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Abstract

In this note we consider completions of n×n symmetric (0,−1)-matrices
to symmetric alternating sign matrices by replacing certain 0s with +1s.
In particular, we prove that any n×n symmetric (0,−1)-matrix that can
be completed to an alternating sign matrix by replacing some 0s with
+1s can be completed to a symmetric alternating sign matrix. Similarly,
any n × n symmetric (0, +1)-matrix that can be completed to an alter-
nating sign matrix by replacing some 0s with −1s can be completed to a
symmetric alternating sign matrix.

1 Introduction

An alternating sign matrix, abbreviated ASM, is an n × n (0, +1,−1)-matrix such
that, ignoring 0s, in each row and column, the +1s and −1s alternate, beginning and
ending with a +1. An ASM cannot contain any −1s in rows 1 and n and columns
1 and n. The book [1] by Bressoud contains a history of the development of ASMs.

∗ Research performed while on leave as an Honorary Fellow at University of Wisconsin-Madison.
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In [2], there is an investigation of the zero-nonzero patterns of ASMs. The paper [3]
considers the problem of completing a (0,−1)-matrix to an ASM by replacing some
0s with +1s. Each row and column of an ASM contains an odd number of nonzeros
with the first and last rows and columns each containing exactly one nonzero and
that nonzero is a +1. If an ASM (regarded as a square) is subjected to any of the
symmetries of a square (the dihedral group), the result is also an ASM.

The simplest examples of ASMs are the permutation matrices. Other examples
of ASMs are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1 −1 +1
+1 −1 +1 −1 +1

+1 −1 +1
+1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(For visual clarity, we usually block off rows and columns and then suppress the 0s
in (0, +1,−1)-matrices.)

Our emphasis in this note is on combinatorial properties of symmetric ASMs, of
which the preceding two ASMs are examples. Given an n× n (0,−1)-matrix A, any
matrix B obtained from A by replacing some 0s by +1s is a (+1)-completion of A; if
B is an ASM, then B is called a (+1)-completion of A to an ASM or an ASM (+1)-
completion of A. In [3] ASM (+1)-completions of (0,−1)-matrices (called, simply,
ASM completions) were investigated with an emphasis on the so-called bordered-
permutation (0,−1)-matrices. By an n × n bordered-permutation (0,−1)-matrix A
we mean an n × n (0,−1)-matrix such that the first and last rows and columns
contain only zeros, and the submatrix A[{2, 3, . . . , n− 1}|{2, 3, . . . , n− 1}] obtained
by deleting rows and columns 1 and n is −P where P is a permutation matrix. Here
we consider (+1)-completions of symmetric (0,−1)-matrices to symmetric ASMs.

We also consider here completions of an n × n (0, +1)-matrix A to ASMs by
replacing some 0s with −1s. We call these ASM (−1)-completions . In order that
A has an ASM (−1)-completion, it is necessary that there be at least one +1 in
each row and column, only one +1 in the first and last rows and columns, and no
consecutive +1s in a row or column.
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Example 1 Let A be the symmetric bordered-permutation (0,−1)-matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1

−1
−1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then it is straightforward to check that A has a unique (+1)-completion to an ASM
and this (+1)-completion is symmetric:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand, the symmetric (0,−1)-matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1 −1

−1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

does not have a (+1)-completion to an ASM; it suffices to examine rows 1, 2, and 3.

Example 2 Consider the 7 × 7 symmetric (0, +1)-matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1

+1 +1
+1 +1

+1 +1
+1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The −1s in any (−1)-completion of A to an ASM must be in the shaded positions.
Any (−1)-completion of A must have three −1s. There are three (−1)-completions
of A, namely, as given below, the matrix A′ and its transpose, and the symmetric
matrix A′′:

A′=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A′′=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In [3] it was shown that every bordered-permutation (0,−1)-matrix can be (+1)-
completed to an ASM. We first show that every n × n symmetric bordered-permut-
ation (0,−1)-matrix can be (+1)-completed to a symmetric ASM and obtain a bound
on the number of such (+1)-completions. There is not an analogue of this result for
(−1)-completions, since a permutation matrix is already an ASM. Our main results
are that (i) if a symmetric (0,−1)-matrix has an ASM (+1)-completion, then it also
has a symmetric ASM (+1)-completion, and (ii) if a symmetric (0, +1)-matrix has
an ASM (−1)-completion, then it also has a symmetric ASM (−1)-completion.

2 Symmetric ASM Completions

Theorem 3 Let A = [aij ] be an n × n symmetric bordered-permutation (0,−1)-
matrix. Then A has a (+1)-completion to a symmetric ASM.

Proof. This theorem will follow from Theorem 7 and the theorem in [3] that every
bordered-permutation (0,−1)-matrix can be (+1)-completed to an ASM. We give a
short independent proof.

We use induction on n. The theorem is trivial if n = 2 or 3. Let n ≥ 4. Let k be
such that a2k = ak2 = −1. Let A′ = A(2, k|2, k) be the symmetric matrix obtained
from A by deleting rows and columns 2 and k. (This matrix is (n − 1) × (n − 1) if
k = 2 and (n−2)×(n−2) otherwise.) We use for the indices of the row and columns
of A′ the same indices they had in A; thus the index set for rows and columns of
A′ is {1, 2, . . . , n} \ {2, k}. By induction A′ has a (+1)-completion B′ = [b′ij ] to a
symmetric ASM. Let r be such that b′1r = b′r1 = +1.

If r > k, let s be the first integer such that b′s,k−1 = b′k−1,s = +1. We then let B
be the matrix which has +1s in all other positions that B′ has +1s except for the
positions (1, r), (r, 1), (s, k− 1), and (k− 1, s) and, in addition, has +1s in positions
(1, k), (k, 1), (2, k − 1), (k − 1, 2), (2, r), (r, 2), (s, k), (k, s). Then B is a symmetric
ASM (+1)-completion of A.
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If r < k, let s be the first integer such that b′s,k+1 = b′k+1,s = +1. We then let B
be the matrix which has +1s in all other positions that B′ has +1s except for the
positions (1, r), (r, 1), (s, k + 1), and (k + 1, s) and, in addition, has +1s in positions
(1, k), (k, 1), (2, k + 1), (k + 1, 2), (2, r), (r, 2), (s, k), (k, s). Then B is a symmetric
ASM (+1)-completion of A. �

We give an example illustrating the inductive proof of Theorem 3.

Example 4 In this example, n = 8 and with the above notation, k = 4, r = 6, and
s = 5. Let

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1

−1
−1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→A′=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
−1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then, where we have included the row and column indices for clarity, we have

B′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 5 6 7 8

1 +1
3 +1 −1 +1
5 +1 −1 +1
6 +1 −1 +1
7 +1 −1 +1
8 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8

1 +1
2 +1 −1 +1
3 +1 −1 +1
4 +1 −1 +1
5 +1 −1 +1
6 +1 −1 +1
7 +1 −1 +1
8 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If A is a symmetric (0,−1)-matrix, then πs(A) denotes the number of (+1)-
completions of A to a symmetric ASM. By Theorem 3, if A is also a bordered-
permutation (0,−1)-matrix, then πs(A) ≥ 1. We now give an upper bound for πs(A)
in general.
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Theorem 5 Let A = [aij ] be an n × n bordered symmetric (0,−1)-matrix such that
A has a −1s on the main diagonal and 2b −1s off the main diagonal. Then

πs(A) ≤ 1

2a+b

�n/2�∑
k=0

n!

2k(n − 2k)!k!
. (1)

(The number
∑�n/2�

k=0
n!

2k(n−2k)!k!
is the number of n×n symmetric permutation matrices

[5, p. 218].)

Proof. Let k be the maximum index of a row of A with a −1, and let l be the
maximum index of a column with a −1 in row k. Thus akl = alk = −1 and we
let B = [bij ] be the symmetric matrix obtained from A by replacing akl and alk

with 0s. We show that πs(A) ≤ πs(B)
2

by establishing, when πs(A) �= 0, a one-to-
two correspondence from the set Cs(A) of symmetric ASM (+1)-completions of A
to the set Cs(B) of symmetric ASM (+1)-completions of B. We consider two cases
depending on whether k �= l or k = l.

Case 1 (k �= l): Let A′ = [a′
ij ] ∈ Cs(A). There exists l′ > l such that a′

kl′ = +1. We
choose l′ to be the smallest such integer so that a′

kp = 0 for all p with l < p < l′.
There also exists k′ > k such that a′

k′l = +1, and we choose k′ to be the smallest
such integer so that a′

ql = 0 for all q with k < q < k′. We then define B′ = [b′ij ] to be
the matrix obtained from A′ by replacing a′

kl, a
′
k′l, a

′
kl′, and also a′

lk, a
′
lk′, a′

l′k, with 0s,
and replacing a′

k′l′ and a′
l′k′ (both of which must equal 0) with +1s. The matrix B′ is

an ASM (+1)-completion of B, and the map f : Cs(A) → Cs(B) given by A′ → B′ is
injective. In a similar way by choosing the first +1 to the left of a′

kl = −1 we obtain
another injective map g : Cs(A) → Cs(B). We have that g(Cs(A)) ∩ f(Cs(A)) = ∅.
Thus, in the case that k �= l, each (+1)-completion of A gives two (+1)-completions
of B.

Case 2 (k = l): Thus akk = −1 and the principal submatrix A[k, k + 1, . . . , n|k, k +
1, . . . , n] of A determined by rows and columns k, k + 1, . . . , n has a unique −1 and
this −1 is in its (1, 1)-position. Let A′ = [a′

ij ] ∈ Cs(A). In A′ there is a unique +1 to
the right of a′

kk = −1, say in column r and a unique +1 below it, so in row r. The
principal submatrix A′[k, k+1, . . . , n|k, k+1, . . . , n] of A is a symmetric permutation
matrix with an additional −1 in its (1, 1)-position. Let B′ be the matrix obtained
from A′ by replacing a′

kk = −1, akr = +1, a′
rk = +1 with 0s and replacing arr = 0

with +1. Then B′ is an ASM (+1)-completion of B. In a similar way, we determine
in A′ the largest integer p with p < k such that akp = +1, and thus apk = +1.
Let B′ be the matrix obtained from A′ by replacing a′

kk = −1 with +1, replacing
akp = akr = ark = apk = +1 with 0s, and replacing a′

rp = a′
pr = 0 with +1. Then B′ is

an ASM (+1)-completion of B. As before we have two injections of Cs(A) into Cs(B)
with disjoint images, and thus each (+1)-completion of A gives two (+1)-completions
of B.

Iterating the above, we see that πs(A) ≤ πs(C)
2a+b where C is the n× n zero matrix.
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The number of ASM (+1)-completions of C is the number of symmetric permutation
matrices, and the theorem now follows. �

We note that equality occurs in (1) if A = O.

In the proof of the next theorem we shall make use of an idea from [3]. Let A be
an n × n (0,−1)-matrix and assume that A can be (+1)-completed to an ASM. Let
σ(A) equal the number of −1s in A. Let Z ⊆ {1, 2, . . . , n} × {1, 2, . . . , n} be the set
of zero positions of A. The −1s of A partition Z into two families of (n+σ(A)) sets,
the horizontal partition H(A) = (Hi : 1 ≤ i ≤ n+σ(A)), consisting of the horizontal
blocks, and the vertical partition V(A) = (Vi : 1 ≤ i ≤ n + σ(A)), consisting of the
vertical blocks. These are defined as follows: If there are ci ≥ 0 −1s in row i of A, then
row i determines the ci+1 horizontal blocks consisting of those positions occupied by
the 0s to the left of the first −1, in-between two consecutive −1s, and to the right of
the last −1. The vertical blocks are defined in a similar way. Included in H(A) is the
set of n positions in the first row and the set of n positions in the last row. Included
in the vertical partition V(A) is the set of n positions in the first column and the set
of n positions in the last column. Each Hi ∈ H(A) and each Vj ∈ V(A) intersect in
at most one element of Z. The bipartite graph G(A) ⊆ Kn+σ(A),n+σ(A) with vertex
bipartition H(A),V(A) has an edge joining Hi ∈ H(A) and Vj ∈ V(A) if and only if
Hi ∩ Vj �= ∅ (and thus |Hi ∩ Vj| = 1). As observed in [3], the matrix A has an ASM
(+1)-completion if and only if the bipartite graph G(A) has a perfect matching; more
specifically, if ({Hi, Vθ(i)} : 1 ≤ i ≤ n + σ(A)) is a perfect matching of G(A), where
θ is a permutation of {1, 2, . . . , n + σ(A)}, then a (+1)-completion of A to an ASM
is obtained by replacing the 0s in A in the positions {Hi ∩ Vθ(i) : 1 ≤ i ≤ n + σ(A)}
with +1s.

Now suppose that A is an n × n symmetric (0,−1)-matrix. Then there is a
bijection between H(A) and V(A) defined by Hi → Vi where Vi = {(s, r) : (r, s) ∈ Hi}
(i = 1, 2, . . . n + σ(A)). With subscripts for the blocks in H(A) and V(A) as in this
bijection, we have that Hi ∩ Vj �= ∅ if and only if Hj ∩ Vi �= ∅ (1 ≤ i, j ≤ n + σ(A)).
Thus the (n+σ(A))× (n+σ(A)) biadjacency matrix C = [cij] of the bipartite graph
G(A) is symmetric and can be viewed as the adjacency matrix of a loopy graph G∗(A)
with vertex set u1, u2, . . . , un+σ(A) (ui corresponds to both Hi and Vi) whose edges
are all those pairs {ui, uj} such that Hi ∩ Vj �= ∅ (equivalently, Hj ∩ Vi �= ∅). (G∗(A)
may have loops since it is possible that for some i, Hi ∩ Vi �= ∅ giving a loop at ui,
and thus we use the common term of loopy graph.) A perfect matching of a loopy
graph is a collection of pairwise disjoint edges (possibly including loops) such that
each vertex occurs on exactly one edge. Such a perfect matching corresponds to a
symmetric permutation matrix P such that P ≤ C (entrywise). A perfect matching
determines positions of A in which to put +1s in order to get a (+1)-completion of
A to a symmetric ASM.
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Example 6 Let n = 5 and consider the symmetric (0,−1)-matrix

A =

⎡
⎢⎢⎢⎢⎣

−1
−1

−1

⎤
⎥⎥⎥⎥⎦

where σ(A) = 3. Then the loopy graph G∗(A) has 8 vertices and its adjacency matrix
C (as usual, only the 1s are shown) is

C =

u1 u2 u3 u4 u5 u6 u7 u8

u1 1 1 1 1 1
u2 1 1
u3 1 1
u4 1
u5 1 1 1
u6 1 1 1
u7 1
u8 1 1 1 1 1

.

The loopy graph G∗(A) has a perfect matching (corresponding to the shaded 1s),
equivalently, there exists a symmetric permutation matrix Q ≤ C (entrywise), and
hence there exists a (+1)-completion of A to a symmetric ASM, namely⎡

⎢⎢⎢⎢⎣
+1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1

⎤
⎥⎥⎥⎥⎦ .

Theorem 7 Let A be an n×n symmetric (0,−1)-matrix that has a (+1)-completion
to an ASM. Then A has a (+1)-completion to a symmetric ASM.

Proof. Let the n × n matrix B = [bij ] be an ASM (+1)-completion of A and let

q(B) =
n∑

i=1

n∑
j=1

|bij − bji|.

Then q(B) is an even integer which counts the number of positions (i, j) with i �= j
such that bij + bji = 1. If q(B) = 0, then B is a symmetric ASM (+1)-completion
of A. Suppose that q(B) �= 0. Since B is an ASM (+1)-completion of A, the +1s of
B determine a perfect matching M of the bipartite graph G(A). We consider those
q(B)/2 edges {Hi, Vj} of M such that the position (p, q) of A in their intersection
Hi ∩Vj contains a +1 but there is not a +1 in position (q, p) of A in the intersection
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Hj ∩ Vi (so there is a +1 in the unique position in Hj ∩ Vk for some k �= j). These
q(B)/2 edges determine an asymmetric digraph D (an orientation of a graph), whose
vertex set is {u1, u2, . . . , un+σ(A)}, with no loops and at least one edge, such that any
vertex with positive indegree also has positive outdegree, and vice-versa. Thus D
has a directed cycle

γ : ui1 → ui2 → · · · → uik → ui1

of length k ≥ 2.

First suppose that the length k of γ is even. Then we obtain a new (+1)-
completion B′ of A to an ASM by replacing with 0s, the +1s in positions Hi1 ∩
Vi2 , Hi3 ∩ Vi4 , . . . , Hik−1

∩ Vik , and by replacing with +1s, the 0s in positions Hi3 ∩
Vi2 , Hi5 ∩ Vi4 , . . . , Hik−1

∩ Vik−2
, Hi1 ∩ Vik . Moreover, q(B′) < q(B).

Now suppose that k is odd. Then we claim that there is a vertex ur of the
cycle γ such that Hr ∩ Vr �= ∅, and thus Hr ∩ Vr = {(s, s)} for some s. If not,
then for each i, Hi consists of positions strictly above the main diagonal or else
positions strictly below the main diagonal. A similar conclusion holds for each Vi.
This implies that γ has even length, a contradiction. Thus we may assume that
Hi1 ∩ Vi1 = {(s, s)} and thus that the entry in B in position (s, s) is 0. Then we
obtain a new (+1)-completion B′ of A to an ASM by replacing the 0s in positions
Hi1 ∩ Vi1 , Hi3 ∩ Vi2 , Hi5 ∩ Vi4 , . . . , Hik ∩ Vik−1

with +1s and replacing the +1s in
positions Hi1 ∩Vi2 , Hi3 ∩Hi4 , . . . , Hik−2

∩Vik−1
, Hik ∩Vi1 with 0s. Again we have that

q(B′) < q(B). By repeating this argument, after a finite number of steps, we obtain
a symmetric (+1)-completion of A to an ASM. �

Another way to formulate Theorem 7 is: Let A be an n× n ASM whose −1s are
in a symmetric pattern. Then there is an n×n symmetric ASM B with −1s exactly
where A has −1s.

We now give two examples illustrating the argument in the proof of Theorem 7
in both the even cycle and odd cycle cases.

Example 8 Let A be the 7 × 7 symmetric (0,−1)-matrix and let B be the 7 × 7
(non-symmetric) (+1)-completion of A to an ASM as shown:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

−1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1 0

0 +1
0 +1 −1 0 +1

0 +1
+1 0 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The positions which are not symmetrically occupied are shaded.

Label the sets in H(A) in the order of the rows and from left to right, and label
the sets in V(A) in order of the columns and from top to bottom. Then the 10× 10
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biadjacency matrix C of the bipartite graph G(A) is

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1

0 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 0

0 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 0

1
1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The shaded positions, where we have also shaded the corresponding diagonal ele-
ments, determine a directed cycle of even length 6 given by

u3 → u5 → u4 → u7 → u6 → u8 → u3.

This directed cycle then determines the symmetric (+1)-completion of A to an ASM
given by

B′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1 0

0 +1
+1 0 −1 0 +1

+1 0
0 +1 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Example 9 Let A be the 9 × 9 symmetric (0,−1)-matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
−1

−1
−1

−1 −1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then A has a non-symmetric ASM (+1)-completion

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +1
+1 0

+1 −1 +1 −1 +1
+1 −1 0 +1

0 +1 −1 +1 0
+1 −1 +1

+1 0 −1 0 +1 −1 +1
+1 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the non-symmetric +1s and their symmetrically opposite 0s have been shaded.
Using the same labeling procedure as in Example 8, the digraph D for this example
has the directed cycle of length 3

u7 → u13 → u9 → u7

which, by using the fact that the entry in H9 ∩ V9 = {(5, 5)} is a 0, then gives the
symmetric ASM (+1)-completion of A

B′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +1
+1 0

+1 −1 +1 −1 +1
+1 −1 0 +1

0 +1 −1 0 +1 0
+1 −1 +1

+1 0 −1 +1 0 −1 +1
+1 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We now consider an n × n (0, +1)-matrix A with at least one +1 in each row
and column. In this case we consider the horizontal partition H+(A) = (H+

i : 1 ≤
i ≤ p) where the H+

i , taken in some order, consist of those positions between two
neighboring +1s in a row and, similarly, the vertical partition V+(A) = (V +

i : 1 ≤
i ≤ p) where the V +

i , taken in some order, consist of those positions between two
neighboring +1s in a column. As indicated, for the following reason, the number
of sets p in each of the two partitions is the same: Let the row sum vector of A
be (r1, r2, . . . , rn) and let the column sum vector be S = (s1, s2, . . . , sn). Then the
number of sets in the horizontal partition is

n∑
i=1

(ri − 1) =

(
n∑

i=1

ri

)
− n =

(
n∑

i=1

si

)
− n =

n∑
i=1

(si − 1),

the same as the number of sets in the vertical partition. Note that if a row (respec-
tively, column) of A contains only one +1, then none of the positions in that row
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(respectively, column) are in a set of the horizontal partition (respectively, vertical
partition). Let C = [cij] be the p × p (0, 1)-matrix where cij = 1 if and only if
H+

i ∩ V +
j �= ∅ (1 ≤ i, j ≤ p). The matrix C is the biadjacency matrix of a bipartite

graph BG(C) with vertices bipartitioned as {H+
i : 1 ≤ i ≤ p} and {V +

i : 1 ≤ i ≤ p}
with an edge joining H+

i and V +
j if and only if H+

i ∩ V +
j �= ∅ (and so consists of

a single posiition). There will be a (−1)-completion of A to an ASM if and only if
BG(C) has a perfect matching, equivalently, if and only if there is a permutation
matrix P ≤ C (entrywise).

If A is symmetric, then the matrix C is a symmetric (0, 1)-matrix, possibly with
1s on the main diagonal, and so is the adjacency matrix of a a loopy graph G(C).
There is a (−1)-completion of A to a symmetric ASM if and only if G(C) has a
perfect matching (that is, a pairwise disjoint collection of edges and loops meeting
all the vertices), that is, a symmetric permutation matrix P ≤ C (entrywise).

Theorem 10 Let A be an n×n symmetric (0, +1)-matrix that has a (−1)-completion
to an ASM. Then A has a symmetric (−1)-completion to an ASM.

Proof. The technique of the proof is identical to the technique used in the proof of
Theorem 7 and so is omitted. �

3 Coda

Let A be an n × n ASM. Then the row sum vector and the column sum vector of
A both equal the n-vector (1, 1, . . . , 1) of all 1s. Let patt(A) be the (0, 1)-matrix
obtained from A by replacing each entry with its absolute value. Then patt(A) is
the (combinatorial) pattern of A. Because of the alternating sign property of ASMs,
the pattern of an ASM uniquely determines the ASM. The pattern patt(A) of A has
a row sum vector R = (r1, r2, . . . , rn) and a column sum vector S = (s1, s2, . . . , sn)
and it is easy to verify [2] that

R, S ≤ (1, 3, 5, 7, . . . , 7, 5, 3, 1) (entrywise). (2)

Let ASM(R, S) denote the set of all ASMs whose pattern has row sum vector R and
column sum vector S. In a symmetric ASM the row sum vector of its pattern equals
its column sum vector. It is an open question to characterize R and S for which
ASM(R, S) �= ∅; the above conditions (2) are necessary but far from sufficient in
general [2]. Let ASMsym(R) denote the set of all symmetric ASMs whose patterns
have row sum vector, and hence column sum vector R. If an ASM A has a symmetric
pattern, then A is necessarily a symmetric ASM.

The following question is motivated by a theorem of Fulkerson, Hoffman, and
McAndrew (see [4] where their theorem is extended to include 1s on the main diag-
onal) who proved that if there is a (0, 1)-matrix with row and column sum vector R,
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then there is a symmetric (0, 1)-matrix with row sum vector, and hence column sum
vector, equal to R. We have been unable to answer the following ASM analogue of
this theorem.

Question: Let A be an n × n ASM whose pattern has row and column sum
vector equal to R. Is there a symmetric ASM whose pattern has row and column
sum vector equal to R?

Let A+ be the (0, 1)-matrix obtained from A by replacing the −1s with 0s. Then
A+ has row and column sum vector R+ for some R+. Let A− be the (0,−1)-matrix
obtained from A by replacing the +1s with 0s. Then A− has row and column sum
vector R− for some R−. By the above theorem, there exists a symmetric (0, 1)-matrix
B with row and column sum vector R+, and there exists a symmetric (0,−1)-matrix
C with row and column sum vector R−. We have R+ + R− = (1, 1, . . . , 1), but B
and C need not have disjoint patterns. However, even if they did, B + C need not
be an alternating sign matrix.
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