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Abstract

The problem is to determine the number of ‘cops’ needed to capture a
‘robber’ where the game is played with perfect information, the different
sides moving alternately. The cops capture the robber when one of them
occupies the same vertex as the robber at any time in the game. A cop-
win graph is one in which one cop can always capture the robber. A
graph is cop-win edge-critical with respect to edge contraction (CECC)
when the original graph is not cop-win, but the contraction of any edge
results in a cop-win graph. In this paper, classes of CECC graphs are
determined, and k-regular CECC are characterized for k ≤ 4.

1 Introduction

The game of cops and robber is a pursuit-evasion game in which a set of k cops
(k ≥ 1) is trying to capture a single robber on a graph. We will assume it is played
on a finite, connected, reflexive graph. The game begins with each of the k cops
choosing a vertex to occupy. The robber then chooses a vertex. The cops and robber
then alternate moves. On the cops’ move, each cop can slide along an edge to an
adjacent vertex or stay at his current location. The robber can do the same on his
move. The cops win if at least one cop occupies the same vertex as the robber at
the same time. When this occurs, we say that the robber has been captured. The
robber wins if he can avoid capture indefinitely. Note that more than one cop may
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occupy the same vertex at any given time, and both the cops and robber know the
others position at all times. The copnumber of a graph G, denoted c(G), is the least
number of cops required to guarantee a win for the cops. If c(G) ≤ k, then we say
that G is k-cop-win. When k = 1, we say that G is cop-win.

Cop-win graphs were completely characterized by Nowakowski and Winkler [9]
and independently by Quillot [10]. The notion of copnumber was introduced by
Aigner and Frommie [1]. In the time since these early publications, the problem
has become increasingly well known, with many papers written on the subject. The
reader is directed to the book The Game of Cops and Robbers on Graphs by Bonato
and Nowakowski [3] for additional background.

The most important open problem on the subject is Meyniel’s conjecture [6]
which states that c(n) = O(

√
n), where c(n) is the maximum of c(G) taken over

all connected graphs on n vertices. The best known bound is due to Lu and Peng
[8] (found independently in Frieze, Krivelevich and Loh [7]). In this paper, they
also verify Meyniel’s conjecture for graphs with diameter two and bipartite graphs
of diameter three. Among other results on this conjecture, it has also been shown by
Bollobás, Kun and Leader [2] that Meyniel’s conjecture essentially holds for sparse
random graphs.

In this paper, we examine further the class of cop-win edge critical graphs, which
were introduced by Clarke, Fitzpatrick, Hill and Nowakowski in [4]. A graph is
considered to be cop-win edge critical if the graph itself is not cop-win, but an
operation on any edge of the graph results in a cop-win graph. In this paper, we
are interested in the operation of edge contraction. Specifically, if a graph G is not
cop-win, but the contraction of any edge of G results in a cop-win graph, then we say
that G is Cop-win Edge Critical with respect to Contraction (CECC). Similar graphs
have been considered under the operations of edge addition [4, 5] and edge deletion
[5]. In [4], the authors give a characterization of all regular graphs that are Cop-win
Edge Critical subject to Edge Addition (CECA). In [5], all planar CECA and CECD
(Cop-win Edge Critical with respect to Edge Deletion) graphs are characterized.
We direct the reader to these papers for further information, as there are many
commonalities between CECC and CECA graphs.

We let V (G) and E(G) denote the vertex set and edge set of G, respectively. We
write u ∼G v if u 6= v and u is adjacent to v in G. We also refer to v as a neighbour of
u. For any u ∈ V (G), let NG(u) = {v ∈ V (G) : u ∼G v}, and NG[u] = NG(u) ∪ {u}.
The degree of u, denoted degG(u), is defined as degG(u) = |NG(u)|. (Note that
although the graphs are reflexive, and therefore, have a loop at each vertex, the loop
does not contribute to the degree of the vertex.) We let δ(G) = min{degG(u) : u ∈
V (G)} and ∆(G) = max{degG(u) : u ∈ V (G)}. A graph G is said to be k-regular
if δ(G) = ∆(G) = k. For two distinct vertices u and v in V (G), we say that u is
a corner that is dominated by v if NG[u] ⊆ NG[v]. The complement of G is the
graph G such that V (G) = V (G) and E(G) = {uv : u, v ∈ V (G) and u 6∼G v}.
Given graphs F and H such that V (F ) ∩ V (H) = ∅, the graph join of F and H,
denoted F ∨ H, is a graph such that V (F ∨ H) = V (F ) ∪ V (H) and E(F ∨ H) =
E(F ) ∪ E(H) ∪ {xy : x ∈ V (F ) and y ∈ V (H)}.

Given a graph G, by contracting an edge uv ∈ E(G) we can obtain a new graph
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G/uv. We can think of this as associating the vertices u and v to create a new vertex
uv. Formally, we can define G/uv as follows: V (G/uv) = (V (G)∪{uv})\{u, v}, and

NG/uv(x) =


(NG(u) ∪NG(v)) \ {u, v} : x = uv

NG(x) : x 6= uv and NG(x) ∩ {u, v} = ∅
(NG(x) \ {u, v}) ∪ {uv} : x 6= uv and NG(x) ∩ {u, v} 6= ∅

The set E(G/uv) follows from the neighbourhoods described above, together with
the fact that G/uv is reflexive and has no multi-edges.

It has been observed that every cop-win graph contains a corner ([9], [10]). This
observation, together with the following lemma, provides a structural characteriza-
tion of cop-win graphs.

Lemma 1 [9] Suppose x is a corner in a graph G. Then G is cop-win if and only if
G− {x} is cop-win.

Therefore, the set of cop-win graphs is exactly the set of dismantlable graphs. A
graph is dismantlable if it is either an isolated vertex, or its vertices can be ordered
v1, v2, . . . , vn so that for each i = 1, . . . , n− 1, there is a j > i such that vi ∼ vj and
NGi

[vi] ⊆ NGi
[vj] where G1 = G and Gi = G − {v1, . . . , vi−1} for each i = 2, . . . , n.

In other words, for each i = 1, . . . , n − 1, vi is a corner in Gi dominated by vj. We
refer to the ordering of the vertices as a cop-win ordering. Therefore, a graph G is
cop-win if and only there exists some cop-win ordering of its vertices.

Note that the removal of corners can also be expressed in terms of contracting
edges; if u is a corner in G with dominating vertex v, then G − {u} ∼= G/uv.
Therefore, the dismantling scheme for a cop-win graph can be expressed as a sequence
of edge contractions. It is also true that for any connected graph G, there is a series of
edge contractions that will result in a cop-win graph (simply contract all of the edges
to obtain a single vertex). In Section 2, we find an upper bound on the copnumber
of the original graph in terms of the number of edge contractions required to obtain
a cop-win graph.

In Section 3, we describe some classes of graphs that are CECC. We also show
how the join operation can be used to generate new CECC graphs from known CECC
graphs. In Section 4 we characterize graphs that are CECC and have at least one of
the following properties: (1) minimum degree 2, (2) minimum degree 3, (3) bipartite,
(4) 4-regular or (5) the complement of a 2-regular graph.

2 Edge Contraction and Edge Critical Graphs

Let S be the set of all graphs that are CECC. Keeping in mind that the removal
of a corner is equivalent to an edge contraction, it is straightforward to show that
no graph in S has a corner. In the next lemma,we verify that fact, as well as the
location of the corner created via edge contraction.
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Lemma 2 If G ∈ S, then G has no corners, and δ(G) ≥ 2. Furthermore, for any
uv ∈ E(G), every corner of G/uv is in NG/uv[uv] .

Proof. If G is in S, then G/uv is cop-win for any uv ∈ E(G). If u were a corner in
G, and v its dominating vertex, then G− {u} = G/uv and G− {u} is cop-win. By
Lemma 1, this implies G is cop-win , which is a contradiction. Therefore, G has no
corner. Since any vertex of degree one is a corner, it follows that δ(G) ≥ 2.

For some G ∈ S and uv ∈ E(G), let G′ = G/uv. Then c(G′) = 1 and G′ has at least
one corner. Suppose x is that corner, but x 6∈ NG′ [uv]. Then x is dominated in G′

by a vertex y 6= uv. That is, NG′ [x] ⊆ NG′ [y]. Since NG′ [x] = NG[x], this implies
that x is also dominated by y in G, which is a contradiction. �

We now show that every CCEC graph has copnumber 2. In fact, we prove a
stronger result: if a series of k edge contractions results in a cop-win graph, then
the original graph has copnumber at most k + 1. Specifically, we consider edges
e1, e2, . . . , ek in graphs G1, . . . , Gk−1, respectively, where G1 = G, Gi+1 = Gi/ei for
i = 1, . . . , k − 1, and Gk is cop-win.

We note that the contraction of ei in Gi to obtain graph Gi+1 is associated with
a graph homomorphism. Specifically, for graph G and edge uv in E(G) (assume
u 6= v), the associated homomorphism would be f : G→ G/uv where

f(x) =

{
x : x 6∈ {u, v}
uv : x ∈ {u, v}

Lemma 3 If G is a graph such that a series of k edge contractions yields a cop-win
graph G′, then c(G) ≤ k + 1.

Proof. Assume we perform the minimum number of edge contractions required to
obtain a cop-win graph, G′, from original graph G. Assume k edge contractions were
required, and let K = {e1, e2, . . . , ek} be the set of contracted edges, listed in the
order in which they were contracted. The series of contractions gives a corresponding
series of graphs, G1, G2 . . . , Gk+1 such that G1 = G, Gi+1 = Gi/ei for i = 1, . . . k.
Note that Gk+1 = G′.

Let V (G) = {v1, v2, ..., vn} and V (G′) = {u1, u2, ..., ul}. There exist graph homomor-
phisms f1, f2, ..., fk where, for each i = 1, . . . , k, fi : Gi −→ Gi+1 is defined according
to the contraction of edge ei. Let f = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1.
Let GK be the subgraph of G such that E(GK) = K and V (GK) consists of the end-
points of K. Note that if we consider any vertex x ∈ V (G′) then {v ∈ V (G)|f(v) =
x} are exactly the vertices in some component of GK . Let Tx denote that component
of GK .

For each ei ∈ K, place a cop on one endpoint of that edge. Since GK is a forest,
each cop can choose a different vertex to occupy. Place an additional cop on some
unoccupied vertex, x, of G. We have k + 1 cops on G. Simultaneously, a cop C is
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placed on vertex f(x) on G′. As play begins on G, the robber R chooses a vertex.
We will associate R with the vertex he occupies.

We now play simultaneous games on G and G′. Since G′ is cop-win, a single cop,
C, will capture the robber’s image, f(R). We will use C’s strategy in G′ to form a
winning strategy for the k + 1 cops on G. To do this, suppose that it is the cops’
turn in both games. On G′, C will move from u to v as part of its winning strategy.
Assume, by induction, that there are cops on every vertex of Tu, and there are cops
on all except one vertex of Tv. If u ∼G′ v, then, in G, there is some vertex u′ in Tu
that is adjacent to a vertex v′ in Tv. Move a cop from u′ to v′, and redistribute the
cops currently in Tv so that each vertex of Tv is occupied by some cop.

When C occupies the same vertex as f(R) in G′, then there are cops on all possible
preimages of f(R) in G, and therefore, R is captured in G. Thus c(G) ≤ k + 1. �

Corollary 4 If G ∈ S, then c(G) = 2.

In Lemma 3, we perform edge contractions so that the resulting graph is cop-win.
Can a similar result of c(G) ≤ k+` be obtained if the resulting graph has copnumber
` ? In general, the proof for Lemma 3 does not hold if we replace c(G′) = 1 with
c(G′) = `. The best we could do, if we followed a similar argument, is c(G) ≤ 2`.
However, we can improve the result if the cops move in such a way that no two cops
ever occupy the same vertex at the same time. Let’s refer to this method of play as
non-overlapping.

Corollary 5 Suppose G is a graph such that a series of k edge contractions yields
graph G′. If ` cops can always capture the robber on G′ using non-overlapping play,
then c(G) ≤ k + `.

3 Classes of CECC Graphs

We begin by considering the graph join operation and how it can be used to generate
CECC graphs. We will then give the characterization of CECC graphs that result
from the graph join. We conclude this section by proving that the complements of
cycles on 3k + 1 (k ≥ 2) vertices are CECC and, since they have connected comple-
ments, cannot be constructed using the graph join operation. Before beginning, we
note that if a graph G has a vertex, u, such that N [u] = V (G), then G is obviously
cop-win. We call such a vertex, u, a universal vertex in G.

Lemma 6 For any graphs F and H, c(F ∨ H) = 1 if and only if c(F ) = 1 or
c(H) = 1.

Proof. (⇒) Assume c(F ∨H) = 1 but c(F ) ≥ 2 and c(H) ≥ 2. Since c(F ) ≥ 2 and
c(H) ≥ 2, one cop cannot win in G if her strategy only involves vertices in the copy
of H, or only vertices from F . Without loss of generality, assume that the single cop,
C, starts the game on some vertex x in the copy of H. We know that at some point
C must move to some vertex y in the copy of F or else the robber can remain safe
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indefinitely. Once C moves to y, R can move to some safe vertex w in the copy of F
and remain safe as long as C is on some z in the copy of F since c(F ) ≥ 2. We see
that this can continue for infinitely many rounds so c(F ∨H) ≥ 2, which contradicts
our assumption. So c(F ) = 1 or c(H) = 1.

(⇐) Without loss of generality, assume c(F ) = 1. Now consider F ∨ H for some
graph H. Since c(F ) = 1, there is a cop-win strategy in F . We let one cop play
according to a cop-win strategy for F on the induced F in F ∨ H. If at any time
the robber moves to the induced H he is captured immediately since x ∼ y for all
x ∈ V (F ) and y ∈ V (H). This new strategy will therefore work as a cop-win strategy
in F ∨H, and so c(F ∨H) = 1. �

We now present the result that allows us to generate classes of CECC graphs
using the graph join operation.

Theorem 7 Let K = {Kl : l ≥ 2}. The graph F ∨ H is in S if any only if H ∈
S ∪K and F ∈ S ∪K.

Proof. (⇒) Let G = F ∨ H. Assume G ∈ S, and either H 6∈ S ∪ K or F 6∈ S ∪ K.
If F or H is cop-win, then G will be cop-win by Lemma 6. So we suppose c(F ) ≥ 2
and c(H) ≥ 2. By assumption, c(H/uv) ≥ 2 or c(F/uv) ≥ 2 for some uv in
their respective edge sets. Assume without loss of generality c(H/uv) ≥ 2. We
note that uv must exist or else H ∈ K, contradicting our assumption, or H is the
singleton graph, but H cannot be cop-win. Since G ∈ S, one cop can win in G/uv
for any uv ∈ E(H), but c(H/uv) ≥ 2 and c(F ) ≥ 2 so c(G/uv) 6= 1 by Lemma 6.
Therefore G 6∈ S which contradicts our assumption. A similar argument shows that
if uv ∈ E(F ) and c(F/uv) ≥ 2, then c(G/uv) 6= 1 and so G 6∈ S. Therefore if G ∈ S,
then H ∈ S ∪K and F ∈ S ∪K.

(⇐) Assume H ∈ S ∪K and F ∈ S ∪K. Since c(I) ≥ 2 for all I ∈ S ∪K, c(G) 6= 1
by Lemma 6. We now consider G/uv for some uv ∈ E(G). If uv is an edge between
the induced H and the induced F , then the vertex uv is a universal vertex in G/uv
so c(G/uv) = 1. If H and F ∈ K, then we have no more edges to consider and the
result holds so we suppose without loss of generality H ∈ S. Let uv ∈ E(H). Since
H ∈ S, c(H/uv) = 1 and c(G/uv) = 1 by Lemma 6. �

Corollary 8 If G ∼= K`1,`2,...,`m where m ≥ 2 and `i ≥ 2 for each i = 1, 2, . . .m, then
G ∈ S.

Proof. If G ∼= K`1,`2,...,`m where m ≥ 2 and `i ≥ 2 for each i = 1, 2, . . .m, then
G ∼= K`1 ∨K`2 ∨ · · · ∨K`m . �

We now show that there exists a family of CECC graphs that cannot be formed
by the join operation as they have connected complements.

Theorem 9 The complement of the cycle on j vertices, Cj, is CECC if and only if
j = 3k + 1 for some k ∈ N \ {1}.
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Proof. Let V (Cj) = {0, 1, 2, ..., j − 1} and i ∼ l for l 6= i and l 6= i± 1 mod j. The
reader is directed to Lemma 24 of [4] for a proof that c(Cj) ≥ 2. We now examine
graphs resulting from a single edge contraction. Without loss of generality, assume
the edge 0i is contracted, where 2 ≤ i ≤ j − 2.

Let G = Cj to simplify notation. If 0i ∈ E(G) such that i 6= 2 and i 6= j − 2, then
NG/0i[0i] = (NG[0] ∪ NG[i] ∪ {0i}) \ {0, i} = V (G/0i). Therefore, 0i is a universal
vertex in G/0i, and c(G/0i) = 1. It now remains to show that G/02 and G/0(j − 2)
are cop-win.

We claim that 5, 8, 11, ..., 3k− 1 are corners in the graphs G/02, G/02−{5}, G/02−
{5, 8}, . . . , G/02 − {5, 8, ..., 3k − 4} respectively where 3k − 1 is the largest number
congruent to 2 mod 3 of all vertex labels. To prove this claim, we proceed by induction
on n to show that 5 is a corner in G/02 and 3n − 1 is a corner in the subgraph
G/02 − {5, . . . , 3k − 4} for all n ≥ 3. We see that NG/02[5] = V (G/02) \ {4, 6} ⊂
NG/02[3] = V (G/02) \ {4}, therefore 5 is a corner and can be the first vertex added
to the cop-win ordering. Now suppose that the vertices with labels congruent to 2
modulo 3 between 5 and 3l − 4 are the first l − 2 vertices in the cop-win ordering
for some l ≥ 3 and let H be the subgraph of G/02 obtained from removing these
vertices. We see that NH [3l−1] = NH [3l−3]\{3l} by our induction hypothesis and
therefore 3l − 1 is a corner dominated by 3l − 3 and can be added to the cop-win
ordering. It follows by induction that 5, 8, 11, ..., 3k − 1 are the first l − 1 entries in
some cop-win ordering for G/02. We now consider two cases to show that j = 3k+1.

Case 1 j = 3k + 1 for some k ≥ 2. Let V (C3k+1) = {0, 1, 2, ..., 3k} and l ∼
m for all m 6= l ± 1 mod 3k + 1. We claim that 3k is a universal vertex in
G/02 \ {5, 8, 11, ..., 3k− 1}, Let F = G/02−{5, 8, 11, . . . , 3k− 1}. Since NG/02[3k] =
V (G/02)\{3k−1}, and since 3k−1 6∈ V (F ), it follows that NF [3k] = V (F ), making
3k universal in F and c(G/02) = 1. Therefore G ∈ S.

Case 2 j = 3k or j = 3k + 2 for some k ≥ 2. Let I = G/02− {5, 8, 11, . . . , 3k − 1}.
Now every vertex in I has degree |V (I)| − 2 and therefore I ∼= K2,2,..,2 so I ∈ S by
Corollary 8. Therefore c(I) = 2. Therefore G 6∈ S.

Therefore j = 3k + 1 for some k ≥ 2. �

4 CECC Graphs and Degree

In this section we characterize CECC graphs with minimum degree at most 3 and
present a structural characterization for CECC graphs with minimum degree at
least 4.

We begin with a characterization of CECC graphs with minimum degree 2, which
requires verifying that no CECC graph has a cut-edge. We will also make use of the
following lemma from [4].

Lemma 10 [4] If G contains an induced cycle C with length at least 4 and degG(u) =
2 for some u ∈ C, then c(G) ≥ 2.
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Lemma 11 If G ∈ S, then G has no cut-edge.

Proof. Suppose G ∈ S. By Lemma 2, δ(G) ≥ 2 . Suppose uv ∈ E(G) is a cut-edge.
Let H1 and H2 be components of G − uv such that u ∈ V (H1) and v ∈ V (H2).
Since uv is a cut-edge in G, uv is a cut-vertex in G/uv . Therefore, uv is not a
corner in G/uv. Since G/uv is cop-win, it has at least one corner, w. By Lemma 2,
w ∈ NG/uv(uv). Without loss of generality, assume that w ∈ V (H2). Since w has
no neighbour in V (G/uv) ∩ V (H1), w must be dominated in G/uv by either uv or a
vertex in V (H2). If w is dominated by uv in G/uv, then w is dominated by v in G,
which is a contradiction. However, if w is dominated in G/uv by a vertex in V (H2),
then w is dominated by that same vertex in G, which is also a contradiction. Thus,
G has no cut-edge. �

We can now give the characterization of all CECC graphs with minimum degree 2.

Theorem 12 Suppose δ(G) = 2. Then G ∈ S if and only if G ∼= K2,m for some
m ≥ 2.

Proof. By Corollary 8, we know that K2,m ∈ S.

Assume G ∈ S and δ(G) = 2. There is a vertex w ∈ V (G) such that deg(w) = 2.
Let x and y be vertices of G such that x 6= y, x ∼ w and y ∼ w. If x ∼ y, then w is
a corner in G, which contradicts Lemma 2. Therefore, x � y.

Since G ∈ S, it has no cut-edge, and every edge is on a cycle. Furthermore, by
Lemma 10, the contraction of any edge other than wx or wy must result in a 3-cycle
containing w. Therefore, we must have y ∼G/uv x for any uv ∈ E(G) \ {wx,wy}. It
follows that every edge of G has either x or y as an endpoint. Hence, G ∼= K2,m. �

Now we work toward a characterization of graphs that are CECC with minimum
degree 3. Two important result needed for this are (1) every bipartite CECC graph
is complete bipartite and (2) if a CECC graph is not complete bipartite, then every
edge of that graph lies on some 3-cycle. These results are given in Lemma 16 and
Theorem 17. We begin by finding the maximum girth of a CECC graph.

We note that a corner has the property that it either has degree one, or it lies on
a 3-cycle.

Lemma 13 If G ∈ S, then girth(G) ≤ 4.

Proof. Assume girth(G) ≥ 5 and G ∈ S. Consider an edge uv in G. Let G′ =
G/uv. Some vertex in NG′ [uv] is a corner in G′. Suppose uv is a corner in G′.
Since NG′(uv) = NG(u) ∪ NG(v) \ {u, v} and u and v have no common neighbours,
|NG′(uv)| = |NG(u)| + |NG(v)| − 2. Since δ(G) ≥ 2, it follows that |NG′(uv)| ≥ 2.
Therefore, uv must lie on a 3-cycle in G′. It follows that the edge uv must lie on a
4-cycle in G, which is a contradiction. Therefore, some x ∈ NG′(uv) must be a corner
in G′.
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Without loss of generality, assume x ∼G u. Since girth(G) ≥ 5 , x 6∼G v. Therefore,
NG′(x) = (NG(x) \ {u}) ∪ {uv}. It follows that x has at least two neighbours in G′.
Hence, x lies on a 3-cycle. Furthermore, this 3-cycle must also contain uv. It follows
that the edge uv is on a 4-cycle in G, which is a contradiction. Hence, girth(G) ≤ 4.

�

Lemma 14 If G is a cop-win graph, then every edge of G that is not a cut-edge lies
on a 3-cycle.

Proof. Suppose G is cop-win, and there is an edge e such that e is not a cut-edge.
It follows that e lies on a cycle. Suppose the length of the shortest cycle of G
containing e is `. Since G is cop-win, there is a cop-win ordering v1, v2, . . . , vn, along
with associated graphs G1, . . . Gn. Let Gi be the last graph in the sequence for
which e appears on an induced cycle of length `. Let C be such a cycle. It follows
that vertex vi (a corner in Gi) is also on C.

Suppose ` ≥ 4. Since C is an induced cycle, vi is not dominated by any vertex
on C. Therefore, vi is dominated by a vertex, u that is not on C. It follows that
u is adjacent to the two neighbours of vi on C. Call these neighbours x and y,
respectively.

If vi is an endpoint of e, then e would either be on the cycle xviux or the cycle yviuy
which contradicts the fact that ` ≥ 4. So, we may assume that vi is not an endpoint
of e. However, this means the cycle formed by replacing xviy on C with xvy also
contains e and has length `. This cycle appears in Gi+1, which contradicts our choice
of Gi. It follows that e lies on some 3-cycle. �

Corollary 15 If G ∈ S, then for any edge e ∈ E(G), e is either on some 3-cycle in
G, or e lies on a common 4-cycle with every other edge in G.

Proof. Suppose G ∈ S and there is an edge e that lies on no 3-cycle. Let e′ ∈ E(G)
be any edge such that e′ 6= e. Let G′ = G/e′. By Lemma 14, e is either on a 3-cycle
in G′ or is a cut-edge of G′. In the latter case, e would also be a cut-edge in G which,
by Lemma 11, is a contradiction. So, it follows that e is on a 3-cycle in G′. Since e
is on no 3-cycle of G, it follows that e was on a common 4-cycle with e′. The result
follows. �

Lemma 16 Suppose G ∈ S. The graph G is bipartite if and only if G ∼= Km,n with
m,n ≥ 2.

Proof. Suppose G ∼= Km,n with m,n ≥ 2. Since δ(G) ≥ 2, and G has no 3-cycles,
there are no corners in G. Therefore, G is not cop-win. Furthermore, for any non-
loop edge uv in G, uv is a universal vertex in G/uv. Therefore, G/uv is cop-win, and
G ∈ S.

Suppose G ∈ S, G is bipartite and has bipartition (X, Y ). Recall that G has no
corner, so δ(G) ≥ 2. Furthermore, if δ(G) = 2, then by Theorem 12, G is complete
bipartite. Therefore, we may assume that δ(G) ≥ 3. Consider any vertices x and y
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such that x ∈ X and y ∈ Y . Since deg(x) ≥ 3, and deg(y) ≥ 3, x has a neighbour in
N(x) \ {y} and y has a neighbour in N(y) \ {x}. Let u and v be those neighbours,
respectively. Then we have edge xu and yv in G. Since G is bipartite, it contains
no 3-cycle, and by Corollary 15, xu and yv lie on a common 4-cycle. Since G is
bipartite, it follows that x ∼ y and u ∼ v. Since x and y were any vertices in X and
Y , respectively, it follows that G is complete bipartite. �

Theorem 17 Suppose G is a graph such that some edge of G is not on a 3-cycle.
Then G ∈ S if and only if G ∼= Km,n with m,n ≥ 2.

Proof. Suppose xy is an edge of G such that xy is on no 3-cycle. Then xy is
on a 4-cycle with every other edge of G. Let N(x) \ {y} = {x1, x2, . . . , xk} and
N(y) \ {x} = {y1, y2, . . . y`}.
We claim that N(x) ∪ N(y) = V (G). To verify this, suppose e ∈ E(G) is an edge
that is not incident with either x or y. Since e is on a common 4-cycle with xy, it
follows that e has exactly one end point in each of N(x) \ {y} and N(y) \ {x}. Since
every edge has both of its endpoints in N(x) ∪N(y), it follows that every vertex is
in N(x) ∪N(y) .

Next, we claim that N(x) and N(y) are independent sets. Suppose this is not
the case. Since xy lies on no 3-cycle, N(x) ∩ N(y) = ∅. Then there must be
an edge between vertices in the set {x1, x2, . . . , xk} or between vertices in the set
{y1, y2, . . . , yk}. Without loss of generality, assume k ≥ 2 and x1 ∼ x2. The edge
x1x2 does not lie on a common 4-cycle with xy since neither x1 nor x2 is adjacent to
y. It follows that G is bipartite, and by Lemma 16, G is complete bipartite. �

We are now ready to give the characterization of CECC graphs with minimum
degree 3.

Theorem 18 Suppose G ∈ S. If δ(G) = 3, then G ∼= K3,m for some m ≥ 3.

Proof. Suppose G is not complete bipartite and δ(G) = 3. Then for some t ∈ V (G),
deg(t) = 3. Let N(t) = {u, v, w}. By Theorem 17, every edge of G is on a 3-cycle.
Then at least two of uv, vw and uw must be in E(G). However, this would mean
that t is a corner in G which is a contradiction. �

Now, we move onto the characterization of 4-regular CECC graphs. In order to
prove the characterization, we need to verify that for any such graph G, and for any
e ∈ E(G), G/e has no cut edge.

Consider a graph G ∈ S. We saw in the proof of Lemma 14 that if a cut-edge
results from contracting an edge uv in G, then uv is on a 3-cycle in G. Furthermore,
the third vertex of the 3-cycle, w, is a cut-vertex in G. Since G/uv is cop-win and
only the neighbourhood of w is altered in the component containing w in G−{u, v},
it follows that this component must be cop-win with w as its unique corner.

Lemma 19 If G is cop-win and has a unique corner, then ∆(G) > 4.



B. CAMERON AND S. FITZPATRICK/AUSTRALAS. J. COMBIN. 63 (1) (2015), 70–87 80

Proof. Suppose G is a cop-win graph of minimum order that satisfies ∆(G) ≤ 4 and
has exactly one corner. Note that since G has a corner, |V (G)| ≥ 4. Let v1 be the
unique corner in G. Let G2 = G− {v1}. Note that any corner in G2 is in NG(v1) in
G, otherwise it would also be a corner in G. Furthermore, any corner in G2 is not
dominated by a vertex in NG(v1). Again, this would imply that it is also a corner in
G. It is also true that in any graph, a corner of degree two is dominated by both of
its neighbours.

Case 1 Suppose deg(v1) ≤ 2. By the choice of G, it follows that G2 has at least two
corners, v2 and v3. Furthermore, both v2 and v3 are adjacent to v1 in G. Therefore
deg(v1) = 2, and v2 ∼ v3 since v1 is dominated by both v2 and v3 in G.

Since v2 is a corner in G2, but not G, v2 is dominated by a vertex w in G2 where
v2, v3 and w are all distinct. Again, since v2 is not a corner dominated by v3 in G, it
follows that v2 has a neighbour u2, such that u2 6∼ v3. Similarly, v3 has a neighbour
u3 such that u3 6∼ v2. Since ∆(G) ≤ 4, it follows that NG(v2) = {v1, v3, u2, w} and
NG(v3) = {v1, v2, u3, w}. Finally, since v2 ∼G2 v3, they must each be dominated by
a common neighbour in G2. The only such vertex is w and it follows that NG(w) =
{v2, v3, u2, u3}. Therefore, the graph in Figure 1 is a subgraph of G.

v

vv

w

u u

1

2 3

2 3

Figure 1: Resulting Subgraph of G in Case 1 of Lemma 19

Now, v2 is a corner in G2 and v3 is a corner in G2−{v2}. Let G3 = G−{v1, v2} and
G4 = G−{v1, v2, v3}. It follows that G4 is cop-win with ∆(G4) ≤ 4. Since v2 and v3
were the only corners in G2, all corners of G4 are in the set {u2, u3, w}. Furthermore,
at least two of u2, u3 and w are corners in G4. Otherwise G4 has a unique corner
which contradicts the choice of G.

Case 1a Suppose w is a corner in G4. Then w is dominated by u2 or u3 in G4 and
u2 ∼ u3. Let G5 = G4 − {w}. Since G5 is cop-win with at least two vertices, it has
at least two corners. This means u2 and u3 are both corners in G5. Since ∆(G) = 4,
it follows that each of u2 and u3 has degree at most two in G5. Furthermore, neither
can have degree one, since this would imply that they were corners dominated by w
in G. Hence, u2 and u3 each has degree two in G5. Since u2 ∼G5 u3, u2 is dominated
in G5 by a vertex u that is a common neighbour of u2 and u3 in G5. Therefore, the
graph in Figure 2 is a subgraph of G.
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Figure 2: Resulting Subgraph of G in Case 1a of Lemma 19

Let G6 = G5 − {u2} and G7 = G6 − {u3}. Since G7 is cop-win and u is the only
vertex from V (G7) that is adjacent to some vertex from {v1, v2, v3, u2, u3, w} in G, it
follows that V (G7) = {u}. Otherwise, u would be a unique corner in G7. However,
this means G is the graph in Figure 2, and both u and v1 are corners in G, which is
a contradiction.

Case 1b Suppose u2 and u3 are the only corners in G4. Recall that the graph in
Figure 1 is a subgraph of G. Since w is not a corner, it follows that u2 6∼ u3. Since
w ∼ u2 it follows that u2 is dominated by a vertex in NG4 [w]−{u2} = {w, u3}. Since
u3 6∼ v2, u2 must be dominated by w in G4. However, this implies u2 is a corner in
G, which is a contradiction.

Case 2 Suppose degG(v1) = 3 and NG(v1) = {v2, v3, v4}. Since v1 must be dominated
by one of v2, v3, or v4, it follows that there must be at least two edges in the subgraph
of G induced by {v2, v3, v4}.
Case 2a Suppose {v2, v3, v4} induces a complete graph. Without loss of generality,
assume v2 and v3 are corners in G2. If v2 is dominated by either v3 or v4 in G2, this
would imply that v2 is a corner in G. Therefore, v2 is dominated by a vertex w,
distinct from v1, . . . , v4. Then w is adjacent to each of v2, v3 and v4, and the graph
in Figure 3 is a subgraph of G. However, this implies that v2 and v4 are also corners
in G, dominated by v3.

Case 2b Suppose {v2, v3, v4} induces a graph with exactly 2 edges. Without loss of
generality, suppose v3 ∼ v2, v3 ∼ v4 and v2 � v4.

Case 2b(i) Suppose v2 and v4 are corners in G2. Since they are not corners in G,
each is dominated by a vertex other than v3. Say v2 is dominated by w and v4 is
dominated by x. Since both x and y are adjacent to v3, and ∆(G) ≤ 4, it follows
that w = x and the graph in Figure 4 is a subgraph of G.

Since none of v2, v4 or w is a corner in G, it follows that each has a neighbour that is
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Figure 3: Resulting Subgraph of G in Case 2a of Lemma 19
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w

1

v 2 v 4v 3

Figure 4: Resulting Subgraph of G in Case 2b of Lemma 19

not adjacent to v3. However, each such neighbour must be adjacent to w. Therefore,
for some vertex, z, NG(v2) = NG(v4) = {v1, v3, w, z} and NG(w) = {v2, v3, v4, z}.
Since v1, v2, v3, v4, w can be chosen as the first five vertices in a cop-win ordering of
G, G6 = G − {v1, v2, v3, v4, w} is cop-win. Then G6 is either a single vertex, or has
at least two corners. If G6 is a single vertex, z, then G is the graph in Figure 5, and
z is a second corner in G. However, the only vertex in G6 that is adjacent to some
vertex in {v1, v2, v3, v4, w} is z. This implies z can be the only corner in G6. In either
case, we have a contradiction.

Case 2b(ii) Suppose exactly one of v2 and v4 is a corner in G2. Without loss of
generality, we may assume that v2 and v3 are corners in G2. Then v3 is dominated
by a vertex w such that w ∼ v2, w ∼ v3 and w ∼ v4. Therefore, the graph in Figure
4 is a subgraph of G. Since v2 is not dominated by v3, there is a vertex x such that
x ∼ v2 but x 6∼ v3. It follows that NG(v2) = {v1, v3, w, x} and v2 is dominated by w
in G2. Therefore, NG(w) = {v2, v3, v4, x}. Now, since v4 is not dominated by w in
G2, there is a vertex y such that y ∼ v4, but y 6∼ w.

Now, there is a cop-win ordering of G whose first three vertices are v1, v2, v3. Let
G4 = G − {v1, v2, v3}. Then G4 is a cop-win graph. However, v4 has degree two in
G4, and by Lemma 10, v4 does not lie on any cycle of length at least four in G4. Since
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Figure 5: Resulting Subgraph of G in Case 2b(i) of Lemma 19

y 6∼ w, it follows that v4 does not lie on any cycle in G4. Therefore, G4 has a vertex
` of degree one. Since ` is a corner of G4, it must be adjacent to one of v1, v2, v3
in G. Considering the neighbourhoods of these vertices, ` must be in {v4, x, w}.
However, we know that w and v4 have two neighbours in G4. Therefore, ` = x and
NG4(x) = {w}. However, this implies x has degree two in G, and is dominated by
its neighbours, v2 and w.

Case 3 If deg(v1) = 4 and v2 dominates v1, then N [v1] = N [v2] since ∆(G) ≤ 4.
Therefore v2 is also a corner in G which contradicts the uniqueness of v1.

�

Lemma 20 If G ∈ S and ∆(G) ≤ 4, then, for any uv ∈ E(G), G/uv has no
cut-edge.

Proof. Suppose G ∈ S, ∆(G) ≤ 4 and G/uv has a cut-edge for some uv ∈ E(G).
By Lemma 11, G had no cut-edge. It follows that the cut-edge e in G/uv must be
incident with uv. Let w be the other endpoint of e and let H1 and H2 be components
of G/uv − e such that uv ∈ V (H1) and w ∈ V (H2).

If w is adjacent to exactly one of u or v in G, then G would also have a cut-edge.
Therefore, w ∼G u and w ∼G v. It follows that w is not the only vertex in H2.
Otherwise w would be a corner in G. Similarly, uv is not the only vertex in H1.
Also note that for any vertex x ∈ V (G/uv) − {uv}, degG/uv(x) ≤ degG(x) and
degG/uv(uv) = degG(u) + degG(v)− 3 ≤ 5.

Since G ∈ S, G/uv must be cop-win and therefore must have at least one corner. By
Lemma 2, any corners must belong to NG/uv[uv]. It follows that neither uv nor w
can be that corner since both vertices have neighbours in each of H1 and H2. Since
NG/uv(uv)−{w} ⊆ V (H1), it follows that every corner in G/uv lies in V (H1)−{uv}.
Furthermore, in any cop-win ordering of G/uv, every vertex in V (H1) appears before
any vertex in V (H2). Since no vertex in V (H1) is a corner in G, it follows that the
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first corner of V (H1) in any cop-win ordering of G/uv is uv. Therefore, uv is the only
corner in H1. However, since uv has degree at most five in G/uv, ∆(H1) ≤ 4. This
contradicts Lemma 19. �

Let H be any graph isomorphic to the graph in Figure 2.

Lemma 21 If G ∈ S and G is 4-regular, then G does not have H as a subgraph.

Proof. Suppose H is a subgraph of G. Assume the vertices of G are labelled as in
Figure 2. Then v1 and u denote the two vertices of degree two in H. Since G is
4-regular, we know that v1 and u each has at least one neighbour in G that is not in
V (H).

If G − V (H) is disconnected, then v1 is a cut-vertex in G. It follows that G/v2v3
has a cut edge, namely v1s where s = v2v3 . This contradicts Lemma 20. Therefore,
G − V (H) is connected. It follows that there is a path from v1 to u in G that is
internally disjoint from V (H). Let P be the shortest such path. (It may be the case
that P is the edge v1u. )

The graph G/v2v3 is cop-win, and vertices w and u2 can appear as the first two
vertices in a cop-win ordering (dominated by s and u3, respectively). Let G3 =
G/v2v3 − {w, u2}. Note that G3 is a cop-win graph in which s has degree two. By
Lemma 10, s can not lie on any induced cycle of length at least four in G3. However
the path v1su3u together P is a cycle of length at least four. Furthermore, we know
this is an induced cycle since G is 4-regular. This is a contradiction. �

Theorem 22 If G ∈ S and G is 4-regular, then G ∼= K4,4, G ∼= K2 ∨ C4 or G ∼= C7

Proof. Suppose G ∈ S and G is 4-regular. If G is bipartite, then G is complete
bipartite by Lemma 16 and therefore G ∼= K4,4. We may, therefore, assume that G
is not bipartite. By Theorem 17, every edge of G is on a 3-cycle. In other words,
every pair of adjacent vertices has a common neighbour. Furthermore, no pair of
adjacent vertices x and y in G can have 3 common neighbours, since this would
imply N [x] = N [y] and G has at least two corners, contradicting Lemma 2. We now
consider the remaining two cases:

Case 1 Suppose there exists an edge uv ∈ E(G) such that u and v have exactly 2
common neighbours. Let w1 and w2 be the common neighbours of u and v. Since G
is 4-regular, u has one more neighbour, u1, and v has one more neighbour, v1, such
that u1 6= v1. Since uu1 must be on a 3-cycle, it follows that u1 ∼ w1 or u1 ∼ w2.
Similarly, v1 ∼ w1 or v1 ∼ w2. There are various cases that arise from these two
previous statements. We now consider two subcases: 1a and 1b, to which all others
are analogous.

Case 1a Suppose u1 ∼ w1 and v1 ∼ w1. Then the graph in Figure 6 is a subgraph of
G. We first show that u1, v1, and w2 cannot be pairwise non-adjacent in G. Consider
the graph G/uw1. Since G ∈ S, G/uw1 must be cop-win. So uw1 , u1, v1, v, or w2 must
be a corner in G/uw1 by Lemma 2. We see that v is a corner in G/uw1 dominated by
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uw1 . We remove v from G/uw1 to obtain the graph F . Since F is cop-win there must
be at least one corner in F . Futhermore, any corner in F must belong to NF [uw1 ],
otherwise that vertex would also be a corner in G, which contradicts G ∈ S. By
examining each of the possible corners and dominating vertices in F , along with the
knowledge that NF [uw1 ] = {u1, v1, w2}, it is straightforward to see that the subgraph
induced on {u1, v1, w2} has at least one edge.

u v

v 1u1 w1

w2

Figure 6: Subgraph assumed to exist in G for Case 1a of Theorem 22

As seen in Figure 6, we can assume u1 ∼ v1 without loss of generality. Since G is
4-regular, there is a vertex x such that NG(u1) = {u,w1, v1, x}. Since u1 and x have
a common neighbour, either x = w2, or x 6= w2 and x ∼ v1. In the second case, G
has a subgraph isomorphic to the graph in Figure 2 which contradicts Lemma 21.
Therefore, x = w2, and the graph to the left in Figure 7 is a subgraph of G. Since
G is 4-regular, there is a vertex y such that NG(w2) = {u, v, u1, y}. Since w2 and y
have a common neighbour it must be the case that y = v1. Therefore, G is the graph
to the right in Figure 7 and G ∼= C4 ∨K2.

u v

u v1
1w1

w2

u1
v 1

w2

w1
u v

Figure 7: Resulting Subgraph of G (left) and the graph G itself (right) in Case 1a of
Theorem 22

Case 1b Suppose u1 ∼ w1 and v1 ∼ w2. We may assume that u1 6∼ w2 and
v1 6∼ w1, since this would result in a configuration analogous to Case 1a. We note
that w1 6∼ w2, otherwise w1 is a corner in G dominated by u. Let x and y be vertices
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such that NG(w1) = {u, v, u1, x} and NG(w2) = {u, v, v1, y}. Since xw1 lies on a
3-cycle in G, x ∼ u1. Similarly, y ∼ v1. It may be the case that x = y, otherwise all
the vertices are distinct. The resulting subgraph of G appears as the graph to left
in Figure 8, where it is drawn with x and y as distinct vertices.

u v

u1 w1

w2 v 1

y

x

uv

u1 w1

w2 v 1

y

x

Figure 8: Subgraphs of G (left) and G/uv in Case 1b of Theorem 22

Assume that x 6= y. Since the graph to the left in Figure 8 is a subgraph of G, it
is straightforward to see that u1 6∼ v1. Otherwise, the edge u1v1 would not be on a
3-cycle, which is a contradiction.

Let G1 = G/uv. We note that the graph to the right in Figure 8 is a subgraph of
G1. In G1, w1 is a corner dominated by u1 and w2 is a corner dominated by v1. Let
G3 = G1 − {w1, w2}. Since G1 is cop-win, G3 is cop-win. Furthermore, we note that
uv has exactly two neighbours, u1 and v1. Since u1 6∼ v1, it follows from Lemma 14
that uvu1 and uvv1 are both cut-edges in G3.

Let W be the component of G3 − uvv1 containing uv (and subsequently, u1). Since
G is 4-regular, it follows that degW uv = 1, degW u1 = 3 and degW x = 3, while all
other vertex in W have degree four. This is impossible, since it implies that W has
an odd number of vertices of odd degree. Therefore, it must be the case that x = y.

By associating x and y in the graph appearing to the left in Figure 8, we obtain the
required subgraph of G. Call this subgraph F . Since G is 4-regular, there is some
edge e incident with u1 that does not appear in F . Since every edge of G is on a
3-cycle, and every neighbour of u1 in F has degree four in F , it follows that e must
have v1 as its other endpoint. Hence, G is the graph F with the added edge u1v1. It
is straightforward to verify that G ∼= C7.

Case 2 For every uv ∈ E(G), u and v have exactly one common neighbour. Let
w ∈ V (G) be the common neighbour of u and v. Let NG(u) = {v, w, u1, u2} ,
NG(v) = {u,w, v1, v2} and NG(w) = {u, v, w1, w2}. Since no two adjacent vertices
have two common neighbours, it follows that the vertices in {u1, u2, v1, v2, w1, w2}
are all distinct.
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We know that G1 = G/uv is cop-win, and has a corner in NG1 [uv]. Since uv has
degree five in G1, there is no vertex of high enough degree in G1 to dominate it.
Since NG1 = {uv, w1, w2} and uv is adjacent to neighbour w1, nor w2, w is not a
corner in G1. Therefore, at least one of u1, u2, v1 or v2 is a corner in G1. Without
loss of generality, assume u1 is a corner. Since u1 6∼ v and u1 is not a corner in G, it
must be the case that u1 is dominated by uv, v1 or v2 in G1.

If u1 is dominated by v1, then NG[u1] − {u} ⊆ NG[v1]. This means u1 and v1 have
two common neighbours in G, which is a contradiction. If u1 is dominated by uv,
then NG1 [u1] ⊆ {uv, u1, u2, v1, v2}. Since u1 6∼ w and G is 4-regular, NG[u1] =
{u, u2, v1, v2}. However, this means v1 and v2 have both v and u1 as a common
neighbour. This is also a contradiction.

Therefore, if G is 4-regular and G ∈ S, then G ∼= K4,4, G ∼= K2 ∨ C4 or G ∼= C7. �

References

[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math.
8 (1984), 1-11.

[2] B. Bollobás, G. Kun and I. Leader, Cops and robbers in a random graph, (En-
glish summary), J. Combin. Theory Ser. B 103 no. 2 (2013), 226–236.

[3] A. Bonato and R. J. Nowakowski, The Game of Cops and Robbers on Graphs,
Amer. Math. Soc., Providence, Rhode Island, 2011.

[4] N. E. Clarke, S. L. Fitzpatrick, A. Hill and R. J. Nowakowski, Edge critical cops
and robber, Discrete Math. 310 (2010), 2299–2309.

[5] S. L. Fitzpatrick, Edge Critical Cops and Robber in Planar Graphs, Discrete
Math. 329 (2014), 1–11.

[6] P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs,
Discrete Appl. Math. 17 (1987), 301–305.

[7] A. M. Frieze, M. Krivelevich and P. S. Loh, Variations on cops and robbers, J.
Graph Theory 69 no. 4 (2012), 383–402.

[8] L. Lu and X. Peng, On Meyniels conjecture of the cop number, J. Graph Theory
71 (2012), 192–205.

[9] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete
Math. 43 (1983), 23–239.
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