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Abstract

A graph is called fractional
(
r
s
, d
)
-defective colorable if its vertices can be

colored with r colors in such a way that each vertex receives s distinct
colors and has at most d defects (a defect corresponds to the situation
when two adjacent vertices are assigned with non-disjoint sets).

We show that each outerplanar graph having no triangle faces sharing
a vertex is fractional

(
7
3
, 1
)
-defective colorable; moreover, this bound is

tight also in the case when the graph has no touching triangles. These
results correct the claim in [W. Klostermeyer, Defective circular color-
ing, Australas. J. Combin. 26 (2002), 21–32] on circular

(
5
2
, 1
)
-defective

colorability of outerplanar graphs having no adjacent triangles.
Further, we show that if one allows overlapping triangles then one

cannot improve on the upper bound of 3 given by the 3-colorability of
outerplanar graphs.

1 Introduction

Throughout this paper, we consider connected and simple graphs; for terms undefined
here, readers are referred to [3]. Let S be a nonempty set of colors and i be a positive
integer. Then

(
S
i

)
denotes the collection of all i-element subsets of S. Further, instead

of a color set {a, b, c} we will write abc, for short. The set {1, 2, . . . , r} will be denoted
by [1, r].

Among various generalization of proper vertex colorings, we mention here two
approaches. The first one relaxes the condition to be proper by allowing, for each
vertex, a fixed number of color conflicts. This gives the notion of d-improper coloring
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(see [9]) or (k, d)-defective coloring (see [1], [2]). The second approach relies on
assigning vertices of a graph with sets of colors with the aim to minimize the ratio
between total number of used colors and set size. Corresponding invariants are
circular chromatic number (see [6], [10], [4]) and fractional chromatic number (see
[7], [8]). Both these approaches can be combined to apply to circular/fractional
defective colorings.

Definition 1.1. ([5]) A circular
(
r
s
, d
)
-defective coloring of a simple graph G is a

function f : V (G) → {{1, 2, . . . , s}, {2, 3, . . . , s + 1}, . . . , {r, 1, . . . , s − 1}} such that
each vertex u is adjacent to at most d vertices v with f(u) ∩ f(v) 6= ∅.

So, in a circular
(
r
s
, d
)
-defective coloring, each vertex is assigned with s consec-

utive integers from [1, r] (integers 1 and r are consecutive via wrap-around). By
coloring any vertex of a graph with an arbitrary s distinct elements subset of [1, r]
we get the fractional version.

Definition 1.2. A fractional
(
r
s
, d
)
-defective coloring of a simple graph G is a func-

tion f : V (G) →
(
[1,r]
s

)
such that each vertex u is adjacent to at most d vertices v

with f(u) ∩ f(v) 6= ∅.
The fractional d-defective chromatic number of G, denoted by χd

F (G), is defined
by

χd
F (G) = inf

{r
s

: G can be fractional
(r
s
, d
)
− defective colored

}
.

For a coloring f : V →
(
[1,r]
s

)
, an edge xy is defective if f(x) ∩ f(y) 6= ∅; a vertex

has d defects if it is incident with d defective edges. In Definitions 1.1 and 1.2, if
d = 1, we refer to circular/fractional 1-defective colorings, and s = 1, d = 0 yields the
proper vertex coloring. Of course, if a graph G cannot be fractional

(
r
s
, d
)
-defective

colored then it fails to be circular
(
r
s
, d
)
-defective colorable, too. By Definitions 1.1

and 1.2, a circular
(
r
s
, d
)
-defective coloring for a graph G is also fractional

(
r
s
, d
)
-

defective.
In this paper we deal with circular and fractional defective colorings of outerplanar

graphs. Note that an outerplanar graph is a planar graph that can be embedded in
the plane in such a way that all vertices lie on the boundary of the outer face. In
the next we shall assume such embeddings for all outerplanar graphs.

It is known that, in outerplanar graphs, the fractional and circular chromatic
numbers are equal — particularly, for outerplanar bipartite graphs, this common
value is 2 while, for the non-bipartite ones, the common value is 2+ 1

n
where 2n+1 is

the odd girth (that is, the length of the shortest odd cycle) (see e.g. [6, 4, 8]). Anal-
ogous result holds also for circular/fractional

(
r
s
, d
)
-defective coloring of outerplanar

graphs: the question of finding the optimal defective colorings is precisely equivalent
to the question of maximizing the odd girth by removing edges (at most d edges
incident to each vertex).

It has been shown (see [1]) that each outerplanar graph is properly 3-colorable,
and (2, 2)-defective colorable, too. Hence by Definitions 1.1 and 1.2, each outerpla-
nar graph is circular/fractional

(
3
1
, 0
)
-defective (

(
2
1
, 2
)
-defective) colorable. In [5],

W. Klostermeyer proved that each outerplanar graph without triangles sharing an
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edge can be circular
(
5
2
, 1
)
-defective colorable. However this result fails to hold, as

we show in Section 2. In Section 3 we consider outerplanar graphs without triangles
sharing a vertex and prove that each such graph can be circular/fractional

(
7
3
, 1
)
-

defective colorable (see Theorem 3.2) and 7
3

is the tight upper bound. For purposes
of proofs of these results, we introduce some particular notation. Having an outer-
planar graph G with at least one chord, an inner face of G which is incident with one
chord is called an end-face. In the other words an end-face of an outerplanar graph
is adjacent with exactly one inner face. Two cycles of a graph are adjacent if they
share a common edge, and touching if they share a common vertex.

2 Outerplanar graphs without adjacent triangles

In [5] (pp. 27), the following theorem was stated:

Theorem 2.1. Let G be an outerplanar graph without adjacent triangles. Then G
is circular

(
5
2
, 1
)
-defective colorable.

In this section we give a counterexample to show that the above theorem does
not hold.

v1

v2

v3

v4

v5

v6

v7

v8

Figure 1: Graph G without adjacent triangles contradicting Theorem 2.1 of [5]

Lemma 2.2. There exists an outerplanar graph G without adjacent triangles such
that G fails to be fractional

(
r
s
, 1
)
-defective colorable for all r

s
< 3.

Proof. Consider the outerplanar graph G on Figure 1 and assume that there exists
a fractional

(
r
s
, 1
)
-defective coloring f with r

s
< 3. It follows that each triangle of G

contains a unique defective edge. By the symmetry, suppose that v4v6 is the defective
edge of the triangle v4v5v6. This implies that v2v3 and v7v8 are defective edges in
triangles v2v3v4 and v6v7v8. Thus, the triangle v1v2v8 either contains no defective
edge or contains a vertex with two defects, a contradiction.

This lemma shows that Theorem 2.1 of [5] does not hold. From 3-colorability of
outerplanar graphs we have that each outerplanar graph without adjacent triangles
can be circular (also, fractional)

(
3
1
, 1
)
-defective colorable (circular

(
3
1
, 0
)
-defective

colorable).
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3 Outerplanar graphs without touching triangles

Before proving the main theorem on circular defective colorability of particular out-
erplanar graphs, we present the following auxiliary result on certain edge 3-colorings
of these graphs (called 012-colorings in the sequel):

Lemma 3.1. Let G be an outerplanar graph without touching triangles. Then there
is a 012-coloring ϕ : E(G)→ {0, 1, 2} of G such that

1. each vertex of G is incident with at most one nonzero edge, and

2. for each face α of G, the following holds:

(a) If degG(α) = 3 then colors of edges incident with α do not form sequences
0, 0, 0 or 1, 0, 0.

(b) If degG(α) = 4 then colors of edges incident with α do not form sequence
2, 0, 0, 0.

(c) If degG(α) = 5 then colors of edges incident with α do not form sequence
0, 0, 0, 0, 0.

Proof. First suppose that G is 2-connected and let r = |F (G)| − 1 be the number of
inner faces in G. The result is obvious for r = 1 since, in this case, G is a (chordless)
cycle. Let r > 1 and assume that the assertion holds for every graph containing fewer
inner faces than G. Observe that either G contains an end-face of degree greater than
three or all end-faces are triangles. In each of the cases of the subsequent analysis,
we proceed in a common manner: we take a suitable subgraph of G, color it by
induction and describe the extension of the so obtained coloring to the coloring of
the whole graph G (the fact that the conditions (1), (2) are always satisfied can be
checked easily).
Case 1: Assume that there exists an end-face α of degree greater than three. Let
E(α) = {v1v2, v2v3, . . . , vkv1} = {e1, e2, . . . , ek} where ek = vkv1 be a chord in G.
Consider a subgraph H of G induced by the vertex set V (G) \ {v2, . . . , vk−1}. Note
that H is outerplanar and 2-connected with fewer inner faces as G. By induction,
color H and denote by ϕH its 012-coloring. We claim that ϕH can be extended to a
coloring ϕG of G, i.e., to a coloring including the remaining edges e1, . . . , ek−1. This
is done in the following manner: put ϕG(e) = ϕH(e) for each e ∈ E(H). Whenever
k > 5 color all edges e1, e2, . . . , ek−1 with the color 0. If k = 5 then color e2 with 1
and other remaining edges with 0. Finally, if k = 4, color e2 with the color 1 and
edges e1, e3 with 0.
Case 2: Now assume that all end-faces are triangles in G. Denote by V ∗ the set of
all vertices of G of degree two which are incident with an end-face of G. Let H be
the subgraph of G induced by V (G) \ V ∗. Note that H is 2-connected, too. Since G
contains no touching triangles, either H is a (chordless) cycle of the length greater
than three or each of its end-faces has degree greater than three. Let us consider the
following two cases according to H:
Subcase 2.1: Suppose that H is a (chordless) cycle of the length l > 3. Next,
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let α be a triangle end-face in G with the edges e1, e2 and e3 where e3 be a chord.
Denote by u the vertex incident with e1 and e2, and take a subgraph G1 of G induced
by V (G) \ {u}. By the inductive hypothesis, there exists a 012-coloring ϕG1 of G1.
Extend ϕG1 to a coloring ϕG of G as follows: put ϕG(e) = ϕG1(e) for each e ∈ E(G1).
Consider, after this coloring, three subcases depending on ϕG1(e3).

2.1.1: If ϕG1(e3) = 2 then color e1 and e2 with 0.
2.1.2: Let ϕG1(e3) = 1. Whenever l = 4 and the colors of edges incident with H

(which is an four element cycle) create a sequence 1, 0, 2, 0 or l > 4, then switch the
color 1 of the chord e3 to the color 2, and then assign the color 0 to the edges e1, e2.
Now suppose that l = 4 and the colors of edges incident with H create a sequence
1, 0, 0, 0 or 1, 0, 1, 0 with ϕG1(e3) = 1. Then switch the color of e1 to 0, and color e2
with 0 and e3 with 2.

2.1.3: Let ϕG1(e3) = 0. Denote by fi (i = 1, 2), the unique edge in E(H) \ {e3}
which is adjacent to ei. If ϕG1(fi) = 0 for some i ∈ {1, 2}, color ei with 2 and e1
with 0. Otherwise recolor f1 with 0, f2 with 1 and color e1 with 2 and e2 with 0.
Subcase 2.2: Assume that H is not a (chordless) cycle. Choose an end-face β
of H (see Figure 2). Recall that each end-face of H has degree greater than three.
Obviously, there exists a positive integer p such that β is adjacent with p end-triangles
βi (i = 1, . . . , p) in G. Let E(β) = {e1, e2, . . . , ek} where ek be a chord in H. For
a chord ej ∈ E(β) ∩ E(βi), i = 2, . . . , p, we denote by e−j and e+j the edge of E(βi)
which is adjacent with ej−1 and ej+1, respectively. Next, cut G along ek into two
subgraphs G1 and G2 (both containing the chord ek) and without loss of generality,
suppose that β ∈ F (G2). By induction, color G1. We extend ϕG1 to a coloring ϕG

of G as follows. Put ϕG(e) = ϕG1(e) for each e ∈ E(G1). Let us examine seven
subcases according to k = degG(β) and p.

G H

β β

Figure 2: Construction of graph H and the choice an end-face β in the Subcase 2.2

2.2.1: k = 4, p = 1 and e1 or e3 is a chord in G2. If ϕG(e4) = 2, then recolor e4
with 1. Now ϕG(e4) ∈ {0, 1} and we can color e+1 , e−3 (if they exist) with 2 and the
remaining edges with 0.

2.2.2: k = 4, p = 1 and e2 is a chord in G2. If ϕG(e4) ∈ {0, 1} then we can color
edges e1, e2, e3, e

−
2 with 0 and the edge e+2 with 2. Otherwise, ϕG(e4) = 2 and color

e2 with 2 and other remaining edges with 0.
2.2.3: k = 5, p = 1 and e1 is a chord. Then we color edges e3 and e+1 with 2

and the remaining edges with 0. The case where k = 5, p = 1 and e4 is a chord, is
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symmetric with this subcase.
2.2.4: k = 5, p = 1 and ei is a chord for some i ∈ {2, 3}. Then we color ei with

2 and other remaining edges with 0.
2.2.5: k = 5, p = 2 and e1, e4 are chords in G. Then add a vertex w and

edges v1w, v5w into outer face of G1. Denote this outerplanar graph by G∗
1. By the

structure of G, we can see that G∗
1 contains no touching triangles. According to the

induction hypothesis, there exists a 012-coloring ϕG∗
1

of G∗
1. Put ϕG(e) = ϕG∗

1
(e) for

each e ∈ E(G1) = E(G∗
1) \ {v1w, v5w}. If ϕG(e5) = 2 then color edges e+1 , e

−
4 with 2

and the remaining edges of G with 0. Now, if ϕG(e5) = 0 then either ϕG∗
1
(v1w) = 2

or ϕG∗
1
(v5w) = 2, say ϕG∗

1
(v1w) = 2, then color e1, e

−
4 with 2 and the remaining edges

of G with 0.
2.2.6: k = 5, p = 2 and edges e1, e3 are chords in G. Then we color e3, e

+
1 with

the color 2 and the remaining edges with 0.
2.2.7: k > 5. Then color either e+i or e−i with 2 (i = 1, . . . , p) and other edges

with 0. Note that if v1 (vk) has defect in G1 and the edge e−1 (e+k−1) exists then e−1
(e+k−1) has to be colored with 0.

Finally, assume that G has a cut-vertex. If G is a tree then we can color all its
edges with 0. Now suppose that G is not a tree, and let us construct a 2-connected
graph H from G as follows:
Take an arbitrary cut-vertex v. Denote by u,w adjacent vertices of v such that u, v, w
are consecutive vertices on a boundary trail of outer face. Then add new vertex v∗

into outer face and add new edges uv∗, wv∗. The resulting graph is outerplanar
without touching triangles. Moreover, the number of cut-vertices decreased by one.
By repeating this process we construct 2-connected graph H with required properties
(see Figure 3). Now we can use induction for 2-connected graphs, so, there exists

Figure 3: A construction of 2-connected outerplanar graph by adding vertices and
edges

a 012-coloring for H. Note that, in this moment, no 5-cycle (not only faces) of
H is colored with only 0. Moreover, each 3-cycle and 4-cycle in H bounds a face.
Therefore, this edge 012-coloring is a suitable 012-coloring of G, too.

Theorem 3.2. Let G be an outerplanar graph without touching triangles. Then G
is circular

(
7
3
, 1
)
-defective colorable.

Proof. First, if G is a tree, then G is bipartite, hence, there exists (2, 0)-defective
coloring and therefore circular

(
2
1
, 0
)
-defective coloring, too. If we replace the color

set {1} by {1, 2, 3} and {2} by {4, 5, 6}, we get circular
(
6
3
, 0
)
-defective coloring.

Hence, for any tree there exists a circular
(
6
3
, 1
)
-defective coloring which is circular(

7
3
, 1
)
-defective coloring, too. So suppose that G is not a tree. Whenever G contains
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a cut-vertex then, as in the proof of Lemma 3.1, we can construct from G a 2-
connected outerplanar graph H. Obviously, if there exists a desired vertex coloring
of H then also G is circular

(
7
3
, 1
)
-defective colorable. Thus, in the proof, it suffices to

consider only 2-connected outerplanar graphs. Moreover, if G contains an inner face
of degree greater than five then we can construct from G (by adding new chords to
G) a new outerplanar graph H such that H has no touching triangles and the degree
of each inner face is less than six. Clearly, if H is circular

(
7
3
, 1
)
-defective colorable

then so is G. Therefore, it is sufficient to prove the theorem for such outerplanar
graphs (without touching triangles) which are 2-connected and have no inner k-face
for k > 5. Now, let G be a graph with the above properties and r be the number of
inner faces in G.

We show by induction on r that G can be circular
(
7
3
, 1
)
-defective colorable.

Suppose that ϕ is the edge 012-coloring of G (as defined in Lemma 3.1). Using
the coloring ϕ, we show that there exists a required vertex coloring f of G such
that |f(u) ∩ f(v)| = ϕ(e) for each e = uv ∈ E(G). The result is obvious for

0
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Figure 4: The 012-colorings and derived circular
(
7
3
, 1
)
-defective colorings of the

graphs C3, C4 and C5.

r = 1 (see Figure 4). Next, suppose r > 1. Let α be an end-face of G and let
k = degG α ∈ {3, 4, 5}, E(α) = {v1v2, v2v3, . . . , vkv1} where v1vk be the unique chord
of α. Let us consider two cases depending on k.
Case 1: Suppose that k ∈ {4, 5} and consider a subgraph H of G induced by vertex
set V (G) \ {v2, . . . , vk−1}. Obviously, H is 2-connected and has r − 1 inner faces.
By induction, color H and denote fH its circular

(
7
3
, 1
)
-defective coloring. We show

that fH can be extended to a coloring fG of G as follows: put fG(v) := fH(v) for
each v ∈ V (H). While coloring the vertices v2, . . . , vk−1, let us consider the following
subcases:

1.1: If k = 4 and ϕ(v1v4) = 0, then without loss of generality suppose that
fG(v1) = 123 and fG(v4) = 456. If edges v1v2, v2v3 and v3v4 are colored with 0 in
the edge coloring ϕ (i.e., ϕ(e1) = ϕ(e2) = ϕ(e3) = 0), then we color v2 with 456
and v3 with 123. Other cases how to color v2, v3 depending on ϕ(e1), ϕ(e2), ϕ(e3),
are illustrated in Table 1. The cases 001 and 102 are symmetric to 100 and 201,
therefore we omit it.

1.2: If k = 4 and ϕ(v1v4) = 1, then without loss of generality suppose that
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ϕ(e1)ϕ(e2)ϕ(e3) 100 010 101 102 202
fG(v2), fG(v3) 345, 712 567, 712 345, 671 671, 345 712, 345

Table 1: Subcase 1

fG(v1) = 123 and fG(v4) = 345. Since ϕ(v1v4) = 1, edges v1v2 and v3v4 have the
color 0. Thus we get three cases described in Table 2.

ϕ(e1)ϕ(e2)ϕ(e3) 000 010 020
fG(v2), fG(v3) 456, 712 456, 671 567, 671

Table 2: Subcase 2

1.3: If k = 4 and ϕ(v1v4) = 2, then suppose that fG(v1) = 123 and fG(v4) = 234.
Obviously, ϕ(v1v2) = ϕ(v3v4) = 0 and we get two cases illustrated in Table 3.

ϕ(e1)ϕ(e2)ϕ(e3) 010 020
fG(v2), fG(v3) 456, 671 456, 567

Table 3: Subcase 3

1.4: If k = 5 and ϕ(v1v5) = 0, then suppose that fG(v1) = 123 and fG(v5) =
456. Now we color vertices v2, v3, v4 depending on colors of edges e1, e2, e3, e4 (up to
symmetry) as given in Table 4.

1.5: If k = 5 and ϕ(v1v5) = 1, then suppose that fG(v1) = 123 and fG(v5) = 345.
Since ϕ(v1v5) = 1, the edges v1v2, v4v5 are colored with 0. The coloring of vertices
v2, v3, v4, depending on colors of edges e1, e2, e3, e4, (up to symmetry) is given by
Table 5.

1.6: Let k = 5 and ϕ(v1v5) = 2. Without loss of generality suppose that
fG(v1) = 123 and fG(v5) = 234. Observe that we can color remaining vertices
as in the above Subcase 1.5.

Case 2: Assume that k = 3 and consider a subgraph H of G induced by V (G)\{v2}.
By induction, color H and extend, without loss of generality, its circular

(
7
3
, 1
)
-

defective coloring fH to G as follows: put fG(v) = fH(v) for each v ∈ V (H).
First let ϕ(v1v3) = 2 (ϕ(v1v2) = ϕ(v2v3) = 0). Without loss of generality sup-
pose that fG(v1) = 123 and fG(v3) = 234. Then we can color v2 with 567. Oth-
erwise, ϕ(v1v3) = 0 and suppose that fG(v1) = 123, fG(v3) = 456. Note that then
ϕ(vivi+1) = 2 for some i ∈ {1, 2}. Therefore, color v2 either with 712 or 567 depend-
ing on ϕ(v1v2).

The following assertion holds immediately, as a circular
(
r
s
, d
)
-defective coloring

is fractional, too.

Corollary 3.3. Let G = (V,E) be an outerplanar graph without touching triangles.
Then G is fractional

(
7
3
, 1
)
-defective colorable.
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ϕ(e1)ϕ(e2)ϕ(e3)ϕ(e4) 1000 0100 2000
fG(v2), fG(v3), fG(v4) 671, 345, 712 567, 345, 712 712, 345, 712

ϕ(e1)ϕ(e2)ϕ(e3)ϕ(e4) 0200 1010 1020
fG(v2), fG(v3), fG(v4) 456, 345, 712 345, 671, 123 345, 671, 712

ϕ(e1)ϕ(e2)ϕ(e3)ϕ(e4) 1001 1002 2010
fG(v2), fG(v3), fG(v4) 345, 671, 234 345, 671, 345 234, 567, 712

ϕ(e1)ϕ(e2)ϕ(e3)ϕ(e4) 2020 2002
fG(v2), fG(v3), fG(v4) 234, 671, 712 234, 671, 345

Table 4: Subcase 4

ϕ(e1)ϕ(e2)ϕ(e3)ϕ(e4) 0000 0100 0200
fG(v2), fG(v3), fG(v4) 567, 234, 671 456, 234, 671 456, 345, 671

Table 5: Subcase 5

Lemma 3.4. There exists an outerplanar graph G without touching triangles such
that χ1

F (G) = 7
3
.

Proof. We prove that χ1
F (G) = 7

3
for the graph G in Figure 5. According to The-

orem 3.3, χ1
F (G) ≤ 7

3
. By way of contradiction, suppose that χ1

F (G) = r
s
< 7

3
and

that f is the corresponding coloring of G. Since r
s
< 3, the triangle u1u2u3 contains

a defective edge, say u1u2 (thus, f(u1) ∩ f(u2) 6= ∅). Next, |f(u1) ∪ f(u2)| ≤ r − s,
because f(u3) ∩ (f(u1) ∪ f(u2)) = ∅. Hence,

|f(u1) ∩ f(u2)| = |f(u1)|+ |f(u2)| − |f(u1) ∪ f(u2)|
≥ s+ s− (r − s) = 3s− r > 0.

To color the vertices v1, v2, we can use only colors from the set S1 = {1, 2, . . . , r} \
{f(u1)∩f(u2)} because the vertices v1, v2 have defects neither with u1 nor u2. There-
fore |S1| ≤ r − (3s− r) = 2r − 3s and

|f(v1) ∩ f(v2)| = |f(v1)|+ |f(v2)| − |f(v1) ∪ f(v2)|
≥ s+ s− (2r − 3s) = 5s− 2r > 0.

The last inequality follows from the fact that r
s
< 5

2
. So, v1 has defect with v2.

Similarly, to color the vertices w1, w2 we can use only colors from the set S2 =
{1, 2, . . . , r} \ {f(v1)∩ f(v2)}. Thus |S2| ≤ r− (5s− 2r) = 3r− 5s and, since r

s
< 7

3
,

we obtain

|f(w1) ∩ f(w2)| = |f(w1)|+ |f(w2)| − |f(w1) ∪ f(w2)|
≥ s+ s− (3r − 5s) = 7s− 3r > 0,
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u1 u2

u3

v1 v2

w1 w2

z1

Figure 5: The outerplanar graph G with χ1
F (G) = 7

3
.

i.e., w1w2 is defective. Observe, one of the edges of the triangle v1w1z1 is defective
because r

s
< 3. Then some vertex in {v1, w1} has two defects, which is a contradiction.
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