notational ambiguities, we use the nonstandard notation 〈b1, b2, . . . , bm〉 to denote
the cycle: b1 �→ b2 �→ · · · �→ bm �→ b1. We use a−1 to denote the inverse permutation
of a in the symmetric group Sn equipped with the operation of composition. Finally,
we let en := (1, 2, . . . , n) be the identity element in Sn.

Several measures of disorder or disarray have been proposed over time to quantify
the deviation of a member of Sn from the sorted (in an ascending way) sequence
(1, 2, . . . , n); see, for example, references [2]–[8] and [11]. In this paper, we work with
three of these measures: If a = (a1, a2, . . . , an) ∈ Sn, let In(a) be the number of
inversions in a, i.e., the number of pairs of integers (ai, aj) such that 1 ≤ i < j ≤ n
and ai > aj; let Dn(a) :=

∑n
i=1 |i − ai|; and finally, let EXn(a) be the smallest

number of exchanges (transpositions) of elements in a needed to leave it sorted.
Cayley’s result (see [11, Ex. 5.2.2-2, pp. 134 and 628]) states that EXn(a) equals n
minus the number of (disjoint) cycles in the permutation a.

All three measures of disorder are obviously non-negative, and each one equals
zero if and only if a = (1, 2, . . . , n). Also, for all a ∈ Sn, In(a) ≤ n(n − 1)/2,
and equality holds if and only if a = (n, n − 1, . . . , 1). In addition, for all a ∈ Sn,
Dn(a) ≤ 	n2/2
 (where 	x
 is the greatest integer less than or equal to x), and
equality holds if and only if ai > n/2 for i = 1, 2, . . . , n/2 when n is even; and either
ai > (n + 1)/2 for i = 1, 2, . . . , (n − 1)/2 or ai ≥ (n + 1)/2 for i = 1, . . . , (n + 1)/2
when n is odd–see [4, p. 266] or [8, Lemma 2.4]. Finally, EXn(a) ≤ n−1 and equality
holds if and only if a has only one cycle (and there are (n− 1)! permutations in Sn

with exactly one cycle).
The most famous inequalities among these three measures of disorder (in addition

to the obvious EXn(a) ≤ In(a)) are the Diaconis-Graham inequalities (see [4]):

In(a) + EXn(a) ≤ Dn(a) ≤ 2In(a) (a ∈ Sn). (1.1)

The proof of the right inequality is quite easy, but the proof of the left one is quite
involved. Hadjicostas and Monico [9] provided an alternative proof of the left inequal-
ity, which is perhaps more intuitive than the one given by Diaconis and Graham [4].
They also provided some necessary and sufficient conditions for equality to hold (in
the left inequality). In particular, if γn is the number of permutations a ∈ Sn such
that In(a) + EXn(a) = Dn(a), the two authors have shown that

γn ≤ 1 +

n∑
k=2

(
(k − 1)!

k−1∑
l=1

2

l
−

k−1∑
l=1

(l − 1)!(k − l − 1)!

)
,

which implies γn/n! = O(lnn/n).
In this paper, we prove another inequality closely related to the above inequalities:

Dn(a) ≤ In(a) + EXn(a) +
⌊n
2

⌋ (⌊n
2

⌋
− 1
)

(a ∈ Sn). (1.2)
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Note that this bound for Dn(a) is sometimes (but not always) less than 2In(a)
(from the right Diaconis-Graham inequality), as illustrated by the permutation a =
(4, 2, 3, 1) ∈ S4, which has Dn(a) = 6, I4(a) = 5 and EX4(a) = 1.

We also give a characterization of the set of permutations in Sn that satisfy (1.2)
as equality. When n ∈ {1, 2, 3}, equality holds for all a ∈ Sn. When n = 2k, where k
is an integer greater than or equal to two, equality holds for exactly one permutation:

αn = α2k := (k + 1, k + 2, . . . , 2k, 1, 2, . . . , k). (1.3)

When n = 2k + 1, where k is an integer greater than or equal to two, equality holds
for several permutations that can be obtained from the two permutations

α1,n = α1,2k+1 := (k + 1, k + 2, . . . , 2k + 1, 1, 2, . . . , k) (1.4)

and
α2,n = α2,2k+1 := (k + 2, k + 3, . . . , 2k + 1, 1, 2, . . . , k + 1) (1.5)

through some process that is explained later in the paper: see Lemma 5.1 and the
discussion preceding it. See also Theorem 5.3 where we explicitly characterize these
permutations that arise from α1,n and α2,n (and satisfy equality in (1.2)) through the
disjoint cycle decompositions of the permutations. In addition, when n = 6m + 3,
where m is an integer greater than or equal to 1, equality holds not only for the
above permutations (for odd n), but also for the following two permutations:

β1,n = β1,6m+3 := (3m+ 1, 3m+ 2, . . . , 6m+ 3, 1, 2, . . . , 3m) (1.6)

and
β2,n = β2,6m+3 := (3m+ 4, 3m+ 5, . . . , 6m+ 3, 1, 2, . . . , 3m+ 3). (1.7)

Unlike α1,n and α2,n, each of which has only one cycle (for n = 2k + 1), the permu-
tations β1,n and β2,n (for n = 6m+ 3) each have three cycles.

If we define
Kn(a) := Dn(a)− In(a)−EXn(a) (1.8)

for all a ∈ Sn, then the left inequality in (1.1) and inequality (1.2) together are
equivalent to

0 ≤ Kn(a) ≤
⌊n
2

⌋(⌊n
2

⌋
− 1
)
. (1.9)

A weaker version of the Diaconis-Graham inequalities 1 (1.1),

In(a) ≤ Dn(a) ≤ 2In(a) (a ∈ Sn),

has been generalized in various ways by various authors, most notably in [6] and
[7]. As a future research topic, it would be interesting to examine whether these
generalizations can be sharpened to include EXn as well.

1Knuth [11, Exercise 5.1.1-28, pp. 22 and 597] gives a simple proof of these inequalities that he
attributes to the eminent computer scientist and personal friend Robert W. Floyd in 1983. Knuth
(and probably Floyd) calls Dn(a) the total displacement of the permutation a ∈ Sn, but he does
not cite Diaconis and Graham’s paper.
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The organization of the paper is as follows. In Section 2 of the paper we state
some simple properties of Kn and use these properties to give a new and interesting
characterization of the dihedral group Dihn. In Section 3 we provide a proof of
inequality (1.2) (which is equivalent to the right inequality in (1.9)) for the case
n is an even positive integer, and (when n ≥ 4) we prove that equality here is
only satisfied for the permutation defined by (1.3). In Section 4 we prove the same
inequality for the case n is an odd positive integer.

Finally, in Section 5, for odd n ≥ 5, we prove our claims made earlier about the
equality case in (1.2) and we show in Theorem 5.4 that the number of permutations
satisfying the equality case here is a simple function of the Lucas number Ln. When
n = 6m+3 for m ∈ N

∗, there are exactly 2Ln+2−n permutations in Sn that satisfy
equality in (1.2), while if n = 6m+1 or 6m+5 for m ∈ N, there are exactly 2Ln−n
permutations in Sn that satisfy the equality.

2 A new characterization of the dihedral group

In this section of the paper we show how the quantity Kn(a), defined by (1.8) in the
introduction, can be used to give a (possibly) new characterization of the dihedral
group Dihn, which is the group of rotation and reflection symmetries of a regular
polygon with its n vertices labeled clockwise 1, 2, . . . , n (see James and Liebeck [10,
Chapter 1]).

Note first that the function Kn(·) : Sn → R satisfies

Kn(a
−1) = Kn(a) for all a = (a1, . . . , an) ∈ Sn.

This follows from the well-known properties

Dn(a
−1) = Dn(a), In(a

−1) = In(a), and EXn(a
−1) = EXn(a)

for all a ∈ Sn (e.g., see [4]). If in addition we define

â := (n + 1− an, n+ 1− an−1, . . . , n+ 1− a1) ∈ Sn, (2.1)

then
Kn(â) = Kn(a). (2.2)

This again follows from the following result:

Lemma 2.1 For each a ∈ Sn,

Dn(â) = Dn(a), In(â) = In(a) and EXn(â) = EXn(a). (2.3)

Proof: For a ∈ Sn, the complement of a is defined by

a := (n + 1− a1, n+ 1− a2, . . . , n+ 1− an).



P. HADJICOSTAS AND C. MONICO/AUSTRALAS. J. COMBIN. 63 (2) (2015), 226–245 230

For more discussion about this concept see, for example, Section 5 in [8]. For the
complement of the identity en = (n, n− 1, . . . , 1) we observe that e−1

n = en. For all
a ∈ Sn, we thus have

â = enaen = e−1
n aen = a en = aen. (2.4)

To prove the first equality in (2.3), observe that, for a ∈ Sn,

Dn(â) =
n∑

i=1

|(n+1− an+1−i)− i| =
n∑

i=1

|(n+1− i)− an+1−i| =
n∑

j=1

|j− aj | = Dn(a).

To show the second equality in (2.3), recall a well-known result about the number
of inversions in a permutation b ∈ Sn:

In(b) =
n(n− 1)

2
− In(b).

Next note that, for a ∈ Sn,

In(â) = In(enaen) =
n(n− 1)

2
− In(aen) =

n(n− 1)

2
− In((aen)

−1).

Therefore

In(â) =
n(n− 1)

2
− In(ena

−1) = In(a
−1) = In(a).

To prove the last equality in (2.3), note that EXn is a bi-invariant function on
Sn, i.e., the cycle structure of a permutation is preserved under conjugation, and so

EXn(a) = EXn(bab
−1) (2.5)

for all a, b ∈ Sn. Thus, for a ∈ Sn,

EXn(â) = EXn(enaen) = EXn(enae
−1
n ) = EXn(a).

This completes the proof of the lemma. �

Based on the previous remarks and observations, we proceed to state and prove
the new characterisation of the dihedral group. For each n ∈ N

∗, define

Kn := {b ∈ Sn|Kn(b
−1ab) = Kn(a) ∀a ∈ Sn}. (2.6)

It is easy to prove that the set Kn is a subgroup of the symmetric group Sn and

Kn = {b ∈ Sn|Kn(ab) = Kn(ba) ∀a ∈ Sn}.
As the Theorem 2.3 below shows, for n ≥ 3, the function Kn is invariant under

conjugation only by members of the dihedral group. One interpretation of this is that
the “re-labellings” of {1, 2, . . . , n} under which Kn is invariant are precisely those
which are rigid, in the sense that they are in Dihn. See, for example, Figure 1.
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3 4

5

(3, 4, 5, 2, 1)

5

1

2 3

4

σ−1(3, 4, 5, 2, 1)σ = (3, 4, 1, 5, 2)

Figure 1: A permutation a = (3, 4, 5, 2, 1) ∈ S5 and its conjugate σ−1aσ, where
σ = (2, 3, 4, 5, 1) ∈ Dih5. Here Kn(a) = Kn(σ

−1aσ) = 2.

Lemma 2.2 Assume n ∈ N with n ≥ 4 and let i, j, k be distinct positive integers in
{2, . . . , n} with j < k and σ = 〈1, i〉〈j, k〉 ∈ Sn. Then

Kn(σ) =

{
0 if i < j < k or j < k < i,
2 if j < i < k.

Proof: By directly counting the number of inversions, we find that

In(σ) =

{
2(i+ k − j − 2) if i < j < k or j < k < i,
2(i+ k − j − 3) if j < i < k.

Furthermore, Dn(σ) = 2|i− 1|+ 2|k − j| = 2(i+ k − j − 1), and since σ consists of
n− 2 cycles, EXn(σ) = 2, which proves the lemma. �

Theorem 2.3 We have K1 = S1 and K2 = S2, while for each n ≥ 3, we have
Kn = Dihn.

Proof: It is easy to show that K1 = S1 and K2 = S2. Thus, we assume n ≥ 3.
Because of (2.5), it follows that

Kn = {b ∈ Sn|Dn(b
−1ab)− In(b

−1ab) = Dn(a)− In(a) ∀a ∈ Sn}
= {b ∈ Sn|Dn(ab)− In(ab) = Dn(ba)− In(ba) ∀a ∈ Sn}.

(a) First we prove that Dihn ⊆ Kn for n ≥ 3. It is well-known that

Dihn = 〈〈x, y : xn = en, y
2 = en, y

−1xy = x−1〉〉
for some members x and y of the dihedral group. In the above equation, the notation
〈〈·〉〉means generation by a number of elements, whereas xm denotes the composition
of x with itself m times.

We choose the rotation x := (n, 1, 2, . . . , n − 1) and the reflection y := en =
(n, n−1, . . . , 2, 1) as generators of Dihn. Obviously xn = en and y2 = en. In addition,
one can easily verify

y−1xy = x̂ = (2, 3, . . . , n− 1, n, 1) = x−1.
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Thus, x and y generate Dihn. Because of (2.3) and (2.4), we conclude that y ∈ Kn.
To finish this part of the proof, we only need show that x ∈ Kn. Let a ∈ Sn and
define c := a−1. Then

ax = (an, a1, . . . , an−1) and a−1x−1 = (c2, c3, . . . , cn, c1).

We have:

In(ax) = In(a)−#{i ∈ N
∗| 1 ≤ i ≤ n− 1 and ai > an}

+ #{i ∈ N
∗| 1 ≤ i ≤ n− 1 and ai < an}

= In(a)− (n− an) + (an − 1)

= In(a)− (n− 2an + 1)

and

In(xa) = In((xa)
−1) = In(a

−1x−1)

= In(a
−1)− (c1 − 1) + (n− c1)

= In(a) + (n− 2c1 + 1).

Therefore
In(xa) = In(ax) + 2(n+ 1− an − c1). (2.7)

We also have

Dn(ax) = |an − 1|+
n−1∑
i=1

|ai − (i+ 1)| (2.8)

and

Dn(xa) = Dn(a
−1x−1) =

n∑
j=2

|cj − (j − 1)|+ |c1 − n| =
n∑

j=1

|cj − (j − 1)|+ n− 2c1.

By considering a as a bijection between the set {1, 2, . . . , n} and itself, and c as its
inverse, we can change the order of the terms in the sum

∑n
j=1 |cj − (j − 1)|:

j = ai ⇔ i = (a−1)j = cj .

We obtain:

Dn(xa) =
n∑

i=1

|i− ai + 1|+ n− 2c1. (2.9)

It follows from equations (2.8) and (2.9) that

Dn(xa) = Dn(ax) + 2(n+ 1− an − c1).

Using the last equation and equation (2.7) we obtain Dn(xa) − In(xa) = Dn(ax) −
In(ax), from which we conclude that x ∈ Kn.

(b) If n = 3 then part (a) of this proof implies 6 = #Dih3 ≤ #K3 ≤ 6, and hence
S3 = Dih3 = K3. Thus we assume n ≥ 4. To prove that Kn ⊆ Dihn, let b ∈ Sn\Dihn.
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We will show that b �∈ Kn. One can find η ∈ Dihn such that (ηb)(1) = 1. Indeed,
one may consider the rotation x = (n, 1, 2, . . . , n − 1) from the proof of part (a) of
this theorem and let η := xb1−1.

Since Kn is a subgroup of Sn and η ∈ Kn (by part (a) of this proof), it follows
that b ∈ Kn if and only if δ := ηb is in Kn. Thus to finish the proof of the theorem
it is enough to show that δ �∈ Kn.

Since δ �∈ Dihn, there necessarily exists j ∈ {1, 2, . . . , n} so that 1 < |δj+1− δj | <
n− 1 (and this is a consequence of the characterization of Dihn given in Lemma A.1
in the appendix). Thus, there is an i ∈ {1, . . . , n}\{j, j + 1} such that δi is between
δj and δj+1. Since δ1 = 1, we must have i �= 1. Thus, we may set

ε := 〈1, δi〉〈δj, δj+1〉.

By Lemma 2.2, Kn(ε) = 2. On the other hand, δ−1εδ = 〈1, i〉〈j, j + 1〉, and so from
Lemma 2.2 again, Kn(δ

−1εδ) = 0 �= Kn(ε). Therefore δ �∈ Kn and this completes the
proof of the theorem. �

Note that for n = 2k, where k ∈ N
∗−{1}, we have α2k ∈ Dih2k, and for n = 2k+1,

where k ∈ N
∗, we have α1,2k+1, α2,2k+1 ∈ Dih2k+1. (Recall that α2k is defined by (1.3)

and α1,2k+1 and α2,2k+1 are defined by (1.4) and (1.5) respectively.) Geometrically,
when n = 2k, α2k corresponds to a rotation of the regular n-gon by an angle of
π radians. On the other hand, for n = 2k + 1, α1,2k+1 corresponds to a clockwise
rotation by an angle of 2π

(
k

2k+1

)
, while α2,2k+1 corresponds to a clockwise rotation

by an angle of 2π
(

k+1
2k+1

)
.

Finally we mention some elementary facts about the operation in (2.1) that will be
useful in the next section of the paper. For n = 2k, where k ∈ N

∗, α−1
2k = α̂2k = α2k,

while for n = 2k + 1, with k ∈ N
∗,

(α1,2k+1)
−1 = α̂1,2k+1 = α2,2k+1 and (α2,2k+1)

−1 = α̂2,2k+1 = α1,2k+1.

Finally, if n = 6m + 3 (m ∈ N
∗), then the permutations β1,n = β1,6m+3 and β2,n =

β2,6m+3 (defined by (1.6) and (1.7) respectively) satisfy

(β1,6m+3)
−1 = β̂1,6m+3 = β2,6m+3 and (β2,6m+3)

−1 = β̂2,6m+3 = β1,6m+3.

3 Proof of the main inequality for the even case

In this section we prove the main result of the paper, inequality (1.2), which is
equivalent to the right inequality in (1.9), for the case where n is an even positive
integer. First we prove the following lemma, which is used heavily throughout the
rest of the paper.

Lemma 3.1 Let n ∈ N
∗\{1}, a ∈ Sn, and i ∈ {1, . . . , n}. Let ã be the permutation
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in Sn obtained from a by switching ai with ai+1; i.e., ã = a〈i, i+ 1〉. Then

Kn(ã) = Kn(a)+

⎧⎨⎩
1, if ai, ai+1 are in the

same cycle of a,
−1, otherwise,

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if i < n and ai ≤ i < ai+1,

or i < n and ai+1 < ai ≤ i,
or i < n and i < ai+1 < ai,
or i = n and a1 < an,

−1, otherwise.

Proof: For i ∈ {1, 2, . . . , n− 1},
Dn(ã) = Dn(a)− |i− ai| − |i+ 1− ai+1|+ |i− ai+1|+ |i+ 1− ai|.

After some straightforward calculations, it follows that

Dn(ã) = Dn(a) +

⎧⎪⎪⎨⎪⎪⎩
2, if i < n and ai ≤ i < ai+1,
−2, if i < n and ai+1 ≤ i < ai,

2(an − a1), if i = n,
0 otherwise.

In addition,

In(ã) = In(a) +

⎧⎪⎪⎨⎪⎪⎩
1, if i < n and ai < ai+1,
−1, if i < n and ai+1 < ai,

2(an − a1) + 1, if i = n and an < a1,
2(an − a1)− 1, if i = n and a1 < an.

If ai and ai+1 are in the same cycle of a, we have (by Cayley’s theorem) EXn(ã) =
EXn(a) − 1 because switching ai and ai+1 increases the number of cycles by one.
Similarly, if ai and ai+1 are in different cycles then EXn(ã) = EXn(a)+1. The result
now follows by applying the definition Kn(ã) = Dn(ã)− In(ã)−EXn(ã). �

The following theorem proves inequality (1.2) in the case n is an even positive
integer.

Theorem 3.2 For n = 2k with k ∈ N
∗ and a ∈ Sn we have

Kn(a) ≤ n

2

(n
2
− 1
)
= k2 − k. (3.1)

Equality holds if and only if a = α2k, where α2k is given by (1.3), except for n = 2,
in which case equality holds for all a ∈ S2.

Proof: If a has fixed points, let i1 be the smallest fixed point, i.e., ai1 = i1. Let
ã(1) be the element of Sn obtained from a by switching ai1 with ai1+1. By Lemma 3.1,
Kn(ã

(1)) = Kn(a). Also, ã
(1) has one less cycle, and the i1-th and (i1 + 1)-th elements

of it are not fixed points. If ã(1) has fixed points, let i2 be its smallest one. Then
i2 > i1 + 1. Let ã(2) be the element of Sn obtained from ã(1) by switching ã

(1)
i2

with

ã
(1)
i2+1. Again, by Lemma 3.1,

Kn(ã
(2)) = Kn(ã

(1)) = Kn(a),
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and ã(2) has one less cycle than ã(1). Continuing this process, we conclude that there
is ã ∈ Sn such that ã has no fixed points, Kn(ã) = Kn(a), and the number of cycles
of ã (denoted by Cn(ã)) is less than or equal to the number of cycles of a. (If a has
no fixed points, then ã = a.) We shall prove inequality (3.1) for ã.

Since ã has no fixed points, each cycle has at least two elements, and thus n ≥
2Cn(ã). Since EXn(ã) = n−Cn(ã), we conclude that 2EXn(ã) ≥ n. From the right
Diaconis-Graham inequality (1.1), we have 2In(ã)−Dn(ã) ≥ 0. Therefore

Dn(ã)− 2Kn(ã) = 2EXn(ã) + 2In(ã)−Dn(ã) ≥ n,

from which we conclude that

Kn(ã) ≤ Dn(ã)

2
− n

2
≤ 1

2

⌊
n2

2

⌋
− n

2
=

n

2

(n
2
− 1
)
= k2 − k.

In order to have Kn(ã) = k2 − k, it is necessary and sufficient that

2EXn(ã) = n, 2In(ã)−Dn(ã) = 0, and Dn(ã) =
n2

2
.

The first equality means that ã has exactly n/2 cycles of length two. The second
equality is equivalent to the condition ã has no 3-inversions (see [4] and [9]), i.e., ã
avoids the pattern 321 (see [1, Chapter 4]). We say that b ∈ Sn has a 3-inversion
(bi, bj , bk) if and only if 1 ≤ i < j < k ≤ n and bi > bj > bk. The third equality,

Dn(ã) =
n2

2
, is equivalent to saying that ãs > n/2 for s = 1, 2, . . . , n/2 (see again [4]

and [8]). It is then clear that Kn(ã) = k2− k holds if and only if ã = α2k, where α2k

is given by (1.3) – even when n = 2 (since ã has no fixed points).
If n = 2, however, it is possible that either a = (1, 2) or a = (2, 1), both of which

give rise to the same ã = (2, 1). In such a case, Kn(a) = k2 − k = 12 − 1 = 0 holds
for all a ∈ S2. On the other hand, for n even greater than or equal to 4, it is easy to
check that there is no sequence a ∈ Sn with fixed points that (through the process
described above) can give rise to α2k given by (1.3), i.e., α̃2k = α2k, and equality in
(3.1) holds if and only if a = α2k. �

4 Proof of the main inequality for the odd case

In this section we prove inequality (1.2) for the case n is an odd positive integer.
The idea of the proof is to transform any permutation that maximizes Kn into one
that has the form (4.1) in Lemma 4.1 below while keeping the value of Kn the same.

Lemma 4.1 Let n = 2k + 1, where k ∈ N
∗\{1}, and q ∈ {1, 2 . . . , n − 1} and

consider the permutation

h := (q + 1, q + 2, . . . , n, 1, 2, . . . , q) ∈ Sn. (4.1)

Then Kn(h) ≤ k2−k. Furthermore, equality holds if and only if either q ∈ {k, k+1},
or 3 | k − 1 and q ∈ {k − 1, k + 2}.
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Proof: For all θ ∈ {1, 2, . . . , n} we have that h(θ) ≡ θ+q (mod n) . The cycle of
h containing a given θ1 ∈ {1, 2, . . . , n} has length s if and only if s is the least positive
integer for which θ1 = hs(θ1) ≡ θ1 + sq (mod n) , or equivalently s = n/ gcd(n, q).
Therefore all cycles of h have the same length, s, and h is composed of n/s = gcd(n, q)
disjoint cycles. It is straightforward to compute Dn(h) = 2q(n−q), In(h) = q(n−q),
and EXn(h) = n− gcd(n, q), so that

Kn(h) = q(n− q)− n + gcd(n, q). (4.2)

Because of (2.2), for u ∈ N with 1 ≤ u ≤ k, the permutations corresponding
to q = k + u and q = k + 1 − u have identical values for Kn, so we may assume
without loss of generality that 1 ≤ q ≤ k. In such a case, let j := k − q ∈ [0, k − 1]
and d := gcd(2k + 1, q). Then d | 2k + 1 and d | q, so 2k + 1 ≡ 0 (mod d) and
k ≡ j (mod d) , and hence 2j+1 ≡ 0 (mod d) . Since j ≥ 0, it follows that 2j+1 ≥ d
so that j ≥ (d− 1)/2. Now we simply compute

Kn(h) = −q2 + qn− n+ gcd(n, q)

= −(k − j)2 + (k − j)(2k + 1)− (2k + 1) + d

= k2 − k − j2 − j − 1 + d

≤ k2 − k − 1−
(
d− 1

2

)2

−
(
d− 1

2

)
+ d

= k2 − k − 1 +
−d2 + 4d+ 1

4
.

Among all odd positive integers d, (−d2 + 4d + 1)/4 is maximized when d = 1 or
d = 3, and the maximum value is 1, so that Kn(h) ≤ k2 − k as desired.

For equality, consider first the case when 1 = d = gcd(2k + 1, q) (for a general
q ∈ {1, 2, . . . , n − 1}). Then (4.2) implies that k2 − k = q(2k + 1 − q)− 2k so that
q2 − q(2k + 1) + k2 + k = 0. Solving for q we find that q = k or q = k + 1. Since
gcd(2k + 1, k) = gcd(2k + 1, k + 1) = 1, they are both indeed solutions.

The remaining case has 3 = d = gcd(2k+1, q) (for a general q ∈ {1, 2, . . . , n−1}).
Here it follows from (4.2) that

k2 − k = q(2k + 1− q)− 2k + 2,

that is, q2 − q(2k + 1) + k2 + k − 2 = 0, and so q = k − 1 or q = k + 2. However,
gcd(2k + 1, k − 1) = gcd(3, k − 1), so 3 = gcd(2k + 1, k − 1) iff 3 | k − 1. Similarly,
since k ≥ 2, we find that 3 = gcd(2k+1, k+2) iff 3 | k−1. Therefore, q = k−1, k+2
are also solutions of the equation Kn(h) = k2 − k iff n = 2k + 1 = 6m+ 3 for some
m ∈ N

∗. �

Finally, in the next theorem we prove (1.2) for the case n is an odd positive
integer. The theorem also contains an auxiliary result which will be used in Section 5.
A permutation a ∈ Sn is called maximal if Kn(a) = max{Kn(c)|c ∈ Sn}.
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Theorem 4.2 Let n = 2k + 1 with k ∈ N and a ∈ Sn. Then Kn(a) ≤ k2 − k.
Furthermore, if Kn(a) is maximal, then there is a sequence a = a(0), a(1), . . . , a(t) of
permutations in Sn such that (i) a(j) = a(j−1)〈ij , ij + 1〉 for 1 ≤ j ≤ t and for some

ij with a
(j−1)
ij

and a
(j−1)
ij+1 in different cycles of a(j−1), and (ii) a(t) is maximal and has

the form described in Lemma 4.1.

Proof: For n = 1 the inequality is obvious, so we assume n ≥ 3 (i.e., k ≥ 1).
Suppose that a ∈ Sn andKn(a) is maximal. Consider the following algorithm applied
to a:

1. Set a(0) ← a and j ← 1.

2. If there is an i ∈ {1, 2, . . . , n} for which a
(j−1)
i = i, choose such an i arbitrarily,

set a(j) ← a(j−1)〈i, i+ 1〉, j ← j + 1, and go to Step 2 (i.e., repeat this step).

3. If there is an i ∈ {1, 2, . . . , n−1} for which a
(j−1)
i < i < a

(j−1)
i+1 , then choose one

such i arbitrarily, set a(j) ← a(j−1)〈i, i+ 1〉, j ← j + 1, and go to Step 2.

4. Output ã = a(j−1) and terminate.

We first claim that this algorithm must terminate. For an arbitrary permutation
b ∈ Sn define Mn(b) :=

∑n
m=1m sgn (m− bm). Trivially we have that −n(n+1)/2 ≤

Mn(b) ≤ n(n + 1)/2 for all b ∈ Sn. Each time a swap is performed with i < n in
Step 2 or Step 3, we have

Mn(a
(j)) =

n∑
m=1

m sgn (m− a(j)m )

= Mn(a
(j−1))− i sgn (i− a

(j−1)
i )− (i+ 1) sgn (i+ 1− a

(j−1)
i+1 )

+i sgn (i− a
(j−1)
i+1 ) + (i+ 1) sgn (i+ 1− a

(j−1)
i )

= Mn(a
(j−1)) + i

(
sgn (i− a

(j−1)
i+1 )− sgn (i− a

(j−1)
i )

)
+(i+ 1)

(
sgn (i+ 1− a

(j−1)
i )− sgn (i+ 1− a

(j−1)
i+1 )

)
.

Each time a swap is performed in Step 2 with i < n we therefore have that

Mn(a
(j)) = Mn(a

(j−1)) +

⎧⎪⎨⎪⎩
i, if a

(j−1)
i+1 < i,

1, if a
(j−1)
i+1 = i+ 1,

i+ 2, if a
(j−1)
i+1 > i+ 1.

Each time a swap is performed in Step 2 with i = n, we have that

Mn(a
(j)) = Mn(a

(j−1)) +

{
n− 1, if a

(j−1)
1 = 1,

n, if a
(j−1)
1 > 1.

Finally, each time a swap is performed in Step 3 we must have that a
(j−1)
i+1 �= i + 1,

so that a
(j−1)
i+1 > i + 1, and it follows that Mn(a

(j)) = Mn(a
(j−1)) + 2. In any case,
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we have Mn(a
(j)) ≥ 1+Mn(a

(j−1)) whenever both a(j) and a(j−1) are defined, and so
the algorithm must terminate.

By Lemma 3.1, Kn(ã) ≥ Kn(a), but since Kn(a) was maximal, we must have
Kn(ã) = Kn(a). It follows also that each time a swap is performed in Step 2 or

Step 3, a
(j−1)
i and a

(j−1)
i+1 are in different cycles of a(j−1), otherwise it would be the

case that Kn(a
(j)) > Kn(a

(j−1)).
Consider the finite sequence (δi : i = 1, . . . , n) given by δi := ãi − i. Since ã has

no fixed points, δ1 > 0 and δn < 0, so there is at least one sign change from positive
to negative in this sequence. If there were two or more such sign changes, then there
would have to also be at least one sign change from negative to positive, say δν < 0
and δν+1 > 0 for some ν ∈ {1, 2, . . . , n − 2}. But this gives ãν < ν < ãν+1 and the
algorithm could not have terminated with this ã. Thus, the sequence δ1, . . . , δn has
exactly one sign change. So there is an r ∈ {1, . . . , n − 1} such that ãj > j for all
j ∈ {1, . . . , r} and ãj < j for j ∈ {r + 1, . . . , n}. Appealing again to Lemma 3.1,
we may, without changing the value of Kn, sort the first r entries and the last n− r
entries to be ascending, using a bubble sort which swaps only entries of the form
ãi, ãi+1 with ãi > ãi+1. [It follows from Lemma 3.1 that for any inversion of ã of
the form j < ãj+1 < ãj (for j ∈ {1, . . . , r − 1}) or of the form ãj+1 < ãj < j (for
j ∈ {r+1, . . . , n−1}) we can switch ãj with ãj+1 and still keep Kn maximal.] Again,
each time such a swap is performed, we must have that ãi and ãi+1 are in different
cycles since Kn(ã) is maximal. After such a sort, we obtain an f ∈ Sn with

1 < f1 < f2 < · · · < fr and fr+1 < fr+2 < · · · < fn.

Now if fn > f1, we again invoke Lemma 3.1 to swap fn and f1 (which must again be
in different cycles of f since Kn(f) is maximal) and then re-sort the left and right
halves. Repeating this as necessary, we obtain a g ∈ Sn withKn(g) = Kn(f) = Kn(ã)
and such that

1 < g1 < g2 < · · · < gr, gr+1 < gr+2 < · · · < gn, and gn < g1.

This g ∈ Sn therefore has the form described in Lemma 4.1, which proves the result. �

5 The equality case when n is odd

In this section of the paper we investigate when equality holds in (1.2) (or equivalently
in the right inequality in (1.9)) when n = 2k+1 for some k ∈ N

∗\{1}. Recall that we
call any permutation in Sn that satisfies equality in (1.2) as maximal. We show that
the number of permutations in Sn that satisfy the equality is a function of the Lucas
number Ln: when n = 6m + 3 for m ∈ N

∗, there are exactly 2Ln + 2 − n maximal
permutations in Sn, while if n = 6m + 1 or 6m + 5 for m ∈ N, there are exactly
2Ln − n maximal permutations in Sn. (For m = 0 and n = 1 the last statement is
trivially true.)
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5.1 Neighboring maximal permutations

For each a ∈ Sn with n ≥ 2 define Cn(a) to be the set of all b ∈ Sn such that b can
be obtained from a by switching two consecutive elements ai and ai+1 of a (where
i ∈ {1, 2, . . . , n}) that are in the same cycle. In this definition, we assume that
n+1 := 1, i.e., an and a1 are assumed to be consecutive elements of a. For example,
if n = 4 and a = (4, 3, 2, 1), then

C4(a) = {(1, 3, 2, 4), (4, 2, 3, 1)}

because a has two cycles (1 with 4 and 2 with 3).
Next, we define In(a) to be the set of all b ∈ Sn for which there is m ∈ N

∗ and a
finite sequence b(1), . . . , b(m) in Sn such that b(1) = a, b(m) = b, and

b(j+1) ∈ Cn(b(j)) for j = 1, 2, . . . , m− 1.

(If b = a, then m = 1 and the last condition holds vacuously. In other words,
In(a) always contains the permutation a.) In our previous example, with n = 4 and
a = (4, 3, 2, 1), we have

I4(a) = {(4, 3, 2, 1), (1, 3, 2, 4), (4, 2, 3, 1), (1, 2, 3, 4)}.

Note that if a = en, then In(a) = {en}.

Lemma 5.1 Let n ≥ 5 be an odd positive integer and a ∈ Sn. If n �≡ 3 (mod 6) ,
then a is maximal if and only if a ∈ In(α1,n)∪In(α2,n). If n ≡ 3 (mod 6) , then a is
maximal if and only if a ∈ In(α1,n) ∪ In(α2,n) ∪ {β1,n, β2,n}.

Proof: If a ∈ Sn is maximal then by Theorem 4.2 there is a sequence a =
a(0), a(1), . . . , a(t) of permutations in Sn such that a(j) = a(j−1)〈ij, ij + 1〉 and a

(j−1)
ij

,

a
(j−1)
ij+1 are in different cycles of a(j−1), and a(t) is maximal with the form described in

Lemma 4.1. It follows that a(j−1) ∈ Cn(a(j)) for 1 ≤ j ≤ t, so that a = a(0) ∈ In(a(t)).
Conversely, if α is a maximal permutation of the form described in Lemma 4.1

and a ∈ In(α), then by Lemma 3.1, Kn(a) ≥ Kn(α), and so a is maximal as well.
Finally, suppose that n ≡ 3 (mod 6) and n = 2k + 1. Then k ≡ 1 (mod 3) and

β1,n(i) ≡ i+k−1 (mod n) , so β1,n(i) ≡ i (mod 3) . In particular, no two consecutive
elements β1,n(i), β1,n(i+1) are in the same cycle of β1,n. Therefore In(β1,n) = {β1,n}.
Similarly, since β2,n(i) ≡ i+ k + 2 (mod n) , it follows that β2,n(i) ≡ i (mod 3) and
so In(β2,n) = {β2,n}. �

5.2 Maximal permutations and Lucas numbers

We count the number of maximal permutations by characterizing elements of In(α�,n)
(for each � ∈ {1, 2}) in terms of their cycle structure. For the remainder of this
section, we assume n = 2k + 1 ≥ 5.
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Definition 5.2 Let γ = 〈g1, . . . , gm〉 ∈ Sn and i ∈ {1, 2, . . . , m}. The cycle obtained
from γ by deleting gi is defined to be

γ − {gi} := 〈g1, . . . , gi−1, gi+1, . . . , gm〉.

The cycle obtained from γ by deleting gi1, . . . , git is inductively defined by

γ − {gi1, . . . , git} :=
(
γ − {gi1, . . . , git−1}

)
− {git}.

For example, 〈1, 4, 7, 3, 6, 2, 5〉 − {3, 6} = 〈1, 4, 7, 2, 5〉; this example is valid in Sn for
all n ≥ 7.

Theorem 5.3 Let � ∈ {1, 2} and α�,n = 〈a1, . . . , an〉. A permutation β ∈ Sn is in
In(α�,n) if and only if β has a disjoint cycle decomposition of the form

β = 〈ai1 , ai1+1〉 · · · 〈ait , ait+1〉
(
α�,n − {ai1, ai1+1, . . . , ait , ait+1}

)
.

Proof: Suppose first that β ∈ In(α�,n). Then there is a sequence b(0), b(1), . . . , b(t)

of permutations in Sn such that b(0) = α�,n, b(t) = β, and b(j+1) ∈ Cn(b(j)) for
0 ≤ j < t. We use mathematical induction on j to prove that the permutations
in this sequence have a disjoint cycle decomposition as claimed in the statement of
the theorem. For j = 0, note that b(0) trivially has such a decomposition (with no
2-cycles).

Suppose j ∈ {0, 1, . . . , t − 1} and b(j) has a disjoint cycle decomposition of the
form

b(j) = 〈ai1 , ai1+1〉 · · · 〈aij , aij+1〉̃b,
where b̃ =

(
α�,n − {ai1 , ai1+1, . . . , aij , aij+1}

)
. Further suppose that b(j+1) ∈ Cn(b(j)),

so that there exists an i for which b
(j)
i and b

(j)
i+1 are in the same cycle of b(j) and

b(j+1) = b(j)〈i, i+ 1〉.
Case I: Suppose � = 1. Since i and i + 1 are in the same cycle as b

(j)
i and b

(j)
i+1

and am+1 ≡ am + k (mod n) , they cannot be in any of the transpositions, so they

are all contained in the cycle b̃. If i + 1 = ar then ar+2 = i. Since b̃ is obtained by
deleting consecutive pairs of elements from α1,n, it follows that ar+1 was not deleted,

so b
(j)
i+1 = ar+1. Observe now that

b̃ = 〈. . . , ar = i+ 1, ar+1 = b
(j)
i+1, ar+2 = i, b

(j)
i , . . .〉.

Therefore,

b̃〈i, i+ 1〉 = 〈i, b(j)i+1〉(̃b− {i, b(j)i+1})
= 〈ar+2, ar+1〉(̃b− {ar+2, ar+1})
= 〈ar+1, ar+2〉(̃b− {ar+1, ar+2}).
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Hence b(j+1) = b(j)〈i, i+ 1〉 has the disjoint cycle decomposition b(j+1) =

〈ai1 , ai1+1〉 · · · 〈aij , aij+1〉〈ar+1, ar+2〉
(
α1,n − {ai1 , ai1+1, . . . , aij , aij+1, ar+1, ar+2}

)
.

Case II: Suppose � = 2. Since i, i + 1, b
(j)
i , b

(j)
i+1 are in the same cycle and am+1 ≡

am + k + 1 (mod n) , it follows as above that they are in the cycle b̃. If i = ar, then

ar+2 = i+ 1 and as above we must have that ar+1 = b
(j)
i , and so

b̃ = 〈. . . , ar = i, ar+1 = b
(j)
i , ar+2 = i+ 1, b

(j)
i+1, . . .〉.

Again, it follows that

b̃〈i, i+ 1〉 = 〈i+ 1, b
(j)
i 〉(̃b− {i+ 1, b

(j)
i })

= 〈ar+1, ar+2〉(̃b− {ar+1, ar+2}).
Therefore b(j+1) has the disjoint cycle decomposition b(j+1) =

〈ai1 , ai1+1〉 · · · 〈aij , aij+1〉〈ar+1, ar+2〉
(
α1,n − {ai1 , ai1+1, . . . , aij , aij+1, ar+1, ar+2}

)
and this completes the mathematical induction of this part of the proof.

For the converse, consider the collection B�,n,t of permutations in Sn whose disjoint
cycle decomposition is of the form

β = 〈ai1 , ai1+1〉 · · · 〈ait , ait+1〉
(
α�,n − {ai1, ai1+1, . . . , ait , ait+1}

)
,

and has exactly t cycles of length 2 (and one cycle of length n−2t). By induction on t,
we shall show that B�,n,t ⊆ In(α�,n) for t ∈ {0, 1, . . . , k}. If t = 0, then B�,n,0 = {α�,n}
and α�,n ∈ In(α�,n), so assume that k ≥ T ≥ 1 and B�,n,T−1 ⊆ In(α�,n).

Let γ ∈ B�,n,T have a disjoint cycle decomposition

γ = 〈ai1 , ai1+1〉 · · · 〈aiT , aiT+1〉
(
α�,n − {ai1 , ai1+1, . . . , aiT , aiT+1}

)
.

Let r ∈ {1, 2, . . . , n} be such that ar is in the cycle α�,n − {ai1, ai1+1, . . . , aiT , aiT+1}
but ar+1 and ar+2 are not. Then r + 1 = ij for some j; without loss of generality,
assume r + 1 = iT . Define

b := 〈ai1, ai1+1〉 · · · 〈aiT−1
, aiT−1+1〉̃b,

where b̃ := α�,n − {ai1 , ai1+1, . . . , aiT−1
, aiT−1+1} (and we assume this is the disjoint

cycle decomposition of b). Then b̃ = 〈. . . , ar, ar+1, ar+2, . . .〉. Note also that, by the
induction hypothesis, b ∈ B�,n,T−1 ⊆ In(α�,n).

Case I: Suppose � = 1. Let i = ar+2 so that ar ≡ i+1 (mod n) . Since both i and

i+1 are in the cycle b̃ of b, so are bi and bi+1. Furthermore, b̃〈i, i+ 1〉 = b̃〈ar+2, ar〉 =
〈ar+1, ar+2〉

(
b̃− {ar+1, ar+2}

)
, and so

b〈i, i+ 1〉 = 〈ai1 , ai1+1〉 · · · 〈aiT−1
, aiT−1+1〉̃b〈i, i+ 1〉

= 〈ai1 , ai1+1〉 · · · 〈aiT−1
, aiT−1+1〉〈ar+1, ar+2〉

(
b̃− {ar+1, ar+2}

)
= γ
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because r + 1 = iT . Therefore, γ ∈ Cn(b) ⊆ In(α1,n), and so B1,n,T ⊆ In(α1,n).
Case II: Suppose � = 2. Let i = ar, so that ar+2 ≡ i + 1 (mod n) . Since

both i and i + 1 are in the cycle b̃ of b, so are bi and bi+1. As above, we have

that b̃〈i, i+ 1〉 = 〈ar+1, ar+2〉
(
b̃ − {ar+1, ar+2}

)
, from which it again follows that

b〈i, i+ 1〉 = γ. Thus, γ ∈ Cn(b) ⊆ In(α2,n), so that B2,n,T ⊆ In(α2,n). �

Let Fm be the m-th Fibonacci number with F0 := 0, F1 := 1 and Fm+2 := Fm+1+
Fm. Let Lm be them-th Lucas number with L0 := 2, L1 := 1 and Lm+2 := Lm+1+Lm.
Then we have the following result:

Theorem 5.4 Let n ≥ 5 be an odd positive integer. Then #
(
In(α1,n)∪In(α2,n)

)
=

2Ln − n.

Proof: Let � ∈ {1, 2}. We first show that #In(α�,n) = Ln. Let α�,n =
〈a1, a2, . . . , an〉. For j ∈ {0, 1, . . . , n} (and fixed � ∈ {1, 2}), let Dn,j be the set of
permutations in Sn having a disjoint cycle decomposition of the form{
〈ai1 , ai1+1〉 · · · 〈ait , ait+1〉

(
α�,n − {ai1 , ai1+1, . . . , ait , ait+1}

)
,

with 1 ≤ i1 < i1 + 1 < i2 < · · · < it < it + 1 ≤ j (for some t ∈ {0, 1, . . . , k}).
(5.1)

Let also fn(j) = #Dn,j. Clearly fn(0) = fn(1) = 1. For j = n, the number of
permutations of the form (5.1) with t ∈ {1, 2, . . . , k} and it = n − 1 is fn(n − 2).
More generally, for each fixed j ≥ m + 1, the number of permutations of the form
(5.1) with t ≥ 1 and it = m is fn(m − 1) for 1 ≤ m ≤ n − 1. (This is because,
for each j ≥ m + 1, there is an obvious bijection between Dn,m−1 and the subset
of permutations in Dn,j that have it = m.) There is one permutation of the form
(5.1) which has t = 0; namely α�,n itself. For 2 ≤ m ≤ n, we may determine
fn(m) by successively counting permutations whose “largest” transposition (i.e., the
transposition with the maximal subscripts) is 〈am−1, am〉, 〈am−2, am−1〉, . . . , 〈a1, a2〉.
Counting in this way, and using the conditions fn(0) = fn(1) = 1, we find that

fn(m) = fn(m− 2) + fn(m− 3) + · · ·+ fn(0) + 1

= fn(m− 2) + fn(m− 1)

= Fm+1.

Every disjoint cycle decomposition of the form in Theorem 5.3 either has the form
(5.1) or

〈ai1, ai1+1〉 · · · 〈ait , ait+1〉〈an, a1〉
(
α�,n − {ai1 , ai1+1, . . . , ait , ait+1, an, a1}

)
for some t ∈ {0, 1, 2, . . . , k − 1}. By a re-indexing of the ai’s, it is easily seen that
there are precisely fn(n− 2) permutations of the latter form, and so

#In(α�,n) = #Dn,n + fn(n− 2) = Fn+1 + fn(n− 2) = Fn+1 + Fn−1 = Ln.
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We now show that #
(
In(α1,n) ∩ In(α2,n)

)
= n, which will complete the proof.

Suppose β ∈ In(α1,n) ∩ In(α2,n). Writing α1,n = 〈a1, . . . , an〉, we have that α2,n =
α−1
1,n = 〈an, an−1, . . . , a1〉. It follows immediately that β cannot contain a cycle of

length 3 or more, and hence it has a fixed point. For each 1 ≤ j ≤ n, β ∈ In(α1,n)
has the fixed point aj if and only if

β = 〈aj+1, aj+2〉〈aj+3, aj+4〉 · · · 〈aj+2k−1, aj+2k〉〈aj〉.
On the other hand, such a β can also be written as

β = 〈aj−1, aj−2〉〈aj−3, aj−4〉 · · · 〈aj−2k+1, aj−2k〉〈aj〉,
so that every such permutation is also in In(α2,n), which completes the proof. �

A Appendix

A.1 A simple characterization of the dihedral group

Here we prove a simple property of the dihedral group that is needed in the proof of
Theorem 2.3. Letting bn+1 := b1, we define the following sets for each integer n ≥ 3:

Ωn1 := {b ∈ Sn| [bi+1 − bi ∈ {1, 1− n} for i = 1, . . . , n]};
Ωn2 := {b ∈ Sn| [bi+1 − bi ∈ {−1, n− 1} for i = 1, . . . , n]};
Ωn := Ωn1 ∪ Ωn2; and

Ω̃n := {b ∈ Sn| |bi+1 − bi| ∈ {1, n− 1} for i = 1, 2, . . . , n}.
We then have the following result:

Lemma A.1 For n ≥ 3 we have Dihn = Ωn = Ω̃n.

Proof: Observe that en ∈ Ωn. Let z, w ∈ Ωn. If zi+1 − zi and wi+1 − wi are
both in {1, 1− n} for i = 1, . . . , n, or zi+1− zi and wi+1−wi are both in {−1, n− 1}
for i = 1, . . . , n, then

z(w(i+ 1))− z(w(i)) ∈ {1, 1− n} for i = 1, . . . , n.

On the other hand, if zi+1 − zi is in {1, 1 − n} for i = 1, . . . , n and wi+1 − wi is in
{−1, n− 1} for i = 1, . . . , n, or vice versa, then

z(w(i+ 1))− z(w(i)) ∈ {−1, n− 1} for i = 1, . . . , n.

Therefore zw ∈ Ωn. Finally, let b ∈ Sn, and assume bi+1 − bi ∈ {1, 1 − n} for
i = 1, . . . , n. Then (by letting i := b−1(j)) we get

b(b−1(j + 1)) = j + 1 = b(b−1(j)) + 1 = b(b−1(j) + 1),

with the understanding that b−1(j) + 1 := 1 when b−1(j) = n. Thus (b−1)j+1 =
(b−1)j +1 for j = 1, . . . , n, and b−1 ∈ Ωn. If bi+1− bi ∈ {−1,−1+n} for i = 1, . . . , n,
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we can prove in a similar way that b−1 ∈ Ωn (by letting i := b−1(j + 1)). Therefore
Ωn is a subgroup of Sn.

One can easily check that Dihn ⊆ Ωn: a rotation b satisfies bi+1 − bi ∈ {1, 1− n}
for i = 1, . . . , n, while a reflection b satisfies bi+1 − bi ∈ {−1, n− 1} for i = 1, . . . , n.
Also, an element b of Ωn is uniquely determined by the value of b1 and whether
we assume b satisfies the first condition or the second condition, i.e., #Ωn = 2n. It
follows that Ωn = Dihn.

It is clear that Ωn ⊆ Ω̃n. To show that Ω̃n ⊆ Ωn, let b ∈ Ω̃n. Assume bj = n for
some j ∈ {1, 2, . . . , n}. Since |n−bj−1| ∈ {1, n−1} and |bj+1−n| ∈ {1, n−1} (where
we define 1− 1 := n and n+ 1 := 1), we have {bj−1, bj+1} = {1, n− 1}.

Assume first bj−1 = 1, in which case bj+1 = n − 1. If n = 3 then clearly
b ∈ Ω3, otherwise assume n ≥ 4 and note that |1 − bj−2| ∈ {1, n− 1}. We find that
bj−2 = 2. If n = 4, then clearly b ∈ Ω4, otherwise we assume n ≥ 5 and continue
this line of thought. Essentially, this argument shows that bi+1 − bi ∈ {−1, n − 1}
for i = 1, 2, . . . , n, which shows that b ∈ Ωn.

If, however, bj−1 = n− 1, then bj+1 = 1, and using a similar argument as above
we can show that bi+1 − bi ∈ {1, 1 − n} for i = 1, . . . , n, and hence b ∈ Ωn. This
completes the proof of the lemma. �
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