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Abstract

Let G(V,E) be a graph of order n and size m. A graceful labeling of G
is an injection f : V (G) → {0, 1, 2, ...,m} such that, when each edge uv
is assigned the label f(uv) = |f(u)− f(v)|, the resultant edge labels are
distinct. We focus on general results in graceful labelings, and provide an
affirmative answer to the following open problem: Can every connected
graph be embedded as an induced subgraph in an Eulerian graceful graph?
As a result we infer that the problems on deciding whether the chromatic
number is less than or equal to an integer k, for k ≥ 3, and deciding
whether the clique number is greater than or equal to an integer k, for
k ≥ 3, are NP-Complete even for Eulerian graceful graphs.

1 Introduction

Labeling, in general, is naming objects using precise symbolic format. Let G(V,E) be
a finite simple undirected graph of order n = |V (G)| and size m = |E(G)|. The graph
G can be labeled either by its vertices, or edges, or a combination of both. Vertex
labeling of a graph G is an injective function f : V (G)→ Z+ ∪ {0}, i.e. assignment
of a set of non-negative integers to V (G). Such a vertex labeling naturally induces
an edge labeling, where an edge e = uv gets the label f(u) ∗ f(v). The operator ∗ is
usually defined to optimize the number of symbols used to label the entire graph.

In the past few decades many labelings have been studied, primarily originating
from the following one introduced by Rosa [12]. Let f : V (G) → {0, 1, 2, ...,m} be
an injective vertex labeling with edge labels defined as f(uv) = |f(u) − f(v)|, for
every uv ∈ E(G). Rosa defined such a labeling to be a β − valuation if f(E) =
{1, 2, ...,m}. This was later termed as graceful labeling by Golomb [9], which became
widely accepted. The updated details of most graph labeling problems can be found
in Gallian’s dynamic survey [7].
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Before diving into the general results in graceful labeling, we shall define some
related terminology. For an integer k, set [k] = {0, 1, 2, .., k}. An unpublished result
of Erdős states that most graphs are not graceful ([7], page 5). If a graph of size
m is not graceful, then its vertices cannot be labeled from [m] to produce distinct
edge labels. However for a suitable k ≥ m, it is possible to label edges distinctly.
The minimum value of such k for a graph G is its index of gracefulness, denoted by
θ(G). Acharya [1, 4] proved that such vertex labelings always exist. If a graph G
is graceful, then θ(G) = m, else θ(G) > m. So, the index of gracefulness measures
how close the graph is to being graceful. Also, it is easy to see that there must be
two vertices in V (G) having labels 0 and θ(G) = k (else k won’t be the index of
gracefulness). It is well-known that θ(G) ∼ O(n2) [7].

For the reader’s convenience, we recall some basic definitions about graphs which
will be useful in this article. An Eulerian cycle is a closed walk in a graph that visits
every edge exactly once. A graph possessing an Eulerian cycle is said to be Eulerian.
In an Eulerian graph the degree of every vertex is even. The chromatic number χ(G)
of a graph G is the smallest number of colors needed to color the vertices of G such
that adjacent vertices have different colors. The clique number ω(G) of a graph G
is the largest set of pairwise adjacent vertices. For other definitions we refer to the
standard text by Harary [10].

Although a lot of papers have been published on various graph labelings, very
few of them present general results on graceful labelings. This article is motivated
by the following open problem, originally posed by Rao and, mentioned in such a
paper by Acharya and Arumugum [3].

Can every connected graph be embedded as an induced subgraph in an Eulerian
graceful graph?

We prove a stronger result which is an affirmation to this problem and can be
stated as follows:

Theorem 1.1. Every graph can be embedded as an induced subgraph in an Eulerian
graceful graph.

Our approach is to first embed the given graph G in an Eulerian graph G1 as an
induced subgraph. Then we shall add some triangles, squares and pentagons to one
of the edges of G1 to make it graceful. Finally we make it Eulerian (if necessary)
resulting in an Eulerian graceful graph H. Since H induces G1 and G1 induces G,
H induces G.

Results and Organization: In Section 2 we explore the general results known on
embeddings of graphs in graceful graphs. In Section 3 we develop an exponential
algorithm to embed G, as an induced subgraph, in an Eulerian graceful graph H.
We also discuss cases where the complexity of this algorithm can be reduced, at the
cost of a few families of graphs. It is then shown that deciding chromatic number is
less than or equal to k, for k ≥ 3; and deciding whether the clique number is greater
than or equal to an integer k, for k ≥ 3, are NP-complete even for Eulerian graceful
graphs.
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2 Known General Results

The following basic question on embeddings in graceful graphs has been stated by
Acharya in [2] and proved by Acharya, Rao and Arumugam in [5]:

Any graph G can be embedded as an induced subgraph of a graceful graph.

The following results have been proved in [5]:

1. The problem of deciding whether the following parameters are NP-complete for
graceful graphs:

a. The chromatic number χ(H) is less than or equal to k, for k ≥ 3.

b. The domination number γ(H) is less than or equal to k, for k ≥ 3.

c. The clique number ω(H) is greater than or equal to k, for k ≥ 3.

The following resolves (see [5]) an unsolved problem by Chartrand and Lesniak in
[6] (Page 266, see also the 5th edition):

2. Graceful graphs can have arbitrarily large chromatic number, domination num-
ber and clique number.

3. Any triangle free graph G can be embedded as an induced subgraph of a triangle
free graceful graph. Also there exist triangle free graceful graphs with arbitrarily
large chromatic number.

3 Main Results

We now provide lemmas and constructions which are necessary for the proof of
Theorem 1.1.

Lemma 3.1. Every graph G can be embedded as an induced subgraph in an Eulerian
graph G1.

Proof. We introduce a new vertex v0 and join it to every vertex vi of G, where i = 1
to |V (G)|. Now we join the vertices with odd degree to another new vertex vnew.
Degree of vnew is even, since sum of degrees of vertices in a graph is always even. If
v0 and vnew are not adjacent, then we join them by an edge and also to a new vertex
u. Hence the resultant graph G1 is Eulerian and G is an induced subgraph of G1.

Remark 3.2. An alternate way to form G1 is to add edges from vertices of the con-
nected graph with odd degree to a new vertex. But the construction in Lemma 3.1
extends such an embedding to disconnected graphs.

Lemma 3.3. Every Eulerian graph G1 obtained by Lemma 3.1 can be embedded as
an induced subgraph of a graceful graph such that the edge labels of G are different
from the vertex labels of G.
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Proof. Let vertex v0 be labeled 0, and the rest vertices are labeled using increasing
powers of 3. None of the edges have the same labels since for distinct a and b,
3a − 3b = 3p − 3q if and only if a = p, b = q. Let {l1, l2, ..., lk} be the missing
edge labels. Since v0 is adjacent to every other vertex in V (G1), none of these li are
vertex labels. Now in order to make the graph graceful we introduce new vertices
with labels li and join them to v0. Hence we have a graceful graph with G1 as an
induced subgraph.

Remark 3.4. It should be noted that we shall just use the labeling of G1 in Lemma
3.3 in our algorithm. An obvious question is why we choose 3i instead of 2i. A clear
disadvantage of a 2i labeling is that the presence of a path ‘abc’ with vertices a, b
and c labeled as 0, 2n−1 and 2n respectively will result in edges ‘ab’ and ‘bc’ having
the same labels. Also as we shall see later (in Subsection 3.2) we need our vertex
labels to be odd, hence we use 3.

Let the Eulerian graph G1 formed by the construction provided in Lemma 3.1 be
of order n and size m. Let vn be the vertex of V (G1) \ {v0} with the highest degree.
Our aim is to embed G1 in an Eulerian graceful graph H, as an induced subgraph.
So we modify the construction provided in Lemma 3.3 by adding triangles, squares
and pentagons to one of the edges of G1 such that all the vertices have even degree
and the resultant graph is graceful. We begin with the 3i labeling along with a few
constructions.

3.1 3i Labeling

We label V (G1) as described in Lemma 3.3 such that the maximum label 3n is
assigned to the vertex vn ∈ V (G1) \ {v0} with the highest degree. Care should be
taken that vertex vn−1, with label 3n−1, is adjacent to both v0 and vn. Now the edges
are labeled accordingly.

3.2 Nearly Graceful Graph

For x = 1, 2, . . . ,
⌊
3n

2

⌋
such that neither x nor 3n−x are any of the edge labels of G1,

we join a new vertex ux, with label x, to vertices v0 and vn. We call all such vertices
ux, 2-vertices ; and such a graph as a nearly graceful graph G2. The label of edges
v0ux and vnux will be x and 3n− x, respectively, which are distinct. This is possible
because of the odd labeling of vertices. Now since v0 and vn have even degree in G1,
and both their degrees increase by the same amount they have the same parity. It
should be noted that there are a few labels missing in the nearly graceful graph. We
include these labelings by the following two constructions: square construction, for
introducing missing even labels; and pentagon construction, for introducing missing
odd labels.
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Figure 1: The stages in a Square construction

3.3 Square Construction

This is used to add a missing even edge label le in the graph. We join a new vertex
vle with label le to v0. Hence edge v0vle has label le. We have labeled our vertices
such that there already exists a 2-vertex ux in the graph with label le

2
. Delete edge

uxv0 and add edge uxvle , regaining the label le
2

. Then the vertices v0, vle , ux and
vn form a 4-cycle containing the missing label le, and no other edge label has been
lost in the process. This is illustrated in Fig 1. We now prove the existence of the
2-vertex ux with label le

2
.

Lemma 3.5. Given a missing even label le in the nearly graceful graph G2, there
always exists a 2-vertex in this graph with label le

2
.

Proof. The missing even label le has form 3n − 3a, corresponding to the edge label
3a in G1, and this happens only for edges v0va where va is not adjacent to vn. So ux
should have the label 3n−3a

2
. Suppose such a vertex does not exist. The only labels

missing in ux have form 3p − 3q or 3r. So either 3n−3a
2

= 3p − 3q with n 6= a and
p 6= q, or 3n−3a

2
= 3r with n 6= a.

In the former case, let (n, a, p, q) be a solution; then (n− 1, a− 1, p− 1, q − 1) is
also a solution, and so on till we get (x, y, z, 0) or (x, 0, y, z) or (x, 0, y, 0) as one of
the solutions depending on whether q < a, q > a or q = a is smallest respectively.
For the first two cases, one side of the equation is a multiple of 3 and the other is
not, which is not possible. For the last case a simple rearrangement of powers of 3
in one side gives us the same result.

Now for the case when 3n−3a
2

= 3r with n 6= a, a similar argument proves that
for a 6= r, this equation is not satisfied. For a = r, the only solution exists when
n = a + 1. This is not possible, since in our construction we made sure vn−1 (with
label 3n−1) is adjacent to both v0 and vn. This ensures that 3n−3n−1 is not a missing
even label.

Hence we have a contradiction in every case, and the lemma follows.

We also observe the following result regarding parity of the degree of vertices v0
and vn. (By parity of a vertex, we mean parity of the degree of that vertex.)

Lemma 3.6. Square construction does not change the parity of vertices v0 and vn.
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Figure 2: The stages in a Pentagon construction

Proof. For vertex v0, the edge v0vle is added and the edge uxv0 is deleted. For vertex
vn there is no change in the edges incident on it. Hence their parity remains intact.
Refer Fig 1.

3.4 Pentagon construction

This is used to add a missing odd edge label lo to the graph. We join a new vertex
vlo with label lo to v0. Hence edge v0vlo has label lo. Now we intend to reuse the
previous techniques described in the square construction, so we need an even label.
Hence we find a 2-vertex uod, labeled od 6= 1 which is a small odd number, making
l0 + od an even number. We have labeled our vertices such that there already exist
2-vertices uod and ux in the graph with labels od and lo+od

2
. While choosing od, care

must be taken to ensure there is a 2-vertex with label 3n−od
2

. Here one might wonder
what if l0 + od > 3n. In that case we can do a subtraction to get the label l0 − od.
The idea still is to bring in a vertex with an even label. However with appropriate
labeling of G1 this can be avoided. We join a new vertex wi, with label lo + od, to
vlo . Delete the vertex uod and edges incident on it. Now the label 3n− od is missing.
Since it is an even label we can use the square construction. Now, we delete edge
uxv0 and add uxwi regaining the lost label lo+od

2
. Then the vertices v0, vlo , wi, ux and

vn form a 5-cycle containing the missing label lo. No other edge label except 3n− od
has been lost in the process, which can be regained by a square construction. This
is illustrated in Fig 2. We now prove the existence of a 2-vertices uod and ux in the
graph with labels od and lo+od

2
.

Lemma 3.7. Given a missing odd label lo in the nearly graceful graph G2, there
already exist 2-vertices uod and ux in this graph with labels od and lo+od

2
, where od 6= 1
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is a small odd number.

Proof. The missing label lo has form 3n − (3a − 3b) corresponding to the edge label
3a − 3b in G1, where neither a nor b is 0 or n. Each of these missing odd labels are
contributed by the even edge labels in original graph G or due to introduction of
vertex vnew in Lemma 3.1 to make Eulerian graph G1. So number of such missing
labels is small (< |E(G)|+ |V (G)|). Also due to the exponential nature of labeling,
we have a lot of 2-vertices. Since the choice of uod is up to us, we choose such an uod
such that ux is also a 2-vertex where x = lo+od

2
. This completes the proof.

We also observe the following result regarding parity of vertices v0 and vn.

Lemma 3.8. Pentagon construction changes the parity of v0 and vn.

Proof. For vertex v0, edge vovlo is added and edges v0uod and v0ux are deleted. For
vertex vn, edge vnuod is deleted. Furthermore the square construction done to regain
the label 3n − od does not change the parity of v0 and vn. Therefore pentagon
construction changes parity of v0 and vn. Refer Fig 2.

3.5 Final Modifications

Now our graph is graceful and all vertices except possibly v0 and vn have even degree.
So if only d(v0) and d(vn) are odd, we introduce a vertex p with label 3n + 1 and join
it to v0. Since 3n + 1 is even, we proceed with the square construction. But 3n+1

2

would not be available as a label of a 2-vertex, so we delete edge v0ux where ux has
the complement label i.e. 3n− 3n+1

2
= 3n−1

2
. Change the label of ux to 3n+1

2
. So edges

pux and uxvn have labels 3n+1
2

and 3n−1
2

respectively. Hence all missing labels are
regained. But even after that d(v0) and d(vn) are odd, since square construction does
not change the parity of v0 and vn (ref. Lemma 3.6). The graph is now gracefully
labeled with labels 1, 2, . . . , 3n + 1. So we add another vertex q with label 3n + 2
and join it to v0. Since this label is odd we proceed with pentagon construction,
but instead of adding od we subtract it, so that the maximum label is restricted to
3n + 2. The following lemma proves the availability of such 2-vertices.

Lemma 3.9. There exist 2-vertices with labels 3n−1
2

and 3n+2−od
2

, for a small odd
number od 6= 1.

Proof. Clearly 3n−1
2

and almost all the labels within [3n−1 + 1, 3
n−1
2

] are available. So
for a small od we can find the 2-vertex with label 3n+2−od

2
within this range. Hence

the given labels are available.

Now finally the parity reverses due to the pentagon construction (cf. Lemma
3.8). Now all vertices have even degree and we have a graceful graph with labels
1, 2, . . . , 3n + 2. Hence we obtained our Eulerian graceful graph H that embeds the
given graph G. We now explicitly present the algorithm; illustrations are given in
the Appendix.
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Algorithm 1:
Outline:

G
Eulerian−−−−−→ G1

Nearly Graceful−−−−−−−−−→ G2
Eulerian Graceful−−−−−−−−−−→ H

Step 1. Embedding G in an Eulerian graph G1 using Lemma 3.1.

Step 2. Give 3i Labeling to the intermediate Eulerian graph G1.

Step 3. Adding vertices and making a nearly Graceful graph G2.

Step 4. Adding missing labels and making the graph graceful.

(a) Let {le} and {lo} be the sets of missing even and odd labels respec-
tively.

(b) We use the square construction for each le and pentagon construction
for each lo till all missing labels are added to the graph.

(c) Now we have a gracefully labeled graph. If degrees, d(v0) and d(vn)
are even then it is Eulerian and we are done. Else proceed.

Step 5. Making the graceful graph Eulerian as given in Subsection 3.5.

Hence Algorithm 1 proves that every connected graph can be embedded as an
induced subgraph in an Eulerian graceful graph, proving Theorem 1.1.

3.6 A remark on designing a polynomial algorithm

The backbone of Algorithm 1 lies in the proofs of Lemmas 3.5, 3.7 and 3.9. Previ-
ously in Remark 3.4, we saw why a 2i labeling would fail. Now we shall develop a
polynomial labeling which would work for graphs with a small clique number. We
repeat the previous algorithm using a (2n+1)2 labeling. Everything works out except
the existence of odd numbers (a, b, c, d) satisfying a2 − b2 = 2(c2 − d2) [ref. Lemma
3.5]. In fact, there are families of such 4-tuples. So we need to avoid having such
cases in our labeling either by making sure that one of the odd numbers in each
of the 4-tuple is missing, or that edge ab does not exist. However this turns out
be impossible for a larger clique number. A counterexample where such a labeling
would fail is when G = Kn, for a larger n. In fact, in this case, the 2i labeling also
fails. So in general, but not for all graphs, we can have a (2n+ 1)r labeling for some
integer r > 1. It is obvious to see that as r increases, the number of solutions to
ar − br = 2(cr − dr), for odd tuples (a, b, c, d) decreases. Hence, the family of graphs
G satisfying this polynomial labeling increases with r. The obvious question that
would assure a (2n + 1)r labeling is whether ar − br 6= 2(cr − dr) for every 4-tuples
(a, b, c, d) of odd numbers.

Now let us look at some of the graph characteristics of the Eulerian graceful
graphs obtained from Algorithm 1.
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Corollary 3.10. The problem of deciding the following parameters is NP-complete
for Eulerian graceful graphs:

1. The chromatic number χ(H) is less than or equal to k, for k ≥ 3.

2. The clique number ω(H) is greater than or equal to k, for k ≥ 3.

Proof. Let G denote the class of Eulerian graphs and G ′ contain rest of the graphs.
Let G be a graph with chromatic number χ(G) ≥ 3, and clique number ω(G). Let
G1 be the Eulerian graph, constructed in Lemma 3.1, that induces G. Let H be the
Eulerian graceful graph that induces G. Clearly H also induces G1.

Since in G1, the vertex v0 is joined to every vertex of G, it must be assigned
a different color. If G ∈ G, then the vertex vnew (in Lemma 3.1) also has to be
assigned a different color, since it is also joined to every vertex of G and v0. If
G ∈ G ′, then the vertex vnew can be assigned one of the previous colors. So if G ∈ G,
χ(G1) = χ(G) + 2; and if G ∈ G ′, χ(G1) = χ(G) + 1. Let {c1, c2, c3, ..} be the colors
of G1. Without loss of generality let us assume that vertex v0 and vn have colors c1
and c2. Every vertex of H − G1 either lie on a 3-cycle, 4-cycle or 5-cycle with v0vn
as the common edge. So these vertices can be colored by c1, c2 and a third color c3.
So if G ∈ G, χ(H) = χ(G1) = χ(G) + 2; and if G ∈ G ′, χ(H) = χ(G1) = χ(G) + 1.
Since the problem of deciding whether the chromatic number χ(G) ≤ k for k ≥ 3 is
NP-complete ([8], page 190), it is still NP-complete for graphs in G or/and for graphs
in G ′. Hence it follows by restriction that deciding whether the chromatic number of
an Eulerian graceful graph χ(H) ≤ k for k ≥ 3 is NP-complete.

For clique number, similarly if G ∈ G, ω(G1) = ω(G) + 2, since both v0 and
vnew are adjacent to every vertex of G; and if G ∈ G ′, ω(G1) = ω(G) + 1. Also
ω(H) = ω(G1), since the only vertices of G1 adjacent to H −G1 are v0 and vn. So if
G ∈ G, ω(H) = ω(G1) = ω(G) + 2; and if G ∈ G ′, ω(H) = ω(G1) = ω(G) + 1. Since
the problem of deciding whether the clique number ω(G) ≥ k is NP-complete ([8],
page 194), using the previous argument, it follows that deciding whether the clique
number of a Eulerian graceful graph ω(H) ≥ k is NP-complete.

Applying the construction described in Algorithm 1 to triangle free graphs, we
have the following result.

Corollary 3.11. Any triangle free non-Eulerian graph G can be embedded as an
induced subgraph of a K4 free Eulerian graceful graph.

Due to the famous construction by Mycielski [11], triangle free graphs can have
arbitrarily large chromatic number. Also the Mycielskian of any graph contains
vertices with even degree as well as vertices with odd degree. Hence we have the
following corollary.

Corollary 3.12. There exists K4 free Eulerian graceful graphs with arbitrarily large
chromatic number.
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Also taking G as a clique of arbitrarily large size, and constructing H as given
in Algorithm 1, we can have arbitrarily large chromatic number and given clique
number for H. Hence we have the following stronger result than point 2 [in Sec. 2]
for chromatic number, addressing a problem by Chartrand and Lesniak in [6] (Page
266, also see the 5th edition), which was already settled in [5].

Corollary 3.13. Eulerian graceful graphs can have arbitrarily large chromatic num-
ber and given clique number ω(H) ≥ 3.

4 Conclusion

Although we believe that the size of H can be further reduced, the proofs of Lemma
3.5, 3.7 and 3.9 depend on the 3i labeling of the vertices. We have also looked at
cases where we can have a better algorithm. However, a simpler labeling does not
work for all graphs, for example Kn. So at present this seems to be the only way
of embedding a graph G, as induced subgraph, in an Eulerian graceful graph H.
Although we have a polynomial algorithm for graphs with a smaller clique number,
efforts can be made to reduce the number of vertices in H to some order of the index
of gracefulness, so as to induce a polynomial labeling for all graphs.

Acknowledgements

The authors thank the anonymous referees and the handling editor, for their vital
suggestions and encouragement to further improve this result. The authors would
also like to thank DST CMS Gol Project No. SR/S4/MS: 516/07 dated 21.04.2008
for their research support.

Appendix

Examples

Fig. 3 shows an embedding of P3 in an Eulerian graceful graph. It uses the 3i

labeling. Fig. 4 shows the corresponding embedding using the (2n + 1)2 labeling.
In both figures, vertices are labeled in a larger font, whereas edges are labeled in
a smaller font. For the sake of clarity, edges are not labeled in the final Eulerian
graceful graph.
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Figure 3: Embedding P3 in an Eulerian graceful graph using 3i labeling.

Figure 4: Embedding P3 in an Eulerian graceful graph using (2n+ 1)2 labeling.
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