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Abstract

We study colourings of oriented graphs in which vertices joined by a di-
rected path of length two are assigned different colours. There are two
models, depending on whether adjacent vertices must also be assigned
different colours. In each case we describe a homomorphism model, a di-
chotomy theorem for the complexity of the problem of deciding whether
there exists such a colouring with a fixed number of colours, and a poly-
nomial time algorithm for determining the minimum number of colours
needed to colour a given multipartite tournament.

1 Introduction

In an oriented colouring of an oriented graph, colours are assigned to the vertices
so that two conditions are satisfied. First, adjacent vertices get different colours.
Second, the orientation of the arcs is respected in the sense that if there is an arc
from a vertex of colour r to a vertex of colour g, then there is no arc from a vertex
of colour g to a vertex of colour r. It follows that vertices joined by a directed path
of length two are assigned different colours.

Chen and Wang [6] were the first to explicitly define and study proper 2-dipath
colourings: proper colourings of oriented graphs in which vertices joined by a directed
path of length two are assigned different colours. They proved that any orientation
of a Halin graph admits such a colouring with at most seven colours, and this bound
is best possible. Our goal in this paper is to develop some basic theory of these
colourings, and the related type of colouring in which adjacent vertices may be
assigned the same colour, including a homomorphism model and complexity results.

Proper 2-dipath colourings are a special case of the more general concept of
L(p, q)-labellings. For integers p ≥ q ≥ 0, a k-L(p, q)-labelling of an oriented graph
G is an assignment of the colours 0, 1, . . . , k to the vertices of G so that adjacent
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vertices are assigned colours that differ in absolute value by at least p, and vertices
joined by a directed path of length two are assigned colours that differ in absolute
value by at least q. Hence, a proper 2-dipath k-colouring of an oriented graph G is
a (k − 1)-L(1, 1)-labelling of G. Adjacent vertices are assigned different colours, and
so are vertices joined by a directed path of length two.

Chang and Liaw were the first to study k-L(p, q)-labellings of oriented graphs [4].
Their focus was on k-L(2, 1)-labellings, as was that of other authors [3, 5, 7, 13]. The
corresponding problem for undirected graphs was introduced by Griggs and Yeh in
1992 [8] and has subsequently become an active area of research (see [2] for a survey).

Figure 1 gives an example showing that a 2-L(1, 1)-labelling – a proper 2-dipath
colouring – of an oriented graph G may not be an oriented colouring of G: the
orientation of the arcs need not be respected by the colour assignment. Goncalves,
Raspaud and Shalu define and study oriented k-L(p, q)-labellings [7]. These are
k-L(p, q)-labellings which are also oriented colourings.

0 1 2 0 1

Figure 1: A 2-L(1, 1)-labelling which is not an oriented colouring.

We also study colourings which are not proper: vertices joined by a directed path
of length two are assigned different colours, but adjacent vertices may be assigned the
same colour. These can also be seen as L(p, q)-labellings if the condition p ≥ q ≥ 0
is dropped from the definition. With that relaxation in mind, we define a 2-dipath
k-colouring of an oriented graph G to be a (k − 1)-L(0, 1)-labelling of G.

For the sake of simplicity, in (proper) 2-dipath k-colourings we typically use the
colours 1, 2, . . . , k rather than 0, 1, . . . , k − 1.

An oriented graph G is 2-dipath k-colourable if it admits a 2-dipath k-colouring,
and proper 2-dipath k-colourable if it admits a proper 2-dipath k-colouring. Since
every oriented graph G is (proper) 2-dipath |V (G)|-colourable, we can define the
2-dipath chromatic number of G, χ2(G), to be the smallest k such that G is 2-
dipath k-colourable and the proper 2-dipath chromatic number of G, χ′

2(G), to be
the smallest k such that G is proper 2-dipath k-colourable.

The parameters χ2 and χ′
2 are related.

Proposition 1.1 For an oriented graph G, χ2(G) ≤ χ′
2(G) ≤ 2χ2(G).

Proof. The first inequality is clear. To show χ′
2(G) ≤ 2χ2(G), consider a 2-dipath

k-colouring of G with k = χ2(G). For i = 1, 2, . . . , k, the subgraph of G induced
by the set of vertices assigned colour i may contain arcs, but not a directed path
of length two. For each i, recolour every vertex which is the head of an arc having
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both ends of colour i with the new colour i + k. The result of doing so is a proper
2-dipath (2k)-colouring of G. �

The remainder of this paper is organized as follows. Necessary definitions are
introduced in the next section, as are some preliminary results. In the subsequent
section, a homomorphism model and complexity results are given for 2-dipath colour-
ings. The homomorphism model is used to obtain an upper bound on the oriented
chromatic number, χo. A polynomial time algorithm for finding the 2-dipath chro-
matic number of a multipartite tournament is also described. The final section
contains similar results for proper 2-dipath colourings.

2 Preliminaries

The purpose of this section is to review some necessary concepts.

An oriented graph is a directed graph such that, for any two different vertices x
and y, at most one xy and yx is an arc. That is, it is a directed graph in which
there are no directed cycles of length two. An oriented graph can be viewed as being
obtained by assigning a direction to each edge of a simple undirected graph.

Let D = (V, E) be a directed graph. The out-neighbourhood of a vertex x is
N+(x) = {y : xy ∈ E}, and the in-neighbourhood of x is N−(x) = {y : yx ∈ E}.
The out-degree of the vertex x is d+(x) = |N+(x)|, and the in-degree of x is d−(x) =
|N−(x)|. We use δ+(G) to denote minx∈V d+(x), and δ−(G) to denote minx∈V d−(x).

The underlying undirected graph of a directed graph D is the graph U [D] with
vertex set V (U [D]) = V (D) and edge set E(U [D]) = {xy : xy ∈ E(D) or yx ∈
E(D)}. When graph terminology like ‘connected’ or ‘bipartite’ is used in reference
to a directed graph D, it should be understood to mean that U [D] has the given
property.

A homomorphism of a digraph G to a digraph H is a function f : V (G) → V (H)
such that f(x)f(y) ∈ E(H) whenever xy ∈ E(G). For ease of notation, we shall talk
about a homomorphism f : G → H , or a homomorphism G → H when the specific
function f is unimportant.

Homomorphisms and colourings are closely related. A k-colouring of a graph G
is a homomorphism G → Kk. An oriented k-colouring of an oriented graph G is
a homomorphism of G to some oriented graph on k vertices. Many other colour-
ing parameters admit a homomorphism model : a theorem stating that a (directed)
graph has a colouring of a given type if and only if it admits a homomorphism to a
(directed) graph in a certain family. A wealth of information about colourings and
homomorphisms is contained in the book by Hell and Nešetřil [10].

Let G be an oriented graph. Define the auxiliary graph, Aux (G) to be the undi-
rected graph with vertex set V (Aux (G)) = V (G) and xy ∈ E(Aux (G)) if and only
if the vertices x and y are joined by a directed path of length two in G. Further,
let G2 be the digraph obtained from G by adding the arc uv whenever u and v are
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joined by a directed path of length two in G.

Proposition 2.1 Let G be an oriented graph. There is a 1–1 correspondence between
the set of 1-dipath k-colourings of G and the set of k-colourings of Aux (G). There
is a 1 − 1 correspondence between the set of proper 2-dipath k-colourings of G and
the set of k-colourings U [G2].

Corollary 2.2 Let G be an oriented graph. Then χ2(G) = χ(Aux (G)) and χ′
2(G) =

χ(U [G2]).

Because of Corollary 2.2, bounds on χ2 and χ′
2 can be obtained from bounds on

χ(Aux (G)) and χ(U [G2]), respectively, for example using Brooks’ Theorem.

3 2-dipath colourings

The colourings considered in this section assign different colours to vertices joined by
a directed path of length two, but may assign the same colour to adjacent vertices.

3.1 Homomorphism model

We shall define a set of oriented graphs Gk, k ≥ 1, such that an oriented graph G
is 2-dipath k-colourable if and only if there is a homomorphism G → Gk. Similar,
but not identical, oriented graphs have been used by Sopena [14] in work on the
oriented chromatic number. The graph Gk has arisen in the study of injective oriented
colourings (e.g. see [12, 15]).

For an integer k ≥ 1, we define Gk to be the directed graph with vertex set

V (Gk) = {(u0; u1, u2, . . . , uk) : u0 ∈ {1, 2, . . . , k}, ui ∈ {+,−}, 1 ≤ i ≤ k}.
and edge set

E(Gk) = {(u0; u1, u2, . . . , uk)(x0; x1, x2, . . . , xk) : ux0 = +, xu0 = −}.
Note that, in the definition of E(Gk), the integers u0 and x0 may be equal. The
oriented graphs G1 and G2 are shown in Figure 2.

The integer u0 is the index of the vertex (u0; u1, u2, . . . , uk) ∈ V (Gk). For i =
1, 2, . . . , k, let Si be the set of vertices of index i. The underlying idea is that, for
j ≥ 1, the entry uj of (u0; u1, u2, . . . , uk) indicates the sort of adjacencies between
the vertex (i; u1, u2, . . . , uk) and vertices in Sj . When uj = + it is adjacent to some
vertices in Sj (namely those with i-th entry −), and when uj = − it is adjacent from
some vertices in Sj (namely those with i-th entry +). By definition, an arc has its
origin at vertex (i; u1, u2, . . . , uk) ∈ Si and terminus at vertex (j; v1, v2, . . . , vk) ∈ Sj

if and only if uj = + and vi = −. It follows that Gk is an oriented graph.

The oriented graph Gk has the following properties:
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Figure 2: The oriented graphs G1 and G2.

• |V (Gk)| = k · 2k,

• for all vertices v, deg+(v) + deg−(v) = k · 2k

2
= k · 2k−1,

• |E(G)| = 1
2
· (k · 2k) · (k · 2k−1) = k2 · 22k−2, and

• for 1 ≤ i ≤ k, the subdigraph induced by Si is a bipartite tournament for which
there is bipartition (Ai, Bi) such that all arcs have their origin in Ai.

Lemma 3.1 There is a directed path of length two in Gk joining the vertices (i; u1,
u2, . . . , uk) and (j; v1, v2, . . . , vk) if and only if k ≥ 2, i �= j, and there exists � ≥ 1
such that u� �= v�.

Proof. (⇒) Without loss of generality, suppose that there is a directed path of
length two in Gk from (i; u1, u2, . . . , uk) to (j; v1, v2, . . . , vk). Then there is a vertex
(�; w1, w2, . . . , wk) such that u� = +, wi = −, wj = + and v� = −. In particular,
i �= j, so that k ≥ 2, and u� �= v�.

(⇐) Suppose that i �= j and there exists � such that u� �= v�. Without loss of
generality, u� = +, and v� = −. Then, any vertex (�; w1, w2, . . . , wk) such that wi = −
and wj = + is the midpoint of a directed path of length two from (i; u1, u2, . . . , uk)
to (j; v1, v2, . . . , vk). �

Proposition 3.2 χ2(Gk) = k.

Proof. Assigning colour i to all vertices in Si, the set of vertices of index i, is
a 2-dipath k-colouring of Gk. To see that k is the minimum possible number of
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colours, suppose there is a 2-dipath colouring of Gk with fewer than k colours. Since
|V (Gk)| = k · 2k, there exists i such that more than 2k vertices have colour i. Hence
there exist vertices u, v and w such that u, v ∈ Si and w ∈ Sj, i �= j and there is no
directed path of length two joining any two of u, v and w. But Lemma 3.1 implies
that there is a directed path of length two joining either u and w, or v and w, a
contradiction. This completes the proof. �

Theorem 3.3 An oriented graph G has a 2-dipath colouring with k colours if and
only if there exists a homomorphism G → Gk.

Proof. (⇒) Suppose G has a 2-dipath colouring with colours, 1, 2, . . . , k. We shall
describe the desired homomorphism. The image (v0; v1, v2, . . . , vk) of vertex v ∈ V (G)
with colour i has v0 = i. For j = 1, 2, . . . , k, set vj = − if v has an in-neighbour of
colour j, and set vj = + otherwise. By definition of a 2-dipath colouring, v can not
have both an in-neighbour u and an out-neighbour w of the same colour. Hence the
image of v is well-defined. Suppose uw ∈ E(G), with u having colour a and v having
colour b. Then, by construction, the image (u0; u1, u2, . . . , uk) of u has entry ub = +
and the image (w0; w1, w2, . . . , wk) of w has entry wa = −. These two vertices are
adjacent in Gk.

(⇐) Suppose there is a homomorphism f : G → Gk. Assign vertex v ∈ V (G)
colour i if and only if its image under f has index i. Since vertices joined by a
directed path of length two in G map to vertices joined by a directed path of length
two in Gk, and any two such vertices of Gk have different indices, this is a 2-dipath
colouring of G. �

Corollary 3.4 If there exists a homomorphism G → H, then χ2(G) ≤ χ2(H).

Recall that the wreath product (or lexicographic product) of digraphs G and H
is the digraph G wr H with vertex set V (G wr H) = V (G) × V (H), and edge set

E(G wr H) = {(g, h)(g′, h′) : gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H)}.
Informally, G wr H is the digraph obtained by replacing each vertex of G with a copy
of H and, for each arc uv ∈ E(G) adding all possible arcs from the copy of H that
replaced u to the one that replaced v.

We use In to denote the directed graph with n vertices and no arcs. The following
assertions are clear.

Proposition 3.5 For 1 ≤ i ≤ k, the oriented graph Gk+1 − Si
∼= Gkwr I2.

Corollary 3.6 For k ≥ 1, Gk is an induced subgraph of Gk+1.

Corollary 3.7 For k ≥ 1, there exists a homomorphism Gk → Gk+1.
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3.2 Complexity

In this section we determine, for each fixed integer k ≥ 1, the complexity of 2-dipath
k-colouring, the problem of deciding whether a given oriented graph G is 2-dipath k-
colourable. The problem turns out to be NP-complete when k ≥ 3, and Polynomial
when k ≤ 2. We also give several descriptions of the oriented graphs that can be
2-dipath coloured with one or two colours.

The key to the NP-completeness proof is a construction that relates k-colourings
of a given undirected graph G and 2-dipath k-colourings of an associated bipartite
digraph, Bip(G). Given an undirected graph G, let V1 and V2 be two disjoint copies
of V (G) so that to each x ∈ V (G) there corresponds a vertex x1 ∈ V1 and a vertex
x2 ∈ V2. Define Bip(G) to be the oriented graph with vertex set V (Bip(G)) = V1∪V2,
and edge set E(Bip(G)) = {x1x2, y1y2, y2x1, x2y1 : xy ∈ E(G)}. That is, the edge xy
of G corresponds to the directed 4-cycle x1, x2, y1, y2, x1 in Bip(G).

Lemma 3.8 A graph G is k-colourable if and only if Bip(G) is 2-dipath k-colourable.

Proof. (⇒) Let c be a k-colouring of the undirected graph G. We will show that
the colouring of Bip(G) obtained by assigning colour c(x) to the vertices x1 and x2

corresponding to x is a 2-dipath colouring of Bip(G). Suppose there is a directed
path of length two from u to v in Bip(G). Then either u, v ∈ V1 or u, v ∈ V2. Without
loss of generality, assume u, v ∈ V1, so that there are vertices x and y of G for which
u = x1 and v = y1. Let z2 be the midpoint of a directed path of length two from x1

to y1. Since x1z2 ∈ E(Bip(G)), we have by construction that z2 = x2, as x2 is the
only out-neighbour of x1. Hence z2y1 = x2y1. Therefore xy ∈ E(G), so that u = x1

and v = y1 are assigned different colours. This proves the implication.

(⇐) Suppose Bip(G) is 2-dipath k-colourable. By construction, if xy ∈ E(G)
then x1 and y1 are joined by a directed path of length two in Bip(G). Hence,
assigning x ∈ V (G) the same colour as x1 ∈ V (Bip(G)) gives a k-colouring of G. �

Theorem 3.9 Let k ≥ 1 be a fixed integer. If k ≤ 2, then 2-dipath k-colouring is
Polynomial. If k ≥ 3, then 2-dipath k-colouring is NP-complete.

Proof. Suppose k ≤ 2. Let G be a given oriented graph. Since the undirected
graph Aux (G) can be constructed in polynomial time, the statement follows from
Proposition 2.1.

Suppose k ≥ 3. The transformation is from k-colouring. Given an instance H
of k-colouring, the transformed instance of 2-dipath k-colouring is Bip(H ). The
transformation can clearly be accomplished in polynomial time. The result now
follows from Lemma 3.8. �

We now give several descriptions of the oriented graphs that are 2-dipath colour-
able with one or two colours.
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It is clear that an oriented graph has a 2-dipath colouring with one colour if and
only if it has no subgraph isomorphic to P3. Equivalently, if and only if there is no
homomorphism of P3, the directed path on three vertices, to G, if and only if none of
P3, C3 and T3, the transitive tournament on three vertices, is an induced subgraph of
G. The following proposition gives a different description of these oriented graphs.

Proposition 3.10 Let G be an oriented graph. Then χ2(G) = 1 if and only if there
is a partition (V1, V2) of V (G) such that every arc is from a vertex in V1 to a vertex
in V2.

Proof. (⇒) Let G be an oriented graph with χ2(G) = 1. Then G has no directed path
of length two. Therefore G cannot contain an oriented odd cycle, and the underlying
undirected graph of G is bipartite. Further, every vertex must have in-degree zero
or out-degree zero. It follows that the desired partition exists.

(⇐) If V (G) can be partitioned (V1, V2) such that every arc is from a vertex in
V1 to a vertex in V2, then G has no directed path of length two and, consequently,
χ2(G) = 1. �

We now characterize the oriented graphs G with χ2(G) = 2. Let F1 be the set of
oriented graphs constructed from an undirected odd cycle by replacing each edge xy
by either the directed path x, mxy, y, or the directed path y, mxy, x, where mxy is a
new vertex. Let F2 be the set of directed odd cycles.

Proposition 3.11 If F ∈ F1 ∪ F2, then χ2(F ) = 3.

Proof. If F ∈ F1 ∪ F2, then the undirected graph Aux (F ) contains an odd cycle. �

Theorem 3.12 Let G be an oriented graph. Then χ2(G) ≤ 2 if and only if there is
no F ∈ F1 ∪ F2 for which there exists a homomorphism F → G.

Proof. (⇒) Since no F ∈ F1 ∪ F2 admits a homomorphism to G2, and G → G2, no
such F admits a homomorphism to G.

(⇐) Suppose χ2(G) > 2. Then Aux (G) is not bipartite, so it has an odd cycle,
C. By the construction of Aux (G), every pair of adjacent vertices are joined by
a directed path of length two in G. Hence C arises from a closed walk of length
4� + 2 in G comprised of 2� + 1 directed paths of length two. Thus, there exists a
homomorphism F → G for some F ∈ F1 ∪ F2. �

We now describe a forbidden subgraph characterization of the oriented graphs
with χ2 ≤ 2.

Suppose f : G → H is a homomorphism. Then the set of images of the vertices
of G is a subset of V (H). The function f induces a mapping of E(G) to E(H), and
the set of images of the edges of G under this mapping is a subset of E(H). In the
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case that both of these mappings are surjective— every vertex of H is the image of
a vertex of G and every edge of H is the image of some edge of G— then H is called
a homomorphic image of G. If H is a homomorphic image of G, then the pre-image
of every vertex of H is a non-empty independent set in G. Thus, a homomorphic
image of G is a directed graph that can be constructed from G by a sequence of
identifications of independent vertices.

Notice that a homomorphic image of an oriented graph may contain directed
cycles of length two. In a forbidden subgraph characterization of the oriented graphs
with χ2(G) ≤ 2, the forbidden subgraphs should be oriented graphs.

One way to derive the desired forbidden subgraph characterization from Theorem
3.12 is to use the set of oriented graphs which are homomorphic images of the oriented
graphs in F1 ∪F2 as the forbidden subgraphs. It is easy to see that a homomorphic
image of a directed odd cycle contains a directed odd cycle. However, it is not true
that a homomorphic image of an oriented graph in F1 necessarily contains an element
of F1∪F2 as a subgraph. Let F ′

1 be the intersection of the set of homomorphic images
of the oriented graphs in F1 and the set of oriented graphs.

Corollary 3.13 Let G be an oriented graph. Then χ2(G) ≤ 2 if and only if no
oriented graph in F ′

1 ∪ F2 is a subgraph of G.

3.3 Multipartite tournaments

In this section we consider the 2-dipath chromatic number of multipartite tourna-
ments. Tight bounds on this quantity are given. In addition, it is shown that the
2-dipath chromatic number of a multipartite tournament can be computed in poly-
nomial time.

Lemma 3.14 Let T be an m-partite tournament with m-partition (V1, V2, . . . , Vm),
and let c be a 2-dipath k-colouring of T . For each �, 1 ≤ � ≤ k, there exist i and j
such that {x ∈ V (T ) : c(x) = �} ⊆ Vi ∪ Vj.

Proof. Observe that the subgraph of T induced by any three vertices that belong to
different sets of the m-partition is a tournament, and hence contains a directed path
of length two. Since the set of vertices assigned a colour � contains no directed path
of length two, it can not contain vertices from three different sets in the m-partition.
The result follows. �

Corollary 3.15 Let T be an m-partite tournament. Then m
2
≤ χ2(T ) ≤ |V (T )|.

Proof. The lower bound follows from Lemma 3.14. The upper bound is clear. �
Infinitely many m-partite tournaments that achieve equality in the lower bound

can be constructed. Recall that the definition of wreath product and digraph In were
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given in Sub-section 3.1. If Tm denotes the transitive tournament on m vertices, then
for n ≥ 1, the wreath product Tm wr In is an m-partite tournament with χ2 = m/2.

Infinitely many m-partite tournaments that achieve equality in the upper bound
can also be constructed. Since it is impossible for adjacent vertices of a bipartite
tournament to be joined by a directed path of length two, equality can only occur
when m ≥ 3. For m = 3 consider the 3-partite tournament S(3, n) obtained from
the bipartite tournament Bn, n ≥ 1, with vertex set {a1, a2, . . . , an}∪{b1, b2, . . . , bn}
and arc set {aibj : 1 ≤ i ≤ j ≤ n} ∪ {bjai : 1 ≤ j < i ≤ n} by adding a new vertex
x, arcs joining x to each of a1, a2, . . . , an, and arcs joining each of b1, b2, . . . , bn to
x. Any two vertices of S(3, n) are joined by a directed path of length two. Notice
that S(3, t) is strongly connected. For m = 3t, t ≥ 2, consider the wreath product
Tt wr S(3, t), where Tt is the transitive tournament on t vertices. Again, every two
vertices are joined by a directed path of length two.

Theorem 3.16 There exists a polynomial time algorithm to compute the 2-dipath
chromatic number of a given multipartite tournament.

Proof. Let T be an m-partite tournament with m-partition (V1, V2, . . . , Vm). For
i = 1, 2, . . . , m, define an equivalence relation θi on Vi by (x, y) ∈ θi if and only
if N+(x) = N+(y) and N−(x) = N−(y). Let T ′ be the subgraph of T induced
by choosing a representative of each equivalence class of θi, 1 ≤ i ≤ m. Then
T ′ is an m-partite tournament. Suppose it has m-partition (V ′

1 , V
′
2 , . . . , V

′
m) where

V ′
i ⊆ Vi, 1 ≤ i ≤ m. By definition of the relation θi, any two vertices in V ′

i are
joined by a directed path of length two.

By construction, χ2(T
′) = χ2(T ). Every 2-dipath colouring of T ′ gives a 2-dipath

colouring of T : for i = 1, 2, . . . , m, assign all vertices in each equivalence class of θi

the same colour as its representative in T ′.

Let H be the complement of Aux (T ′). Then every edge of H has one end in a
set V ′

i and the other end in a set V ′
j , where i �= j. The ends of an edge of H can

be regarded as sets of vertices – that is, equivalence classes under θi and θj – that
can be assigned the same colour in a 2-dipath colouring. By Lemma 3.14, a 2-dipath
colouring of T ′ corresponds to a partition of V (H) into sets that induce K1 or K2.
It follows that χ2(T ) = χ2(T

′) = |V (T ′)| − |M |, where M is a maximum matching
in H .

The m-partite tournament and undirected graph H can be found in polynomial
time, as can a maximum matching in H . The result follows. �

4 Proper 2-dipath colourings

The colourings considered in this section assign different colours to adjacent vertices
and to vertices joined by a directed path of length two. Many of the results that
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follow mirror those in the previous section. Proofs that are substantially similar to
those already given are omitted.

4.1 Homomorphism model

We shall define a set of oriented graphs G′
k, k ≥ 1, such that an oriented graph G has

a proper 2-dipath k-colouring if and only if there is a homomorphism of G → G′
k. For

completeness, we note once again that a similar, but not identical, oriented graph
has been used by Sopena [14] in work on the oriented chromatic number. The graph
G′

k has arisen in the study of injective oriented colourings (e.g. see [11, 15]).

For an integer k ≥ 1, we define G′
k to be the directed graph with vertex set

V (G′
k) = {(u0; u1, u2, . . . , uk) : u0 ∈ {1, 2, . . . , k}, ui ∈ {+,−} if i �= u0, uu0 = ·}

and edge set

E(G′
k) = {(u0; u1, u2, . . . , uk)(x0; x1, x2, . . . , xk) : ux0 = +, xu0 = −}.

By definition of E(G′
k), the integers u0 and x0 can not be equal.

The integer u0 is the index of the vertex (u0; u1, u2, . . . , uk) ∈ V (G′
k). For i =

1, 2, . . . , k, let S ′
i be the set of vertices of index i. Then S ′

i is an independent set. For
j ≥ 1, the idea underlying the entry uj of (u0; u1, u2, . . . , uk) is the same as in the
previous section – to indicate the sort of adjacencies between (i; u1, u2, . . . , uk) and
vertices in Sj, j �= i. As before, it follows from the definition that G′

k is an oriented
graph.

The oriented graph G′
k also has the following properties:

• |V (G′
k)| = k · 2k−1,

• for all vertices v, deg+(v) + deg−(v) = (k − 1) · 2k−1

2
= (k − 1) · 2k−2,

• |E(G′
k)| = 1

2
(k · 2k−1) · ((k − 1) · 2k−2) =

(
k
2

) · 22k−3.

The next four results are similar to Lemma 3.1, Proposition 3.2, Theorem 3.3
and Corollary 3.4, respectively, and have essentially the same proofs.

Lemma 4.1 There is a directed path of length two in G′
k joining the vertices (i; u1,

u2, . . . , uk) and (j; v1, v2, . . . , vk) if and only if k ≥ 3, i �= j and there exists � �∈ {i, j}
such that u� �= v�.

Proposition 4.2 χ′
2(G

′
k) = k.

Theorem 4.3 An oriented graph G has a proper 2-dipath colouring with k colours
if and only if there exists a homomorphism G → G′

k.
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Corollary 4.4 If there exists a homomorphism G → H, then χ′
2(G) ≤ χ′

2(H).

The oriented chromatic number of an oriented graph G is the least integer k
for which there is a homomorphism of G to an oriented graph on k vertices, and is
denoted by χo(G). The homomorphism model for proper 2-dipath colourings makes
it possible to obtain bounds on the oriented chromatic number in terms of the proper
2-dipath chromatic number.

Theorem 4.5 [11] χo(Gk) ≤ 2k − 1.

Corollary 4.6 Let G be an oriented graph with χ′
2 = k. Then k ≤ χo ≤ 2k − 1.

The next three results are similar to Proposition 3.5, Corollary 3.6, and Corollary
3.7, respectively. Recall that I2 denotes the directed graph with two vertices and no
arcs.

Proposition 4.7 For 1 ≤ i ≤ k, the oriented graph G′
k+1 − S ′

i
∼= G′

k wr I2.

Corollary 4.8 For k ≥ 1, G′
k is an induced subgraph of G′

k+1.

Corollary 4.9 For k ≥ 1, there exists a homomorphism G′
k → G′

k+1.

4.2 Complexity of proper 2-dipath colourings

We shall determine, for each fixed integer k ≥ 1, the complexity of proper 2-dipath
k-colouring, the problem of deciding whether a given oriented graph G has a proper
2-dipath k-colouring. The problem turns out to be NP-complete when k ≥ 3, and
Polynomial when k ≤ 2. We also describe the oriented graphs that can be 2-dipath
coloured with one or two colours.

The NP-completeness proof uses two main ingredients. The first is a theorem
due to Barto, Kozik and Niven [1]. For a fixed directed graph H , the symbol HomH

denotes the problem of deciding whether a given directed graph G has a homomor-
phism to H . Observe that, if H is an oriented graph, then the input graph G can be
assumed be an oriented graph.

Theorem 4.10 [1] If an oriented graph F has a subgraph H with δ+(H) > 0,
δ−(H) > 0, and two directed cycles each having the property that its length does
not divide the length of the other, then HomF is NP-complete.

The second main ingredient in the NP-completeness proof is a reduction method
that is well established in the study of graph homomorphisms, and which was first
formally stated in the classic paper by Hell and Nešetřil [9] (also see [10]).
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Let I be a fixed directed graph with special vertices u and v. Given a directed
graph H , the indicator construction with respect to (I, u, v) produces the directed
graph H∗ with vertex set V (H∗) = V (H) and xy ∈ E(H∗) if and only if there is a
homomorphism I → H that maps u to x and v to y.

Lemma 4.11 [9] Let H∗ denote the result of applying the indicator construction with
respect to (I, u, v) to the directed graph H. Then HomH∗ polynomially transforms to
HomH .

Theorem 4.12 Let k ≥ 1 be a fixed integer. If k ≤ 2, then proper 2-dipath k-
colouring is Polynomial. If k ≥ 3, then proper 2-dipath k-colouring is NP-complete.

Proof. Suppose k ≤ 2. Let G be a given oriented graph. Since the undirected graph
U [G2] can be constructed in polynomial time, the statement follows from Proposition
2.1.

Now suppose k ≥ 4. The subgraph H of G′
k induced by the vertices that contain

both a + and a − has δ+(H) > 0 and δ−(H) > 0. Since it also contains directed
cycles of length three and length four, the statement follows from Theorem 4.10.

Finally, suppose k = 3. Referring to Figure 3, let D = G′
3 and let D∗ denote the

result of applying the indicator construction with respect to (I, u, v) to G′
3. Clearly

D∗ has a subgraph that satisfies the hypotheses of Theorem 4.10. Hence HomD∗ is
NP complete. The result now follows from Lemma 4.11. �

By Proposition 2.1, an oriented graph has a proper 2-dipath 1-colouring if and
only if it has no arcs, and a proper 2-dipath 2-colouring if and only it does not contain
a directed path of length two (which requires three colours). Thus the oriented graphs
that have a proper 2-dipath 2-colouring are precisely those that have a 2-dipath 1-
colouring. That is, an oriented graph G has a proper 2-dipath 2-colouring if and
only if there is no homomorphism of P3 to G, if and only if none of P3, C3 and T3 is
an induced subgraph of G, if and only if G is bipartite and V (G) can be partitioned
(V1, V2) such that every arc is from a vertex in V1 to a vertex in V2.

4.3 Multipartite tournaments

In this section we consider the proper 2-dipath chromatic number of multipartite
tournaments. Tight bounds on this quantity are given. In addition, it is shown that
the proper 2-dipath chromatic number of a multipartite tournament can be computed
in polynomial time.

Proposition 4.13 Let T be an m-partite tournament. Then m ≤ χ′
2(T ) ≤ |V (T )|.

The multipartite tournament Tm wr In (see Sub-section 3.3) achieves equality in
the lower bound. Equality in the upper bound is achieved by every tournament, and
every m-partite tournament obtained using the construction in Sub-section 3.3.
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(1; ·, +, +)

(2;−, ·, +)

(3; +,−, ·)

u

v

(a) D = G′
3 (b) (I, u, v)

(c) D∗

Figure 3: Applying the indicator construction to G′
3

Theorem 4.14 There exists a polynomial time algorithm to compute the proper 2-
dipath chromatic number of a given multipartite tournament.

Proof. Let T be an m-partite tournament with m-partition (V1, V2, . . . , Vm). Two
vertices x, y ∈ V (T ) can be assigned the same colour in a proper 2-dipath colouring
if and only if N+(x) = N+(y) and N−(x) = N−(y). Further, in a colouring with χ′

2

colours, any two such vertices must receive the same colour.

For i = 1, 2, . . . , m, define an equivalence relation θi on Vi by (x, y) ∈ θi if and
only if N+(x) = N+(y) and N−(x) = N−(y). Suppose that θi has ti equivalence
classes. Then χ′

2(T ) =
∑m

i=1 ti.

Since the equivalence classes of the relations θi can be found in polynomial time,
the result follows. �



G. MACGILLIVRAY AND K.M. SHERK/AUSTRALAS. J. COMBIN. 60 (1) (2014), 11–26 25

References

[1] L. Barto, M. Kozik and T. Niven, The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and
Hell), SIAM J. Computing 38 (2008), 1782–1802.

[2] T. Calamoneri, The L(h, k)-Labelling Problem: An Updated Survey and Anno-
tated Bibliography, The Computer Journal 54 (2011), 1344–1371.

[3] T. Calamoneri and B. Sinaimeri, L(2, 1)-Labeling of Oriented Planar Graphs,
Discrete Applied Math. 161 (2013), 1719–1225.

[4] G.J. Chang and S-C. Liaw, The L(2, 1)-labeling problems on ditrees, Ars Com-
bin. 66 (2003), 23–31.

[5] G.J. Chang, J-J. Chen, D. Kuo and S-C Liaw, Distance-two labelings of di-
graphs, Discrete Applied Math. 155 (2007), 1007–1013.

[6] M. Chen and W. Wang, The 2-dipath chromatic number of Halin graphs, Inf.
Proc. Letters 99 (2006), 47–53.

[7] D. Goncalves, A. Raspaud and M. Shalu, On Oriented Labelling Parameters,
Formal Models, Languages and Applic. 66 (2006), 34–45.

[8] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2,
SIAM J. Discrete Math. 5 (1992), 586–595.
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