Closed-form expansions for the universal edge elimination polynomial

K. Dohmen

Department of Mathematics
Mittweida University of Applied Sciences
Germany
dohmen@hs-mittweida.de

Abstract

We establish closed-form expansions for the universal edge elimination polynomial of paths and cycles and their generating functions. This includes closed-form expansions for the bivariate matching polynomial, the bivariate chromatic polynomial, and the covered components polynomial.

1 Introduction

As a generalization of several well-known graph polynomials, Averbouch, Godlin and Makowsky [1] introduced the so-called universal edge elimination polynomial $\xi(G, x, y, z)$, whose recursive definition involves three kinds of edge elimination:

 G_{-e} : The graph obtained from G by removing the edge e.

 G_{e} : The graph obtained from G by removing e and identifying its endpoints,

 $G_{\dagger e}$: The graph obtained from G by removing e and all incident vertices.

All graphs are considered as finite and undirected, and may have loops and multiple edges. We use P_n to denote the simple path with n vertices (n = 0, 1, ...), and \oplus to denote the disjoint union of graphs. According to [1], $\xi(G, x, y, z)$ is defined by

$$\xi(P_0, x, y, z) = 1, \quad \xi(P_1, x, y, z) = x,$$
 (1)

$$\xi(G, x, y, z) = \xi(G_{-e}, x, y, z) + y\xi(G_{/e}, x, y, z) + z\xi(G_{\dagger e}, x, y, z), \tag{2}$$

$$\xi(G_1 \oplus G_2, x, y, z) = \xi(G_1, x, y, z)\xi(G_2, x, y, z). \tag{3}$$

The universal edge elimination polynomial $\xi(G, x, y, z)$ generalizes, among others, the bivariate matching polynomial $M(G, x, y) = \xi(G, x, 0, y)$ (provided G is loop-free), the bivariate chromatic polynomial $P(G, x, y) = \xi(G, x, -1, x - y)$, and the covered components polynomial $C(G, x, y, z) = \xi(G, x, y, xyz - xy)$. The implications of our results on $\xi(G, x, y, z)$ for these polynomials are new as well. We refer to [1–4] for the definitions of the various graph polynomials and the relationships among them.

2 Closed-form expansions for paths and cycles

We use \mathbb{N} to denote the set of positive integers. The following theorem provides a closed-form expansion for the universal edge elimination polynomial of a path.

Theorem 2.1. Let $n \in \mathbb{N}$, and $x, y, z \in \mathbb{R}$. If $z > -\left(\frac{x+y}{2}\right)^2$, then

$$\xi(P_n, x, y, z) = \frac{\sqrt{D} - x + y}{2\sqrt{D}} \left(\frac{x + y - \sqrt{D}}{2}\right)^n + \frac{\sqrt{D} + x - y}{2\sqrt{D}} \left(\frac{x + y + \sqrt{D}}{2}\right)^n \tag{4}$$

where

$$D := x^2 + 2xy + y^2 + 4z. (5)$$

If $z < -\left(\frac{x+y}{2}\right)^2$, then

$$\xi(P_n, x, y, z) = (-z)^{n/2} \left(\cos(n\varphi) + \frac{x - y}{\sqrt{-D}} \sin(n\varphi) \right)$$
 (6)

where

$$\varphi = \begin{cases} \arctan \frac{\sqrt{-D}}{x+y} & \text{if } x+y > 0, \\ \pi/2 & \text{if } x+y = 0, \\ \pi + \arctan \frac{\sqrt{-D}}{x+y} & \text{if } x+y < 0. \end{cases}$$
 (7)

If $z = -\left(\frac{x+y}{2}\right)^2$, then

$$\xi(P_n, x, y, z) = \frac{(n+1)x - (n-1)y}{2} \left(\frac{x+y}{2}\right)^{n-1}.$$
 (8)

Proof. By choosing e as an end edge of P_n , Eqs. (2) and (3) yield the recurrence

$$\xi(P_n, x, y, z) = (x + y)\xi(P_{n-1}, x, y, z) + z\xi(P_{n-2}, x, y, z) \quad (n \ge 2), \tag{9}$$

where the initial conditions are given by Eq. (1). This is a homogeneous linear recurrence of degree 2 with constant coefficients. We solve this recurrence by applying the method of characteristic roots. The characteristic equation of the recurrence is

$$r^{2} - (x+y)r - z = 0, (10)$$

with discriminant D, given by Eq. (5). In our three cases, we have D > 0, D < 0, and D = 0, respectively. In the first two cases, the solution to Eq. (9) is of the form

$$\xi(P_n, x, y, z) = c_1 r_1^n + c_2 r_2^n \tag{11}$$

where r_1, r_2 are the distinct roots of Eq. (10) and c_1, c_2 are chosen to satisfy Eq. (1). In the first case we have

$$r_{1} = \frac{x + y - \sqrt{D}}{2}, \qquad c_{1} = \frac{\sqrt{D} - x + y}{2\sqrt{D}},$$

$$r_{2} = \frac{x + y + \sqrt{D}}{2}, \qquad c_{2} = \frac{\sqrt{D} + x - y}{2\sqrt{D}},$$

$$(12)$$

and in the second case,

$$r_{1} = \frac{x+y}{2} - \frac{\sqrt{-D}}{2}i, \qquad c_{1} = \frac{1}{2} + \frac{x-y}{2\sqrt{-D}}i,$$

$$r_{2} = \frac{x+y}{2} + \frac{\sqrt{-D}}{2}i, \qquad c_{2} = \frac{1}{2} - \frac{x-y}{2\sqrt{-D}}i.$$
(13)

A little bit of extra work is needed in the second case in order to get rid of the imaginary parts: Representing r_1 and r_2 in polar form and applying Euler's formula we obtain

$$r_1^n = \left(\sqrt{-z} e^{-i\varphi}\right)^n = (-z)^{n/2} \left(\cos(n\varphi) - \sin(n\varphi)i\right),$$

$$r_2^n = \left(\sqrt{-z} e^{i\varphi}\right)^n = (-z)^{n/2} \left(\cos(n\varphi) + \sin(n\varphi)i\right),$$
(14)

with φ as in Eq. (7). Thus, Eq. (11) becomes $\xi(P_n, x, y, z) =$

$$(-z)^{n/2} \left(\frac{1}{2} \cos(n\varphi) + \frac{x-y}{2\sqrt{-D}} \cos(n\varphi)i - \frac{1}{2} \sin(n\varphi)i + \frac{x-y}{2\sqrt{-D}} \sin(n\varphi) + \frac{1}{2} \cos(n\varphi) - \frac{x-y}{2\sqrt{-D}} \cos(n\varphi)i + \frac{1}{2} \sin(n\varphi)i + \frac{x-y}{2\sqrt{-D}} \sin(n\varphi) \right).$$

This shows that the imaginary parts cancel out. This proves Eq. (6).

In the third case, the solution to Eq. (9) is $\xi(P_n, x, y, z) = (c_1 + c_2 n)r^n$ where $r = \frac{x+y}{2}$ is the unique root of Eq. (10) and $c_1, c_2 \in \mathbb{R}$ are determined by Eq. (1). If x + y = 0, then $\xi(P_n, x, y, z) = 0$. Thus, in this case, Eq. (8) holds. If $x + y \neq 0$, then by Eq. (1), $c_1 = 1$ and $c_2 = \frac{x-y}{x+y}$; hence,

$$\xi(P_n, x, y, z) = \left(1 + \frac{x - y}{x + y}n\right) \left(\frac{x + y}{2}\right)^n,$$

which coincides with Eq. (8). This completes the proof.

For any $n \in \mathbb{N}$, we use C_n to denote the connected 2-regular graph with n vertices. We adopt the convention that C_0 is the empty graph. By Eq. (2) we have

$$\xi(C_1, x, y, z) = x + xy + z,\tag{15}$$

$$\xi(C_2, x, y, z) = x^2 + 2xy + 2z + xy^2 + yz. \tag{16}$$

The following theorem generalizes Eqs. (15) and (16) to cycles of any finite length.

Theorem 2.2. Let $n \in \mathbb{N}$ and $x, y, z \in \mathbb{R}$. Let D and φ be defined as in Eq. (5) resp. (7). If $z \ge -\left(\frac{x+y}{2}\right)^2$, then

$$\xi(C_n, x, y, z) = \left(\frac{x + y - \sqrt{D}}{2}\right)^n + \left(\frac{x + y + \sqrt{D}}{2}\right)^n + y^{n-1}(xy - y + z).$$
 (17)

If $z \le -\left(\frac{x+y}{2}\right)^2$, then

$$\xi(C_n, x, y, z) = 2(-z)^{n/2}\cos(n\varphi) + y^{n-1}(xy - y + z). \tag{18}$$

Proof. For n=1,2 the theorem agrees under both conditions on z with Eqs. (15) and (16). This is easy to see for $z \ge -\left(\frac{x+y}{2}\right)^2$, while for $z \le -\left(\frac{x+y}{2}\right)^2$ the identities $\cos(\arctan(t)) = 1/\sqrt{1+t^2}$ and $\cos(\alpha) = 2\cos^2(\alpha) - 1$ reveal the coincidence.

For the rest of this proof, we assume $n \geq 3$. We may further assume that $z \neq -\left(\frac{x+y}{2}\right)^2$ as the remaining case follows for reasons of continuity by taking limits on both sides of Eqs. (17) and (18) as $z \downarrow -\left(\frac{x+y}{2}\right)^2$ resp. $z \uparrow -\left(\frac{x+y}{2}\right)^2$. By Eq. (2) we have the non-homogeneous recurrence

$$\xi(C_n, x, y, z) = \xi(P_n, x, y, z) + y\xi(C_{n-1}, x, y, z) + z\xi(P_{n-2}, x, y, z) \quad (n \ge 3)$$

with initial condition as in Eq. (16). Iterating this recurrence gives

$$\xi(C_n, x, y, z) = \sum_{j=0}^{n-2} y^j \Big(\xi(P_{n-j}, x, y, z) + z \xi(P_{n-j-2}, x, y, z) \Big) + y^{n-1} (x + xy + z)$$

$$= \xi(P_n, x, y, z) + y \xi(P_{n-1}, x, y, z) + (y^2 + z) \sum_{j=0}^{n-4} y^j \xi(P_{n-j-2}, x, y, z)$$

$$+ y^{n-3} \left(xz + yz + xy^2 + xy^3 + y^2 z \right). \tag{19}$$

Using Eq. (11) with c_1, r_1, c_2, r_2 from Eqs. (12) and (13) in the preceding proof, the sum on the right-hand side of Eq. (19) can be written as

$$\sum_{j=0}^{n-4} y^{j} \xi(P_{n-j-2}, x, y, z) = \sum_{j=0}^{n-4} y^{j} \left(c_{1} r_{1}^{n-j-2} + c_{2} r_{2}^{n-j-2} \right)$$

$$= c_{1} r_{1}^{n-2} \sum_{j=0}^{n-4} \left(\frac{y}{r_{1}} \right)^{j} + c_{2} r_{2}^{n-2} \sum_{j=0}^{n-4} \left(\frac{y}{r_{2}} \right)^{j}.$$

If $z \neq -xy$, then $y \neq r_1$ and $y \neq r_2$. In this case, by applying the formula for finite geometric series the preceding equation simplifies to

$$\sum_{j=0}^{n-4} y^{j} \xi(P_{n-j-2}, x, y, z) = c_1 r_1^2 \frac{r_1^{n-3} - y^{n-3}}{r_1 - y} + c_2 r_2^2 \frac{r_2^{n-3} - y^{n-3}}{r_2 - y}.$$

Substituting this latter expression into Eq. (19) and taking into account that r_1 and r_2 are given as in Eqs. (12) and (13) leads to

$$\xi(C_n, x, y, z) = c_1 r_1^n + c_2 r_2^n + y(c_1 r_1^{n-1} + c_2 r_2^{n-1})$$

$$+ (y^2 + z) \left(c_1 r_1^2 \frac{r_1^{n-3} - y^{n-3}}{r_1 - y} + c_2 r_2^2 \frac{r_2^{n-3} - y^{n-3}}{r_2 - y} \right)$$

$$+ y^{n-3} \left(xz + yz + xy^2 + xy^3 + y^2 z \right)$$

$$= r_1^n + r_2^n + y^{n-1} (xy - y + z) ,$$

$$(20)$$

where the last equality follows by substituting $c_1 = -\frac{r_1 - y}{\sqrt{D}}$, $c_2 = \frac{r_2 - y}{\sqrt{D}}$, $\sqrt{D} = -\frac{r_1^2 - r_2^2}{x + y}$, and rearranging and cancelling terms (note that $\sqrt{D} = i\sqrt{-D}$ if D < 0). Now, for $z > -\left(\frac{x+y}{2}\right)^2$ Eq. (17) follows from Eqs. (20) and (12), whereas for $z < -\left(\frac{x+y}{2}\right)^2$ Eq. (18) follows from Eqs. (20) and (14) after cancelling out the imaginary parts, in analogy to the proof of Theorem 2.1.

If z = -xy, then $z > -\left(\frac{x+y}{2}\right)^2$. In this remaining case, the result follows for reasons of continuity by taking limits on both sides of Eq. (17) as $z \downarrow -xy$.

Remark 2.3. For $z = -\left(\frac{x+y}{2}\right)^2$, Eqs. (17) and (18) coincide. In this case,

$$\xi(C_n, x, y, z) = 2\left(\frac{x+y}{2}\right)^n - \frac{x^2 - 2xy + y^2 + 4y}{4}y^{n-1}.$$

Alternatively, this can be shown by combining Eqs. (8) and (19) and applying the formula for finite geometric series.

Remark 2.4. The preceding closed-form expansions can also be proved by induction. A computer algebra system might be helpful. In Sage [5], for instance, the following lines of code prove Eqs. (4) and (17) by induction on the number of vertices.

We proceed with a corollary on the generating function of $\xi(G, x, y, z)$.

Corollary 2.5.

$$\sum_{n=0}^{\infty} \xi(P_n, x, y, z)t^n = \frac{1 - yt}{1 - (x + y)t - zt^2},$$

$$\sum_{n=0}^{\infty} \xi(C_n, x, y, z)t^n = \frac{1 + zt^2}{1 - (x + y)t - zt^2} + \frac{(xy - y + z)t}{1 - yt}.$$

Proof. Corollary 2.5 is an immediate consequence of Theorem 2.1, Theorem 2.2 and the geometric series formula. \Box

Acknowledgement

The author thanks Peter Tittmann for drawing his attention to the universal edge elimination polynomial and its generating function.

References

- [1] I. Averbouch, B. Godlin and J.A. Makowsky, An extension of the bivariate chromatic polynomial, *Europ. J. Combin.* **31** (2010), 1–17.
- [2] K. Dohmen, A. Pönitz, and P. Tittmann, A new two-variable generalization of the chromatic polynomial, *Discrete Math. Theoret. Comput. Sci.* 6 (2003), 69–90.
- [3] I. Gutman and F. Harary, Generalizations of the matching polynomial, *Util. Math.* **24** (1983), 97–106.
- [4] M. Trinks, The covered components polynomial: A new representation of the edge elimination polynomial, *Electron. J. Combin.* **19** (2012), #P50, 31 pp.
- [5] W. A. Stein et al., Sage Mathematics Software (Version 6.8), The Sage Development Team, 2015, http://www.sagemath.org.

(Received 27 Apr 2014; revised 3 Nov 2014, 30 Aug 2015)