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Abstract

A total coloring of a graph is an assignment of colors to all the elements of
the graph in such a way that no two adjacent or incident elements receive
the same color. In this paper, we prove the tight bound of the Behzad and
Vizing conjecture on total coloring for the generalized Sierpiński graphs
of cycle graphs and hypercube graphs. We give a total coloring for the
WK-recursive topology, which also gives the tight bound.

1 Introduction

All graphs considered here are finite, simple and undirected. Let G = (V (G), E(G))
be a graph with the sets of vertices and edges V (G) and E(G), respectively. A
total coloring of G is a mapping f : V (G) ∪ E(G) → C, where C is a set of colors,
satisfying the following three conditions (a)–(c):

(a) f(u) �= f(v) for any two adjacent vertices u, v ∈ V (G);

(b) f(e) �= f(e′) for any two adjacent edges e, e′ ∈ E(G); and

(c) f(v) �= f(e) for any vertex v ∈ V (G) and any edge e ∈ E(G) incident to v.

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum
number of colors that suffice in a total coloring. It is clear that χ′′(G) ≥ Δ(G) + 1,
where Δ(G) is the maximum degree of G. Behzad [1] and Vizing [21] conjectured
(Total Coloring Conjecture or TCC) that for every graph G, χ′′(G) ≤ Δ(G)+2. This
conjecture was verified by Rosenfeld [17] and Vijayaditya [20] for Δ(G) = 3 and by
Kostochka [14, 15, 16] for Δ(G) ≤ 5. For planar graphs, the conjecture was verified
by Borodin [2] for Δ(G) ≥ 9. In 1992, Yap and Chew [22] proved that any graph
G has a total coloring with at most Δ(G) + 2 colors if Δ(G) ≥ |V (G)| − 5, where
|V (G)| is the number of vertices in G. In 1993, Hilton and Hind [7] proved that any
graph G has a total coloring with at most Δ(G) + 2 colors if Δ(G) ≥ 3

4
|V (G)|. It

is known that the total coloring problem, which asks to find a total coloring of a
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given graph G with the minimum number of colors, is NP-hard [19]. In particular,
McDiarmid and Arroyo [4] proved that the problem of determining the total coloring
of a μ-regular bipartite graph is NP-hard, μ ≥ 3.

Graphs of “Sierpiński” type appear naturally in many different areas of mathe-
matics as well as in several other scientific fields. One of the most important families
of such graphs is formed by the Sierpiński gasket graphs Sn. These graphs were intro-
duced in 1944 by Scorer, Grundy and Smith [18]. Klavžar and Milutinović [12] proved
that the Sierpiński graphs S(n,K3) are isomorphic to the Tower of Hanoi graphs on
3 pegs. The generalization of S(n,K3) to S(n,Kk) is done via a certain labeling
technique. The motivation for this generalization came from topological studies of
Lipscomb’s space [9]. The graphs S(n,Kk) possess many appealing properties such
as coding and metric properties. Sierpiński gasket graphs play an important role in
dynamic systems, probability and psychology [13]. Fu [5] studied a class of WK-
recursive networks. WK-recursive networks are very similar to Sierpiński graphs.
They can be obtained from Sierpiński graphs by adding a link (an open edge) to
each of its extreme vertices.

In this paper, we give a total coloring for generalized Sierpiński graphs of cycle
graphs and hypercube graphs. Also, we give a total coloring of WK-recursive topol-
ogy of some graphs. These colorings will give the tight bound of the Behzad and
Vizing conjecture.

In Section 2, we determine the total chromatic number of generalized Sierpiński
graphs of cycle graphs, hypercube graphs and house graphs. In Section 3, we give
a total coloring for 3D WK-recursive topology, taking the basic module as complete
graphs and cycle graphs.

2 Generalized Sierpiński Graphs

The Sierpiński graphs S(n,Kk), k, n ≥ 1, k, n ∈ N are defined on the vertex set
{1, 2, . . . , k}n, where Kk is the complete graph on k vertices. Two different vertices
u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are adjacent if and only if there exists
an h ∈ {1, 2, . . . , n} such that:

a) ut = vt for t = 1, 2, . . . , h− 1;
b) uh �= vh; and
c) ut = vh and vt = uh for t = h + 1, . . . , n.

In the rest of this paper, we will use the abbreviation v1v2 . . . vn for (v1, v2, . . . , vn).

Sierpiński gasket graphs (introduced by Jakovac [11]) are just a step from the
Sierpiński graphs S(n,K3). The graph Sn is obtained from S(n,K3) by contracting
every edge of S(n,K3) that lies in no triangle. In [11] there is also a generalization
of the graph Sn := S(n,K3). These are the Sierpiński gasket graphs S[n, k], k ≥ 3,
obtained from the Sierpiński graphs S(n,Kk) by contracting edges that lie in no
complete subgraph Kk. Gravier, Kovše and Parreau [6] generalized this construction
for any graph, by defining generalized Sierpiński graphs, S(n,G) as follows:
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S(1, G) is isomorphic to the graph G and we can construct S(n+1, G) by copying
|V (G)| times S(n,G) and adding an edge between the ith vertex of the jth copy and
the jth vertex of the ith copy of S(n,G) (called the linking edge) whenever (i, j) is
an edge in G.

Jakovac and Klavžar [10] showed that χ′′(S(n,Kk)) = k + 1, for any n ≥ 2 and
odd k ≥ 3. Also, they proved χ′′(S(n,K4)) = 5. For even k, they proposed a
conjecture, which states that “for any even k ≥ 6, χ′′(S(n,Kk)) = Δ(S(n,Kk))+2”.

Hinz and Parisse [8] gave a counter example for disproving the above conjecture.
Also, they proved that χ′′(S(n,Kk)) = Δ(S(n,Kk)) + 1 for any k and n, k, n ≥ 2.

The cartesian product of G and H is a graph, denoted by G � H , whose vertex
set is V (G) × V (H). Two vertices (g, h) and (g′, h′) are adjacent precisely if g =
g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. In other words, V (G � H) =
{(g, h)| g ∈ V (G) and h ∈ V (H)} and E(G � H) = {((g, h), (g′, h′))| g = g′, hh′ ∈
E(H), or gg′ ∈ E(G), h = h′}.

The G- and H-layers are the induced subgraphs in G � H on the vertex sets
Gu = {(x, u)| x ∈ V (G)} and Hv = {(v, x)| x ∈ V (H)}, respectively.

We use the notation [q]0 = {0, 1, 2, . . . , q − 1} for the initial segment of length q.
A canonical vertex coloring is a coloring ck(i), ck(i) = i, for all i ∈ [k]0.

Theorem 2.1. If G is a graph with χ′′(G) = Δ(G) + 1 then

χ′′(S(n,G)) = Δ(S(n,G)) + 1, n ≥ 2, n ∈ N.

Proof. According to the construction of generalized Sierpiński graphs, S(n,G) con-
tains |V (G)| copies of G. We color all |V (G)| copies of G with the same Δ(G) + 1
colors. Since the adjacent vertices receive different color in G, the adjacent vertices
vivj . . . vj and vjvi . . . vi will also receive different colors in S(n,G). Therefore we
can assign a new color to the linking edges. Hence, the total chromatic number of
S(n,G) is Δ(S(n,G)) + 1.

A house graph is a complement of the path graph P5. We prove for n ≥ 2,
χ′′(S(n,G)) = Δ(S(n,G)) + 1, if G is a house graph. Figure 1. shows the Sierpiński
graph of the house graph G, S(2, G).

Corollary 2.1. If G is a house graph, then for n ≥ 2, n ∈ N, χ′′(S(n,G)) =
Δ(S(n,G)) + 1.

Proof. By Theorem 2.1 it suffices to prove that the total chromatic number of a
house graph G is Δ(G)+ 1. We can give the coloring in the following way: Consider
the graph G. The vertices and edges of the triangle are colored with 1, 2 and 3. The
remaining vertices are colored with 2 and 3. The horizontal edge is colored with 1
and the vertical edges are colored with 4.
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Figure 1: S(2, G), G-House graph.

A wheel graph Wk+1 is a graph with k+1 vertices (k ≥ 4), formed by connecting
a single vertex to all vertices of an Ck-cycle.

Corollary 2.2. χ′′(S(n,Wk+1)) = Δ(S(n,Wk+1)) + 1, n ≥ 2, k ≥ 4, n, k ∈ N.

Proof. We know that χ′′(Wk+1) = Δ(Wk+1)+1. The assertion follows from Theorem
2.1.

The equitable total chromatic number of a graph G is the smallest integer μ for
which G has a μ-total coloring such that the number of vertices and edges colored
with each color differs by at most one. Chunling et al [3] proved that the equitable
total chromatic number of the cartesian product of cycles Cs � Ct is Δ(Cs � Ct)+1.
It is easy to prove that the total chromatic number of Sierpiński graph of Cs � Ct is
Δ(S(n, Cs � Ct)) + 1, by adding one color to all the linking edges.

Corollary 2.3. For n ≥ 2, s, t ≥ 3, and n, s, t ∈ N, we have

χ′′(S(n, Cs � Ct)) = Δ(S(n, Cs � Ct)) + 1.

Proof. From [3], it is easy to see that χ′′(Cs � Ct) = Δ(Cs � Ct) + 1. Therefore by
Theorem 2.1, χ′′(S(n, Cs � Ct)) = Δ(S(n, Cs � Ct)) + 1.

Remark:

For some Sierpiński graphs of G with χ′′(G) = Δ(G) + 2, we have χ′′(S(n,G)) =
Δ(S(n,G)) + 1.

For example, consider cycle graphs. We recall that if Ck is a cycle graph with k
vertices, k ≥ 3, then
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χ′′(Ck) =

{
Δ(Ck) + 1, if k ≡ 0 mod 3

Δ(Ck) + 2, otherwise.

In the following theorem, we give a total coloring of Sierpiński graphs S(n, Ck)
of cycle graphs Ck. In the process of assigning the colors to the vertices and edges of
S(n, Ck), we prove that χ

′′(S(n, Ck)) = Δ(S(n, Ck))+1 for all k ≥ 3. It is interesting
to note that χ′′(S(n, Ck)) = Δ(S(n, Ck)) + 1 even though χ′′(Ck) = Δ(Ck) + 2 for
k �= 3l, l = 1, 2, 3, . . . .

The Sierpiński graph S(2, C5) together with the corresponding vertex labeling is
shown in Figure 2.

Figure 2: S(2, C5).

Theorem 2.2. For any n ≥ 2, k ≥ 3, k, n ∈ N, χ′′(S(n, Ck)) = Δ(S(n, Ck)) + 1.

Proof. Let us construct a total coloring of Ck in two different cases. First one for
odd values of k and another for even values of k.

Case(i): k is odd.

First let us consider cycle graphs Ck. Assign the colors 1, 2, 3 and 4 cyclically
to the sequence v0e0v1e1 . . . vk−3ek−3 in Ck. If we assign colors in this manner, we
would assign the color 1 to each vertex v2i, i = 0, 1, 2, . . . , k−3

2
. We cannot assign

the colors 1 and 4 to the vertex vk−1 and also, we cannot assign colors 1, 2, and 4 to
the edge ek−1. Therefore, assign the color 2 to the vertex vk−1 and the color 3 to the
edge ek−1. We denote by c1, the total coloring of Ck.

For n = 2, use c1 for the first copy of S(2, Ck). Assign the colors of vi and ei
in the tth copy of S(2, Ck) to v(i+1) mod k and e(i+1) mod k in the (t + 1)th copy of
S(2, Ck), where t, i ∈ [k]0. The vertices vivj and vjvi have the same missing color.
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Now, we assign the color which is missing at the vertices vivj and vjvi to the linking
edges. We denote by c2, the total coloring of S(2, Ck).

For n = 3, assign c2 for odd copies of S(3, Ck) except the (k − 1)th copy. Assign
c′2 for even copies of S(3, Ck) and assign c′′2 for the (k − 1)th copy of S(3, Ck), where c

′
2

and c′′2 are obtained from c2 using the permutations of colors (123)(4) and (13)(2)(4),
respectively. Here the vertices vivjvj and vjvivi have the same missing color. So we
can assign this missing color to the linking edges.

Finally, for n ≥ 4, assign the colors as in S(n − 1, Ck) to all the k copies of
S(n, Ck). In this process, the vertices vivj . . . vj and vjvi . . . vi have the same missing
color. We assign the color which is missing at the vertices vivj . . . vj and vjvi . . . vi
to the linking edges.

Case(ii): k is even.

Consider cycle graphs Ck. Color odd vertices by 1 and even vertices by 2. Color
the edges by 3 and 4, alternatively. Let us denote the total coloring of Ck by c3. For
n = 2, color odd copies of S(2, Ck) by c3 and even copies by c′3, where c′3 is obtained
from c3 using the permutation of colors (4321). The vertices vivj and vjvi have the
same missing color. Now, we assign the color which is missing at the vertices vivj
and vjvi to the linking edges. Let c4 be the total coloring of S(2, Ck).

For n = 3, color odd copies of S(3, Ck) by c4, and even copies of S(3, Ck) by c′4,
where c′4 is obtained from c4 using the permutation of colors (13)(24). The vertices
vivjvj and vjvivi have the same missing color. Now, we assign the color which is
missing at the vertices vivjvj and vjvivi to the linking edges.

For n ≥ 4, assign colors as in S(n − 1, Ck) to all the k copies of S(n, Ck). The
vertices vivj . . . vj and vjvi . . . vi have the same missing color. Now, we assign the
color which is missing at the vertices vivj . . . vj and vjvi . . . vi to the linking edges.

So the total chromatic number of S(n, Ck) is 4, which equals Δ(S(n, Ck))+1.

In the next theorem, we obtain a total coloring of Sierpiński graphs of hypercube
graphs. Let Qk+1 be a hypercube graph of order k+ 1. The hypercube graphs Qk+1

can be constructed from Qk, by taking two copies Qk and adding an edge (joining
edge) from each vertex in one copy of Qk to the corresponding vertex in the other
copy of Qk. Hence, the hypercube graphs Qk, k ≥ 1, are the iterated cartesian
product K2 � K2 � · · ·� K2 of k copies of K2. The Sierpiński graph S(2, Q3) is
shown in Figure 3.
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Figure 3: S(2, Q3).

Theorem 2.3. For any k ≥ 1, n ≥ 2, n, k ∈ N, χ′′(S(n,Qk)) = Δ(S(n,Qk)) + 1.

Proof. Consider hypercube graph Q1, Q1
∼= K2. Sierpiński graphs of Q1 are path

graphs. The total chromatic number of path graphs is 3. For k = 2, Q2
∼= C4. Color

the vertices of Q2 with colors 1 and 2, alternatively. Color the edges of Q2 with
colors 3 and 4, alternatively. From Theorem 2.2, χ′′(S(n,Q2)) = 4.

Now, let us consider hypercube graphs Qk, k ≥ 3. Color all the vertices of Qk

with colors 1 and 2, alternatively. Color the edges of two copies Qk−1 of Qk as in
Qk−1. Color the joining edges with color k + 2. Let us denote the total coloring of
Qk by c1.

For n = 2, assign c1 to odd copies of Qk and c′1 to even copies of Qk, where c′1 is
obtained from c1 using the permutation of colors (4321)(5)(6). . . (k+ 2). Assign the
missing color at vertices vivj and vjvi to the linking edges. Let c2 denote the total
coloring of S(2, Qk).

For n = 3, assign c2 to odd copies of Qk and c′2 to even copies of Qk, where c′2 is
obtained from c2 using the permutation of colors (13)(24)(5)(6). . . (k + 2).

For n ≥ 4, the total coloring of S(n,Qk) is obtained by assigning the colors as in
S(n− 1, Qk) to all the k copies of S(n,Qk).
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In each step, we assign the color which is missing at the vertices vivj . . . vj and
vjvi . . . vi to the linking edges. Therefore the total chromatic number of S(n,Qk) is
Δ(S(n,Qk)) + 1.

3 3D-Recursive Topology

The WK-recursive topology has received much attention due to its many favorable
properties such as high degree of scalability.

The WK-recursive topology can be constructed hierarchically by grouping the
basic modules. We use K(l, n, G) to denote a WK-recursive topology of a graph
G. Here l ≥ 1, indicates the number of layers in 3D topology and n ≥ 2, specifies
the number of levels in the recursive structure. If l = 1, then the topology is a 2D
recursive topology. The basic module K(1, n, G) is isomorphic to S(n,G).

The 3D topology is formed by taking l copies of K(1, n, G) and adding edges
between the respective corner vertices of the adjacent layers. Figure 4. shows the
3D-recursive topology K(3, 2, K4).

We know from [8] that χ′′(S(n,Kk)) = Δ(S(n,Kk)) + 1, k, n ≥ 2. In the next
theorem, we assign colors to the vertices and edges of K(l, n,Kk) and we show that
the total chromatic number of K(l, n,Kk) is Δ(K(l, n,Kk)) + 1.

Figure 4: K(3, 2, K4).



J. GEETHA ET AL. /AUSTRALAS. J. COMBIN. 63 (1) (2015), 58–69 66

Theorem 3.1. For any n, k ≥ 2 and l ≥ 1, k, l, n ∈ N, χ′′(K(l, n,Kk)) =
Δ(K(l, n,Kk)) + 1.

Proof. The basic module K(1, n,Kk) is S(n,Kk). First we give a total coloring of
each layer and then we color the edges between the layers.

Case(i): k is even.

Odd layers of K(l, n,Kk) are colored as in [8]. c′′k(i, j) ≡ (τi(j) + τj(i) + 2)
mod (k + 1), i �= j, i, j ∈ [k]0 defines a special (k + 1)-edge coloring of Kk with p
colors and color p is missing in the line p ∈ [k]0, where τp is the transposition of
p and k − 1. The vertices are colored by the canonical vertex-coloring to obtain a
special total coloring of Kk.

Now, we prove this by induction on n. We use the special total coloring of Kk,
where we replace the canonical vertex-coloring by i 
→ (i+ 1) mod k.

For the induction step, the edges (ijj . . . j, jii . . . i) are colored according to the
specially colored adjacency matrix (aij)k×k of Kk.

The diagonal entries Πp, p ∈ [k]0, of the adjacency matrix (aij)k×k of S(n,Kk)
are the total colorings of k copies of S(n− 1, Kk). The permutation Πp is obtained
by assigning color c 
→ c′′k(c, p), c ∈ [k + 1]0, p ∈ [k]0, where c′′k(p, p) = p and
c′′k(k, p) = c′′k+1(k, p).

We define the adjacency matrix (aij)k×k as follows:

aij =

{
Πi, i = j

c′′k(i, j), i �= j.

Now, consider the even layers of K(l, n,Kk). Here, the total coloring of S(n,Kk)
is obtained from the total coloring of S(n,Kk) of the odd layers of K(l, n,Kk) by
permuting the colors with the permutations Πp, p ∈ [k]0.

Π0 = (k(k − 1) . . . 4321)(0),

Π1 = (k(k − 1) . . . 4320)(1),
...

Πp = (k(k − 1) . . . 43210)(p), p = 0, 1, 2, . . . , k − 2, and

Πk−1 = ((k − 2) . . . 43210)(k(k − 1)).

The linking edges of S(n,Kk) are colored with the missing color at the vertices
ij . . . j and ji . . . i. The edges between odd and even layers are colored with the
missing color at the corner vertices and the edges between even and odd layers are
colored with a new color.

Case(ii): k is odd.

Odd layers of K(l, n,Kk) are colored as in [8]. First, we obtain the total coloring
of Kk−1 as in the previous case. The color (p+1) mod (k− 1) is still missing in the
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line p ∈ [k− 1]0. Add a new vertex named p and join all k− 1 vertices with this new
vertex. Color the new vertex with color p and the edge incident with the vertex p
with color (p+ 1) mod (k − 1), p ∈ [k − 1]0 . This will give total colorings of Kk.

For the induction step, we color all the k copies of S(n,Kk) as in S(n − 1, Kk),
using the colors from [k − 1]0 and we color all the linking edges with color k.

The total coloring of even layers are given by c 
→ (c+ 1) mod k, where c ∈ [k]0
is the color in odd layers of K(l, n,Kk). The linking edges are colored with color k.
The edges between odd and even layers are colored with color k and edges between
even and odd layers are colored with a new color.

In both cases, we use only (k + 2) colors to give a total coloring. Therefore, the
total chromatic number of K(l, n,Kk) is Δ(K(l, n,Kk)) + 1.

The special total coloring of K4 and S(2, K4) are given in Tables 1 and 2, respec-
tively.

i \j 0 1 2 3

0 1 3 4 2
1 3 2 0 4
2 4 0 3 1
3 2 4 1 0

Table 1: 5-Total coloring of K4.

0 1 2 3

0 Π0 3 4 2
1 3 Π1 0 4
2 4 0 Π2 1
3 2 4 1 Π3

Table 2: Total coloring of S(2, K4).

The entry Πp in the specially colored adjacency matrix (aij)k×k stands for the
total coloring of the subgraph S(n− 1, Kk) of S(n,Kk).

In the next theorem, we give a total coloring of the 3D recursive topology
K(l, n, G), by taking G as a cycle graph.

Theorem 3.2. For l ≥ 1, n ≥ 2, k ≥ 3, and k, l, n ∈ N, we have χ′′(K(l, n, Ck)) =
Δ(K(l, n, Ck)) + 1.

Proof. The 3D-recursive topology K(1, n, Ck) is isomorphic to S(n, Ck), n ≥ 2. We
construct the total coloring of K(l, n, Ck) in two cases.

Case(i): k is even.

We give the total coloring of odd layers of K(l, n, Ck) as in Theorem 2.2. We
denote this total coloring by c1. For even layers, we use color c′1 to get a total
coloring, where c′1 is obtained from c1 using the permutation of colors (134)(2).
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Now, the edges between odd and even layers are colored with the missing color
at the corner vertices. The edges between even and odd layers are colored with a
new color.

Case(ii): k is odd.

The odd layers of K(l, n, Ck) are colored as in Theorem 2.2. We denote this total
coloring by c2. For the even layers, we use color c′2 to get a total coloring, where c′2
is obtained from c2 using the permutation of colors (123)(4).

Now, the edges between odd layers and even layers are colored with the missing
at the corner vertices. The edges between even layers and odd layers are colored
with a new color.
Therefore using 5 colors we color the vertices and edges of K(l, n, Ck).

Hence, χ′′(K(l, n, Ck)) = Δ(K(l, n, Ck)) + 1.
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