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Abstract

For a tree T , the graph X is T -decomposable if there exists a partition of
the edge set of X into isomorphic copies of T . In 1963, Ringel conjectured
that K2m+1 can be decomposed by any tree with m edges. Graham and
Häggkvist conjectured more generally that every 2m-regular graph can
be decomposed by any tree with m edges. Fink showed in 1994 that for
any directed tree T with m arcs, the directed Cayley graph DCay(G;S)
is T -decomposable if S is a minimal generating set of G with m elements.
Building upon that technique, this paper presents an enlarged family of
directed Cayley graphs that are decomposable into directed trees. In
particular, a subset S of a finite group G is defined to be (k, t)-word
degenerate if S contains exactly t elements, s1, . . . , st, such that for each
i ∈ {1, . . . , t}, si can be expressed as a product of fewer than k distinct
elements from S − {si} or their inverses. It is proved that if S is any
(k, t)-word degenerate m-subset of a group G, and T is any directed tree
having m arcs and a minimal spanning star forest F , then the directed
Cayley graph DCay(G;S) is T -decomposable whenever k ≥ diam(T ) ≥ 3,
and t ≤ |E(F )|. When diam(T ) = 2, additional restrictions are required.
The main result of Fink and other results are obtained as immediate
corollaries.

1 Introduction

This article will focus exclusively on partitioning the edge (arc) set of a finite, regular,
simple graph (digraph) into various subgraphs. A decomposition of a graph (digraph)

∗ This research was carried out while the author was an undergraduate student, supported by an
Undergraduate Research and Creative Activity Award from the Center for Excellence in Teaching
and Learning at Kennesaw State University.
† This author was partially supported by the Interdisciplinary Research Opportunities Program

(IDROP) grant from the College of Science and Mathematics at Kennesaw State University.



M.F. CASTLE ET AL. /AUSTRALAS. J. COMBIN. 61 (1) (2015), 82–97 83

X = (V,E) is a sequence of subgraphs X = [X1, . . . , Xb], such that Xi = (Vi, Ei)
and E = E1 ∪ · · · ∪ Eb where Ei ∩ Ej = ∅ for all i 6= j. If Y is a graph (digraph)
such that Xi

∼= Y for all i ∈ {1, 2, . . . , b}, then X has a Y -decomposition and X is
said to be Y -decomposable. If X is Y -decomposable into b copies of Y , then |E(X)|
must be divisible by both |E(Y )| and b.

The theory of graph decompositions has a vast and rich literature (see Bosák [1]).
For example, the k-factorization problem decomposes the edges of a graph into k-
factors, or k-regular spanning subgraphs. The Hamilton cycle decomposition prob-
lem is thus a special type of 2-factorization. Similarly, decomposing a graph into
perfect matchings is exactly the 1-factorization problem. These types of decomposi-
tions as well as Pk-, Ck-, Kk-decompositions, and variants such as the Oberwolfach
and Hamilton-Waterloo problems have been studied extensively for highly-structured
graphs such as the complete graphs or complete bipartite graphs, among many oth-
ers. The 1961 conjecture of Ringel and subsequent generalized version by Graham
and Häggkvist has created considerable interest in the context of tree decompositions,
which are the focus of this article.

Conjecture 1.1 (Ringel [8]). If T is a tree with m edges, then the complete graph
K2m+1 is T -decomposable.

Conjecture 1.2 (Graham-Häggkvist [5]). If T is a tree with m edges, and X is a
2m-regular graph, then X is T -decomposable.

In 1991, Snevily resolved Conjecture 1.2 in the following cases.

Theorem 1.3 (Snevily [10]). If T is a tree with m edges and X is a 2m-regular graph
such that the girth of X is greater than the diameter of T , then X is T -decomposable.

Theorem 1.4 ([10]). If T is a tree with m edges, and X is Cartesian product of m
cycles, then X is T -decomposable.

This article will focus on analogues of Conjecture 1.2 in the context of directed
graphs. We first list some terminology and definitions that will be used throughout.
Unless indicated otherwise, X = (V,E) will denote a directed simple graph with
vertex set V and arc set E. The graph X is r-regular if the out-degree and the
in-degree of every vertex v ∈ V (X) is equal to r and X is symmetric if whenever
(u, v) ∈ E(X) then (v, u) ∈ E(X). For example, the leftmost graph in Figure 1
is a 2-regular directed graph that is not symmetric. The underlying graph of X is
the undirected (multi)graph obtained by making every arc of X into an undirected
edge. The projection graph of X is the simple graph obtained from the underlying
graph of X formed by collapsing every multi-edge into an edge of multiplicity one
(see Figure 1). A semi-path P of length n in X is an alternating sequence of distinct
vertices and arcs in X:

P : v1, e1, v2, e2, · · · , vn, en, vn+1

where ei = (vi, vi+1) or ei = (vi+1, vi) for all i ∈ {1, . . . , n}.
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A star graph is an undirected complete bipartite graph K1,α, where α ≥ 0. We
shall use DK1,α to denote a directed star graph (no specific orientation is implied).
If α ≥ 2, then the center vertex of K1,α (respectively DK1,α) is the unique non-leaf
vertex. In 1991, Colbourn et al. considered decomposing the edges of a symmetric di-
rected (simple) graph into (s, t)-directed stars, which are special directed star graphs,
DK1,s+t such that the in-degree of the center vertex is s and the out-degree of the
center vertex is t. They defined an (s, t)-directed star decomposition of a directed
graph X as a decomposition of X into (s, t)-directed stars.

Theorem 1.5 (Colbourn et al. [2]). Let X be a symmetric directed simple r-regular
graph. Let s, t ≥ 0 be integers such that r ≡ 0 (mod s+ t). Then:

1. if s+ t 6= r, there exists an (s, t)-directed star decomposition of X.

2. if s + t = r, there exists an (s, t)-directed star decomposition of X if and only
if the underlying undirected graph of X has an s-factor.

Theorem 1.5 implies that the directed version of Conjecture 1.2 (namely, every
m-regular directed graph is decomposable by any directed tree with m arcs) is false in
general. For example, if T is a directed path on three vertices (a (1, 1)-directed star),
and X is a symmetric 2-regular directed graph of odd order, then despite m = 2,
Theorem 1.5 forbids X from having a T -decomposition because the underlying graph
of X does not have a 1-factor. This invites the following question, which is the focus
of this article:

Question 1.6. If T is a directed tree with m arcs, what are sufficient conditions for
a directed simple m-regular graph X to be T -decomposable?

Attention will be focused on directed Cayley graphs, which are vertex-transitive,
thus regular, and engage the many tools of group theory. We now state some basic
definitions and facts regarding Cayley graphs and digraphs. Throughout this article,
G will denote a finite group with identity e, and S a subset of G. The inverse of
g ∈ G will be denoted g−1 and all notation multiplicative.

Definition 1.7. The directed Cayley graph (or Cayley digraph) of G with connection
set S is the directed graph X, denoted X = DCay(G;S), with V (X) = G and
E(X) = {(x, xs) : s ∈ S}. Equivalently, (x, y) ∈ E(X) if and only if x−1y ∈ S.

Definition 1.8. The undirected Cayley graph (or Cayley graph) of G with connection
set S is the undirected graph X, denoted X = Cay(G;S), with V (X) = G and
E(X) = {{x, xs} : s ∈ S}. Equivalently, {x, y} ∈ E(X) if and only if either x−1y ∈ S
or y−1x ∈ S.

Throughout, we shall further require that e /∈ S, so that both directed and
undirected Cayley graphs do not have loops. Note, a Cayley graph or digraph is
connected if and only if S is a generating set for G. The arc (x, xs) (resp. edge
{x, xs}) is said to be generated by s and is called an s-arc (resp. s-edge). A subgraph
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Figure 1: The 2-regular Cayley digraph DCay(D6; {r, f}) of the dihedral group D6

with standard rotation r and reflection f (left), its underlying graph (middle), and
its projection graph (right) which is simply Cay(D6; {r, f}).

Y of a Cayley graph or directed graph X is generated by s if E(Y ) consists of all
s-arcs (resp. s-edges) of X.

Numerous results on Y -decompositions of Cayley graphs employ restrictions on
the connection set S to gain additional control over the graph. A set S is minimal
if for every s ∈ S, the subset S − {s} generates a proper subgroup of the subgroup
generated by S. The set S is inverse-free provided that whenever s ∈ S, then either
s = s−1 or s−1 /∈ S. We say S is involution-free if s 6= s−1 for all s ∈ S and we say
S is inverse-closed if s−1 ∈ S for all s ∈ S.

In the directed case, regardless of whether S is inverse-free or involution-free, if
|S| = m, then DCay(G;S) is always an m-regular graph and has a total of |G| ·m
arcs. If DCay(G;S) has a Y -decomposition into b copies, where Y is a directed graph
with m arcs, then b = |G| (see Figure 3).

If {s, s−1} ⊆ S (or s = s−1 ∈ S) then there is an s-arc from u to v, where
v = us and there is an s−1-arc going from v to u = vs−1. If S is inverse-closed, then
X = DCay(G;S) is a symmetric digraph. The underlying graph of X = DCay(G;S)
will be a multigraph if and only if S either contains involutions or is not inverse-free.

The following corollary of Theorem 1.5 is required for Theorem 2.9.

Corollary 1.9. If S is inverse-closed and |S| = α+ β, for some positive integers α
and β, then X = DCay(G;S) has an (α, β)-directed star decomposition if and only
if the underlying graph of X has an α-factor.

In 1994, Fink gave a partial answer to Question 1.6.

Theorem 1.10 (Fink [4]). If T is any directed tree with m arcs, and G is a group
with minimal generating set S, where |S| = m, then DCay(G;S) is T -decomposable.

Some of the techniques in this article use a similar approach as Fink and in fact,
Theorem 1.10 can be obtained as a direct corollary of the main result, Theorem 2.9.

We shall rely on the well-known fact that the map φg : G → G where φg(v) =
gv is an automorphism of both DCay(G;S) and Cay(G;S) (see Sabidussi [9]) to
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Figure 2: A directed tree T with m = 4 arcs.

obtain a tree decomposition via the orbit of a tree T under the natural action of the
automorphism group ΦG = {φg : g ∈ G}.

Example 1.11. Figure 3 shows a decomposition of

X = DCay(S4; {(1234), (12), (134), (13)(24)})

into trees isomorphic to T shown in Figure 2. The (1234)-arcs are black, (12)-arcs
are red, (134)-arcs are green, and (13)(24)-arcs are blue. Note, Theorem 1.10 does
not apply in this example because S is not a minimal generating set of S4.

2 Main Results

In this section, we outline a framework of new results pertaining to Question 1.6 that
generalize Theorem 1.10. In many of examples in this section, SAGE [11] (http:
//www.sagemath.org) was used for group computations. Therefore, all permutation
composition is performed left to right. The following definition is a slight variation
of the concept of a word, as is traditionally studied in combinatorial and free group
theory.

Definition 2.1. Given a subset S of a group G, a word w on an alphabet S =
{s1, . . . , sm}, or S-word, is any finite product of distinct elements of the form:

w = sn1

σ(1)s
n2

σ(2) · · · s
nm

σ(m) =
m∏
i=1

sni

σ(i)

where ni ∈ {−1, 0, 1} for all i and σ ∈ Sym(m). The number of nonzero ni’s in the
product is called the size of w, denoted `S(w). For any group element g ∈ G, the
length of g is

˜̀
S(g) =

{
min{t : g = w and `S(w) = t} if g is an S-word

∞ if g is not an S-word

Note, `S(g) is the minimum number of nonzero ni’s needed to express g as an
S-word over all possible permutations σ. The identity e is the unique word of length
0. Also, ˜̀

S(s) = 1 if and only if s ∈ S or s−1 ∈ S. Furthermore, the only way in
which both s and s−1 can possibly occur in an expression for an S-word w, is if s ∈ S
and s−1 ∈ S.

http://www.sagemath.org
http://www.sagemath.org
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Figure 3: T -decomposition of DCay(S4; {(1234), (12), (134), (13)(24)})
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Example 2.2. Let G = S5 and S = {s1, s21, s2, s1s2} where s1 = (1234), s2 = (123).
The element g = (143) can be expressed as an S-word of size 3, e.g., g = s1(s1s2)

−1s2,
and an S-word of size 2, e.g., g = (s1s2)s1. Because g−1 /∈ S, we have ˜̀

S(g) = 2.

The following definition provides a means to control, in some sense, how far a
subset can deviate from being “minimal.” This definition is crucial to the rest of this
article, and is buttressed with numerous examples.

Definition 2.3. A set S is (k, t)-word degenerate if S contains exactly t elements,
s1, . . . , st such that, for each i ∈ {1, . . . , t}, ˜̀

U(si) < k where U = S − {si}. These t
elements are called degenerate elements of S.

Example 2.4. The connection set S = {(1234), (12), (134), (13)(24)} of S4 in Fig-
ure 3 is (3, 3)-word degenerate. In this case, the degenerate elements are (1234), (12),
and (134), each having length two. Note, ˜̀

S((13)(24)) = 3.

By definition, if S is (k, t)-word degenerate, then 2 ≤ k ≤ |S| and either t = 0 or
2 ≤ t ≤ |S|, because a (k, 1)-word degenerate set cannot exist. Clearly if S is a (k, t)-
word degenerate set and k > t, then S is also a (k − i, t)-word degenerate set for all
i ∈ {1, . . . , k − t}. Similarly, if S is a (k, |S|)-word degenerate set, and k < |S|, then
S is also a (k+i, |S|)-word degenerate set for all i ∈ {1, . . . , |S|−k}. If ˜̀

U(s) <∞ for
all s ∈ S, then S is automatically (|S|, |S|)-word degenerate. Note an (|S|, 0)-word
degenerate set is necessarily inverse-free and if S is (k, 2)-word degenerate, then the
degenerate elements are the noninvolutions a and a−1. Naturally, if S is a (2, t)-word
degenerate set, then t must be even.

It is worth noticing that if S is a minimal generating set of G , then S is (|S|, 0)-
word degenerate. The converse is false, as the following example shows.

Example 2.5. Let G = S7 and S = {s1, s2, s3, s4, s5} where s1 = (123), s2 =
(415), s3 = (124), s4 = (126)(53), and s5 = (162). S is neither minimal (e.g.,
s5 ∈ 〈{s1, s2, s3, s4}〉) nor square-independent (see Definition 2.13) (e.g., s5 = s24s3).
It was verified using [11] that ˜̀(si) = ∞ for all i ∈ {1, . . . , 5}. Therefore, S is a
(5, 0)-word degenerate set.

Example 2.6. Let G = S5 and S = {s1, s2, s3, s4, s5} where s1 = (1234), s2 = (12),
s3 = (134)(25), s4 = s21, and s5 = s1s2. Clearly, S is neither minimal nor square-
independent (see Definition 2.13). It was verified using [11] that ˜̀(s1) = ˜̀(s2) =
˜̀(s5) = 2, ˜̀(s3) = ∞, and ˜̀(s4) = 3. Therefore, S is a (5, 4)-word degenerate set, a
(4, 4)-word degenerate set, a (3, 3)-word degenerate set, and a (2, 0)-word degenerate
set. If s6 = (134), then {s1, s2, s4, s5, s6} is a (3, 5)-word degenerate set because
˜̀(si) = 2 for all i ∈ {1, 2, 4, 5, 6}.

Definition 2.7. A directed star forest is a directed forest whose components are
directed star graphs. If T is a directed tree, then a directed spanning star forest
(SSF) of T is a spanning subgraph F that is a directed star forest. An SSF of T is
minimal, denoted MSSF if it contains the minimum number of star components out
of all SSFs of T .
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Proposition 2.8. Any directed minimal spanning star forest of a directed tree T
contains the maximum number of arcs out of all directed spanning star forests of T .
In particular, all minimal spanning star forests contain the same number of arcs.

Proof. Let |V (T )| = m so |E(T )| = m − 1. Suppose that F = (V,EF ) is an MSSF
of T and for each i ∈ {0, . . . ,m − 1}, let ci ≥ 0 denote the number of components
of F isomorphic to DK1,i. Let F ′ = (V,EF ′) be any SSF of T and for each i ∈
{0, . . . ,m − 1}, let di ≥ 0 denote the number of components of F ′ isomorphic to
DK1,i. By definition of F ,

n−1∑
i=0

ci ≤
n−1∑
i=0

di

Suppose that |EF | < |EF ′|, i.e.,

|EF | =
n−1∑
i=0

ici <
n−1∑
i=0

idi = |EF ′|

Then, because both F and F ′ are spanning subgraphs,

m =
n−1∑
i=0

(i+ 1)ci =
n−1∑
i=0

ici +
n−1∑
i=0

ci <
n−1∑
i=0

idi +
n−1∑
i=0

di =
n−1∑
i=0

(i+ 1)di = m

a contradiction. Therefore, |EF | ≥ |EF ′|.

Theorem 2.9 (Main Result). If T is any directed tree with m arcs and a mini-
mal spanning star forest F , and S is a (k, t)-word degenerate m-subset of G where
k ≥ diam(T ) and t ≤ |E(F )|, then X = DCay(G;S) is T -decomposable unless the
following are all true:

1. S is inverse-closed and involution-free;

2. T is an (α, β)-directed star (m = α + β);

3. The underlying graph of X does not have an α-factor.

Proof. We follow a similar technique as Fink [4]. Suppose V (T ) = {v1, . . . , vm+1}
and S = {s1, . . . , sm}. Let S ′ be the set of degenerate elements in S. Let N ⊆ E(F )
where |N | = t. Label N with the t degenerate elements in S ′ and label E(T ) \ N
with the m− t non-degenerate elements in S \S ′. This arc-labeling guarantees there
exist no semi-paths in T having length three or more whose arcs are labeled only
with degenerate elements. Define a vertex-labeling function ` : V (T )→ G as follows.
Root a vertex vr in T and let `(vr) = e, the identity in G. For any v ∈ V (T ) \ {vr},
let Pv = vi1 , vi2 , . . . , vih+1

be the unique semi-path in T with initial vertex vi1 = vr
and terminal vertex vih+1

= v. Let Sv be the sequence of arc labels on consecutive
arcs along Pv,

Sv = [si1 , si2 , . . . , sih ]



M.F. CASTLE ET AL. /AUSTRALAS. J. COMBIN. 61 (1) (2015), 82–97 90

where the arc joining vij and vij+1
is labeled with sij for all j ∈ {1, . . . , h}. Then

define

`(v) =
h∏
j=1

stijwhere

{
t = 1 if (vij , vij+1

) ∈ E(T )

t = −1 if (vij+1
, vij) ∈ E(T )

The vertices and arcs of T have been labeled with elements of G and S respectively,
and each vertex of T is an S-word.

Claim 1: The labeling ` is one-to-one if and only if there exists no
directed 2-path (see Figure 4) labeled with a degenerate element and its
inverse.

Proof of Claim 1: Suppose that `(u) = `(v) for some u 6= v. Because e /∈ S, we
must have that u is not adjacent to v. Then

`(u) =

h1∏
j=1

stαj
=

h2∏
j=1

stβj = `(v)

where Su = [sα1 , . . . , sαh1
] and Sv = [sβ1 , . . . , sβh1 ]. Let w be the last vertex that

appears on both of the semi-paths Pu and Pv. There are three possibilities for w.

1. w = vr. In this case,

e =

(
h1∏
j=1

stαj

)−1( h2∏
j=1

stβj

)
so that e can be expressed as a word of size h1 + h2 ≤ diam(T ).

2. w 6= vr and w ∈ {u, v}. Without loss of generality, suppose that w = u. In
this case,

e =

h2∏
j=h1+1

stβj

so that e can be expressed as a word of size h2 − h1 ≤ diam(T ).

3. w 6= vr and w /∈ {u, v}. In this case,

`(w) =

h3∏
j=1

stαj

where 0 < h3 < min{h1, h2}. Therefore,

e =

(
h1∏

j=h3+1

stαj

)−1( h2∏
j=h3+1

stβj

)

so that e can be expressed as a word of size h1 + h2 − 2h3 ≤ diam(T ).
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Figure 4: The directed 2-path with degenerate element di from Claims 1 and 2.

In each of the expressions for e in cases (1)–(3) above, the elements in the prod-
uct are distinct, therefore each expression is an S-word of length at most diam(T ).
Furthermore, if sij is any factor in one of the three S-words for e above, sij may be
written as a product of at most diam(T ) − 1 others, so sij is degenerate. By the
definition of the arc-labeling of T , the length of the semi-path Pu,v from u to v must
equal two. Hence, up to isomorphism, Pu,v is one of the following cases (4)–(6):

4. Pu,v = u → z ← v, where (u, z) is an a-arc and (v, z) is a b-arc. Without loss
of generality, either w = u or w = z. In that former case, ab−1 = e, and in the
latter case a−1 = b−1, both contradictions to a 6= b.

5. Pu,v = u ← z → v, where (z, u) is an a-arc and (z, v) is a b-arc. Without loss
of generality, either w = u or w = z. In that former case, a−1b = e, and in the
latter case a = b, both contradictions to a 6= b.

6. Pu,v = u→ z → v, where (u, z) is an a-arc and (z, v) is a b-arc. Either w = u,
w = v, or w = z. In first case, ab = e, in the second case, b−1a−1 = e, and in
the third case, a−1 = b. Either way, b = a−1.

Therefore, the only possibility for Pu,v is Case (6), which is isomorphic to Figure 4.
This establishes that Claim 1 is true.

Claim 2 : There exists a permutation of the arc-labels of T such that `
is one-to-one.

Proof of Claim 2: If ` is not one-to-one, then by Claim 1, there exists at least
one directed 2-path of the form shown in Figure 4. Let D = {d1, . . . , dq} be an
inverse-free subset of S ′ consisting of all degenerate elements di such that for each
i ∈ {1, . . . , q}, there exists a directed 2-path in the arc-labeled tree T where (vi1 , vi2)
is a di-arc and (vi2 , vi3) is an d−1i -arc (see Figure 4). Note that these degenerate-
labeled directed 2-paths must occur on arcs in N ⊆ E(F ) originally, i.e., arcs on
directed stars. Hence for each i ∈ {1, . . . , q}, the vertex vi2 is always the center of
a star in F and the unique di-arc is directed inward to the center vertex of the star
and the unique d−1i -arc is directed outward away from the center vertex of the star.
Let y ∈ Z+.

Case 1 (q = 2y): Apply the arc label permutation

σ = (d1, d
−1
2 , d3, d

−1
4 , . . . , d−12y )

to N ⊆ E(T ). For each i ∈ {1, . . . , q} if i is odd (see Figure 5), then both the di-arc
and the d−1i -arc are oriented away from the center of the corresponding star and if i
is even (see Figure 6), then both the di-arc and the d−1i -arc are oriented towards the
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Figure 5: The effect of applying σ when i is odd.

Figure 6: The effect of applying σ when i is even.

center of any corresponding star(s). This is true regardless of whether v(i−2)2 = vi2
for some i or not. Hence by Claim 1, the new vertex-labeling ` will be one-to-one
and so Claim 2 has been proven.

Case 2 (q = 2y + 1): Apply the arc label permutation

τ = (d1, d
−1
2 , d3, d

−1
4 , . . . , d−12y , d2y+1)

to N ⊆ E(T ). Clearly, τ agrees with σ except for τ(d−12y ) and τ(d2y+1). Similar
to Claim 2 Case 1 (see Figures 5 and 6) for each i ∈ {2, . . . , q}, the di-arc and
the d−1i -arc are both oriented away from or both oriented towards the center of any
corresponding star(s), depending on the parity of i. This is regardless of whether
v(i−2)2 = vi2 for some i or not. However by Claim 1 and Figure 7, a duplicate vertex
labeling will exist if and only if v12 = v(2y+1)2 . Let F1

∼= DK1,n1 , where n1 ≥ 2 be the
component of F which contains v12 . In this case, τ produces an arc-labeling of F1

such that the d1-arc is oriented towards the center vertex and the d−11 -arc is oriented
away from the center vertex. Furthermore, this is the only directed 2-path of the
form shown in Figure 4 in F . We consider three cases:

(a) F contains at least one component other than F1 that is not an
isolated vertex: Let F2

∼= DK1,n2 where n2 ≥ 1 be the component prescribed.
Let g be the label of a fixed arc on F2. If g 6= d2y+1, then transpose the labels
g and d1. If g = d2y+1, then transpose the labels g and d−11 .

(b) All components of F other than F1 are isolated vertices: Let u be an
isolated vertex in F . By the minimality of F , there exists no arc between u
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Figure 7: The effect of applying τ when q = 2y + 1.

and the center vertex of F1. Therefore, in T , there exists a g-arc between u
and a leaf v of F1. Note g is not a degenerate element. Let g′ be the label of
the arc in F1 that is incident with the g-arc in T . If g′ 6= d−11 , then transpose
the labels g and d1. If g′ = d−11 , then transpose the labels g and d−11 .

(c) F is connected: Clearly, T = F = F1.

i. If there exists g ∈ S such that either g = g−1 or g−1 /∈ S, then transpose
the labels d1 and g if the g-arc is oriented away from the center vertex of
T , and transpose the labels d−11 and g otherwise.

ii. S is involution-free, inverse-closed, and thus every element is degenerate.
T is an (α, β)-directed star, where α + β = m and q ≤ min{α, β}. If
the underlying graph of X has an α-factor, we are done by Corollary 1.9.
Otherwise, this is the exceptional case of the hypothesis.

Clearly, there now exist no directed 2-paths labeled with a degenerate element
and its inverse. Therefore, this establishes that Claim 2 is true.

At this point, T can be viewed as a subgraph of DCay(G;S). Finally, we show
that the automorphism φg(v) = gv induces a decomposition of X into copies of T .
For g ∈ G, let

gT = {φg(`(v)) : v ∈ V (T )}

denote the image of the subgraph T of X under the natural action of φg. Each arc of
gT is the unique si-arc in gT . It remains to show that gT and hT are arc-disjoint for
all g 6= h. Suppose to the contrary that e1 = (x, xsi) is an si-arc that appears in both
E(gT ) and E(hT ). Because φg is an automorphism, e1 is the unique si-arc in gT and
hT , respectively. Hence, φg(e1) = φh(e1) so that (gx, g(xsi)) = (hx, h(xsi)). Since
the orientation of the arc remains the same it follows that gx = hx, a contradiction
to g 6= h. Hence the orbit of T under that left action of G, {gT : g ∈ G} is an
arc-decomposition of X into copies of T .

Example 2.10. Let G = S8 and S = {s1, s2, s3, s4, s5, s6, s7} where s1 = (1234),
s2 = (12), s3 = (134), s4 = s21, s5 = (452), s6 = (153), and s7 = (67). It was
verified using [11] that ˜̀(s1) = ˜̀(s2) = ˜̀(s3) = ˜̀(s5) = 2, ˜̀(s4) = 3, ˜̀(s6) = 4,
and ˜̀(s7) = ∞. Therefore, S is a (4, 5)-word degenerate set. (It is also a (6, 6)-, a
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Figure 8: A directed tree T with spanning star forest with 3 components, isomorphic
to directed stars DK1,3, DK1,2, and DK1,0 from Example 2.10.

Figure 9: Arc-labeling T with degenerate elements (in red) and non-degenerate ele-
ments (in blue) of S from Example 2.10.

Figure 10: The vertex-labeling ` : V (T )→ S8 of T from Theorem 2.9 where `(v2) =
(1) = e. The S8-valuation of T provides an embedding into Cay(S8;S) whose orbit
decomposes the directed Cayley graph.

(5, 6)-, a (3, 4)-, and a (2, 0)-word degenerate set, but we shall focus on k = 4 and
t = 5.) Consider the directed tree in Figure 8 with a minimal spanning star forest
F having three components isomorphic to directed stars: DK1,3, DK1,2, DK1,0.
Consider the directed 7-regular Cayley graph X = DCay(S8;S) of order 8!. Note X
is disconnected, and S is not minimal. As diam(T ) ≤ 4 = k and |E(F )| ≥ 5 = t and
St = {s1, s2, s3, s4, s5} are the degenerate elements of S, we may label E(F ) with St,
and remaining edges with S \ St = {s5, s6} as shown in Figure 9. Root v2 and label
`(v2) = (1). The vertex labeling defined in Theorem 2.9 is shown in Figure 10.

As any minimal generating set S is necessarily (|S|, 0)-word degenerate, we obtain
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Fink’s result, Theorem 1.10 as a corollary.
If diam(T ) ≥ 3, we have a simpler statement.

Corollary 2.11. Let T be a directed tree with m arcs and a minimal spanning star
forest F . If S is a (k, t)-word degenerate m-subset of G where k ≥ diam(T ) ≥ 3 and
t ≤ |E(F )|, then DCay(G;S) is T -decomposable.

The following corollary ties the matching number of the tree to the number of
degenerate elements allowed in the connection set.

Corollary 2.12. If T is any directed tree with m arcs, and S is (k, t)-word degenerate
m-subset of G, where k ≥ diam(T ) ≥ 3 and t ≤ ν(T ), the matching number of T ,
then DCay(G;S) is T -decomposable.

Proof. If M = (VM , EM) is a maximum matching in T having |EM | = ν(T ) arcs,
then V (T ) \ VM is an independent set of vertices. Therefore, we may identify M
with a directed spanning star forest consisting of c1 = ν(T ) components of the form
DK1,1 and c0 components of the form DK1,0. By Proposition 2.8 and Theorem 2.9
the result is established.

We briefly discuss the undirected case. In 2000, El-Zanati et al., verified that
certain undirected Cayley graphs of even order are decomposable into trees with
twice as many edges as prescribed by Ringel. The following technical definition
implies that no element of the connection set can be expressed as a distinct product
of powers from {−2,−1, 0, 1, 2} of the remaining elements.

Definition 2.13 (El-Zanati et al. [3]). A subset S = {s1, . . . , sm} of a group G is
square-independent if for any sj ∈ S

sj 6=
∏
i∈Nj

s±1,2,0σ(i)

where Nj ⊆ {1, . . . ,m} \ {j} and σ ∈ Sym(Nj).

Theorem 2.14 ([3]). Let G be a finite group and H be a subgroup of index two. If
S ⊂ G−H is square-independent, containing n1 non-involutions and n2 involutions,
and T is any tree with 2n1 + n2 edges, then Cay(G;S) has a T -decomposition into
|G|/2 copies of T .

It should be noted that every square-independent subset S is necessarily (|S|, 0)-
word degenerate. This provides a simple directed analogue of Theorem 2.14:

Theorem 2.15. If S is a square-independent m-subset of a finite group G, and T
is any directed tree with m arcs, then DCay(G;S) is T -decomposable.

From the definition, the projection graph of DCay(G;S) is exactly Cay(G;S).
If X = DCay(G;S) is m-regular and S is inverse-free and involution-free, then the
projection graph of X and the underlying graph of X are equal and are 2m-regular.
This implies the following proposition and corollary.
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Proposition 2.16. If S is involution-free and inverse-free, and DCay(G;S) is T -
decomposable into |G| copies of the directed tree T with |S| arcs, then Cay(G;S) is
T ′-decomposable into |G| copies of the underlying graph T ′ of T .

Corollary 2.17. If S is involution-free and is (|S|, 0)-word degenerate, and T is any
tree with |S| edges, then Cay(G;S) is T -decomposable.

Proof. If S is (|S|, 0)-word degenerate, then S is necessarily inverse-free, hence ex-
ceptional Case (2) of the statement of Theorem 2.9 does not occur. The underlying
graph of X = DCay(G;S) is just X ′ = Cay(G;S). By Theorem 2.9, X is T -
decomposable where T is any directed tree on |S| edges and the result follows from
Proposition 2.16.

3 Concluding Remarks

The concept of “word-degeneracy,” though somewhat technical, proved to be a use-
ful mechanism for gradually loosening the reigns on minimality of the connection
set S. We have proved that the family of directed Cayley graphs which are tree-
decomposable is much larger than the original result of Fink by simply saturating
the arcs of a minimal spanning star forest with degenerate element labels. This is
a considerable contrast to the Hamilton decomposition problem for Cayley graphs,
which is resolved for minimal or strongly-minimal connection subsets of Abelian
groups (see Liu [6, 7]), but remains very open when minimality is even slightly re-
laxed. Two natural questions to investigate regarding Question 1.6 and the concept
of (k, t)-word degenerate are (1) how small can we make k with a fixed t and (2)
how large can we make t with a fixed k? It seems that these methods could possibly
be translated to the vertex-transitive graphs though the arc- and vertex-labelings as
well as the action of automorphisms on the tree may prove quite difficult to obtain.
Word-degeneracy may also prove useful in different types of decomposition problems
for Cayley graphs and digraphs.

The authors thank Saad El-Zanati for introducing them to the general problem
and for personal communication throughout. The authors also thank the referees for
helpful suggestions that enhanced the quality of this article.
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